
Week 8

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Content

• Introduction Dynamic Memory Management

• calloc

• free

• malloc

• realloc

• Common Problems with Dynamic Memory

NWEN 241: 3

Recap: Usage of Pointers

1) Provide an alternative means of accessing information stored in arrays

2) Provide an alternative (and more efficient) means of passing parameters to

functions

3) Enable dynamic data structures, that are built up from blocks of memory allocated

from the heap at run time

NWEN 241: 4

Lifetime

Program end

Static

Program start

Block start

Automatic

Block end

Dynamic

Explicit allocation Explicit deallocation

NWEN 241: 5

Why Allocate Memory Dynamically?

• It may not be possible to know ahead of time the space needed by a variable

(e.g., array) for storing data

• With static allocation:

• If predefined size is small, it may not be enough space to hold data, resulting in program

failure

• If predefined size is big, most of the space will not be used causing waste or inefficiency

NWEN 241: 6

Dynamic Memory Allocation

• Allow the program to dynamically allocate memory for some variables (e.g.

arrays) during the program execution

• Approach:

− Program has routines allowing user to
request some amount of memory,

− the user then uses this memory, and

− returns it when they are done.

− Memory is allocated in the Heap Segment

Code Segment
(Text Segment)

Data Segment

Heap Segment

free

Stack Segment

NWEN 241: 7

Dynamic Memory Management Functions

⚫ calloc - allocate array of memory

⚫ malloc - allocate a single block of memory

⚫ realloc – extend or reduce the amount of space allocated previously

⚫ free - free up a piece of memory that is no longer needed

Memory allocated dynamically does not go away at the
end of functions, you MUST explicitly free it up

NWEN 241: 8

calloc – Allocate Memory for Array

• Function prototype:

− size_t – special type used to indicate sizes, unsigned int

− num – number of elements to be allocated in the array

− esize – size (in bytes) of a single element to be allocated

⚫ to get the correct value, use sizeof(<type>)

⚫ memory of size num*esize is allocated

⚫ calloc returns the address of the 1st byte of this memory

− Cast the returned address to the appropriate type

⚫ If not enough memory is available, calloc returns NULL

void *calloc(size_t num, size_t esize)

NWEN 241: 9

calloc Example

float *nums;
int a_size;
int idx;

printf("Read how many numbers:");
scanf("%d",&a_size);
nums = (float *)calloc(a_size, sizeof(float));

/* nums is now an array of floats of size a_size */
for (idx = 0; idx < a_size; idx++) {
 printf("Please enter number %d: ",idx+1);
 scanf("%f", nums+idx); /* read in the floats */
}

/* Calculate average, etc. */

What is a potential
problem of this
code?

NWEN 241: 10

calloc Example

• Always check the return value of calloc, malloc or realloc!

float *nums;
int a_size;
int idx;

printf("Read how many numbers:");
scanf("%d",&a_size);
nums = (float *) calloc(a_size, sizeof(float));

if(nums == NULL) {
 /* exit or do some other stuff */
}
…

NWEN 241: 11

free – Return Memory to Heap

• Function prototype:

⚫ Memory at location pointed by ptr is released (so that it could be used again)

⚫ Program keeps track of each piece of memory allocated by where that memory

starts

⚫ If we free a piece of memory allocated with calloc, the entire array is freed

(released)

⚫ Undefined behaviour if we pass as address to free an address of something that

was not allocated dynamically (or has already been freed)

void free(void *ptr)

NWEN 241: 12

free Example

float *nums;
int a_size;

printf("Read how many numbers:");
scanf("%d",&a_size);
nums = (float *) calloc(a_size, sizeof(float));

/* Use array nums */
…

/* When done with nums: */
free(nums);

/* Would be an error to do it again - free(nums) */

NWEN 241: 13

malloc – Allocate Memory

• Function prototype:

⚫ Similar to calloc, except we use it to allocate a single block of the given size

esize

⚫ NULL returned if not enough memory available

⚫ Memory must be released using free if no longer needed

⚫ Following are equivalent:

void *malloc(size_t esize)

malloc(a_size*sizeof(float)) calloc(a_size, sizeof(float))

NWEN 241: 14

malloc Example

float *nums;
int a_size;
int idx;

printf("Read how many numbers:");
scanf("%d",&a_size);
nums = (float *) malloc(a_size * sizeof(float));

if(nums == NULL) {
 /* exit or do some other stuff */
}
…

NWEN 241: 15

realloc – increase/decrease memory allocation

• Function prototype:

⚫ ptr is a pointer to a piece of memory previously dynamically allocated

⚫ esize is new size to allocate

⚫ NULL returned if reallocation fails

⚫ Function performs following action:

1) allocates memory of size esize,

2) copies the contents of the memory at ptr to the first part of the new piece of memory,
and lastly,

3) old block of memory is freed up

4) Address to new piece of memory is returned

void *realloc(void *ptr, size_t esize)

NWEN 241: 16

realloc Example

float *nums;
int a_size;

nums = (float *)calloc(5, sizeof(float));
/* nums is an array of 5 floating point values */

for (a_size = 0; a_size < 5; a_size++)
 nums[a_size] = 2.0 * a_size;
/* nums[0]=0.0, nums[1]=2.0, nums[2]=4.0, etc. */

nums = (float *)realloc(nums, 10*sizeof(float));
/* An array of 10 floating point values is allocated, the
first 5 floats from the old nums are copied as the first 5
floats of the new nums, then the old nums is released */

NWEN 241: 17

Allocating Memory for 2D array

⚫ Can not simply allocate 2D (or higher)

array dynamically

⚫ Solution:

1) Allocate an array of pointers (1st dimension),

2) Make each pointer point to a 1D array of the
appropriate size

0

4

3

2

1

0 321

A

NWEN 241: 18

Allocating Memory for 2D array
float **A; /* A is an array (pointer) of float pointers */
int X;

A = (float **) calloc(5, sizeof(float *));
/* A is a 1D array (size 5) of float pointers */

for (X = 0; X < 5; X++)
{
 A[X] = (float *) calloc(4, sizeof(float));
 /* Each element of array points to an array of 4 float
 variables */
}

/* A[X][Y] is the Yth entry in the array that the Xth member of A
points to */

NWEN 241: 19

Irregular-sized 2D array

float **A;
int X;

A = (float **)calloc(5,
sizeof(float *));

for (X = 0; X < 5; X++){
 A[X] = (float *)
 calloc(X+1,
 sizeof(float));
}

0

4

3

2

1

0 321

A

4

NWEN 241: 20

Common Issues With Dynamic Memory

NWEN 241: 21

Issue #1

• Returning a pointer to an automatic variable

int *foo(void)
{
 int x;

 …

 return &x;
 /* x does not exist outside the function */
 /* Returning its address will result in unknown behaviour */
}

NWEN 241: 22

Issue #2

• Heap block overrun: similar to array going out of bounds

void foo(void)
{
 int *x = (int *) malloc(10 * sizeof(int));

 x[10] = 10;
 /* Allocated memory is only up to x[9] */

 …

 free(x);
}

NWEN 241: 23

Issue #3

• Memory leak: loss of pointer to allocated memory

int *pi;

void foo(void)
{
 pi = (int*) malloc(8*sizeof(int));
 /* Leaked the old memory pointed to by pi */
 …
 free(pi); /* foo() is done with pi, so free it */
}

int main(void)
{
 pi = (int*) malloc(4*sizeof(int));
 foo();
}

NWEN 241: 24

Issue #4

• Potential memory leak

⚫ Loss of pointer to beginning of memory block

⚫ May still recover through pointer arithmetic

int *ip = NULL;

void foo(void)
{
 ip = (int *) malloc(2 * sizeof(int));
 …
 ip++;
 /* ip is not pointing to the start of the block anymore */

}

NWEN 241: 25

Issue #5

• Freeing non-heap or unallocated memory

void foo(void)
{
 int fnh = 0;
 free(&fnh); /* Freeing stack memory */
}

void bar(void)
{
 int *fum = (int *) malloc(4 * sizeof(int));
 free(fum+1); /* fum+1 points to middle of block */
 free(fum);
 free(fum); /* Freeing already freed memory */
}

NWEN 241: 26

Detecting Memory Leaks and Other Issues

⚫ Valgrind is an open-source tool for detecting memory management and threading

bugs

⚫ For more information: http://valgrind.org/

	Introduction
	Slide 1: Week 8 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: Content
	Slide 3: Recap: Usage of Pointers
	Slide 4: Lifetime
	Slide 5: Why Allocate Memory Dynamically?
	Slide 6: Dynamic Memory Allocation
	Slide 7: Dynamic Memory Management Functions
	Slide 8: calloc – Allocate Memory for Array
	Slide 9: calloc Example
	Slide 10: calloc Example
	Slide 11: free – Return Memory to Heap
	Slide 12: free Example
	Slide 13: malloc – Allocate Memory
	Slide 14: malloc Example
	Slide 15: realloc – increase/decrease memory allocation
	Slide 16: realloc Example
	Slide 17: Allocating Memory for 2D array
	Slide 18: Allocating Memory for 2D array
	Slide 19: Irregular-sized 2D array
	Slide 20
	Slide 21: Issue #1
	Slide 22: Issue #2
	Slide 23: Issue #3
	Slide 24: Issue #4
	Slide 25: Issue #5
	Slide 26: Detecting Memory Leaks and Other Issues

