
Week 10 Lecture 2
XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Felix Yan
School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2
Content
• File Stream I/O
• Introduction to File Stream I/O
• File Stream Operations
• Opening, Flushing, and Closing
• Reading and Writing a Character

NWEN 241: 3

File Stream I/O

NWEN 241: 4
Introduction to File Input / Output

 I/O is the process of copying data between main memory and external
devices, like terminals (keyboards), disk drives, networks, etc.

 In C, everything is abstracted as a file
 Each file is simply a sequential stream of bytes
 C imposes no structure on a file

• From the program’s point of view, data input and data output are made
possible through files

NWEN 241: 5
Accessing Files
• A file must first be opened properly before it can be accessed for reading or writing

• Opening a file establishes a “communication channel” between the program and
the file

5

Program File“Communication Channel”

NWEN 241: 6
File Stream vs File Descriptor
• “Communication channel” can either be a file stream or file descriptor
• C provides functions for accessing files via file stream or file descriptor

File Descriptor File Stream

Content access Primitive access: contents can be
accessed as blocks of bytes

Rich access: contents can be
formatted using format specifiers

Control operations Allows setting of control
parameters

Does not allow

Special I/O modes Allows special access modes
such as non-blocking

Does not allow

Buffering None Supports 3 modes of buffering

NWEN 241: 7
File Stream vs File Descriptor
• File streams provide a higher-level interface, layered on top of the primitive file

descriptor facilities

• For special files (e.g. I/O devices and sockets), file descriptor is the recommended
approach

• For regular files (files on disk), file stream is the recommended approach

NWEN 241: 8
Stream Buffering
• One of the common pitfalls when dealing with file streams is buffering

• More problematic in interactive I/O streams
• Data written by program to file does not appear immediately
• Data read by program from file does not appear immediately

Program File File StreamBuffer

NWEN 241: 9
Illustration

• If user types the string

• The string str will only be assigned
"The"

• What happens to the rest?

char str[100];
scanf ("%s", str);

The quick brown fox

NWEN 241: 10
Stream Buffering Modes

Mode Description
Unbuffered Characters written to or read from an unbuffered stream are transmitted

individually to or from the file as soon as possible.

Line buffered Characters written to a line buffered stream are transmitted to the file in
blocks when a newline character is encountered.

Fully buffered Characters written to or read from a fully buffered stream are
transmitted to or from the file in blocks of arbitrary size.

• Newly opened streams are fully buffered by default, except streams
connected to interactive devices which are line buffered

• C provides functions for changing stream buffering mode

NWEN 241: 11
Built-in Streams (1)

 Every C program has access to 3 file streams: stdin, stdout, stderr

File Description Default Buffering
stdin Standard input

stream
Connected to the
keyboard

Line buffered

stdout Standard output
stream

Connected to the
screen

Line buffered

stderr Standard error
stream

Connected to the
screen

Unbuffered

NWEN 241: 12
Built-in Streams (2)

• You have already been using these streams without you knowing it!

printf("Hello, world\n"); stdout

scanf("%d", &i); stdin

NWEN 241: 13
File Stream (Stream for Short)
• The <stdio.h> header file provides types and functions for accessing streams

• FILE structure: a structure that holds information about a stream

• FILE facilitates stream I/O: C functions use FILE pointer to access files

NWEN 241: 14
Stream I/O Functions (1)
• fopen – open or create a file and associate a stream

• fclose – close a stream

• fflush – force to write all buffered data to file

• fgetc – read a single character from a stream

• fputc – write a single character to a stream

14

NWEN 241: 15
Stream I/O Functions (2)
• fscanf – read formatted input from stream

• fprintf – write formatted output to stream

• fread – read in binary mode from stream

• fwrite – write in binary mode to stream

• fseek/rewind – change position in stream

• ftell – determine position in stream

15

NWEN 241: 16
Opening a File

A file must be “opened” before it can be
used
 FILE *fp; // pointer to stream

 :::
 fp = fopen (filename, mode);

“string” specifying the file name

returns a pointer to FILE (FILE *); used
in all subsequent file operations.

"r" – open the file for
reading only

"w" – open the file for
writing only

"a" – open the file for
appending data to it

NWEN 241: 17
Examples
• Open a file named mydata for reading:

• Open or create a file named file.csv for writing:

FILE *fp;
fp = fopen ("mydata", "r");

FILE *fp;
fp = fopen ("file.csv", "w");

• File is opened for reading only –
file must exist

• File reading is positioned at the
start of file

• Creates a new file for writing
• If file exists, contents (if any)

are deleted
• File writing is positioned at the

start of file

NWEN 241: 18
Examples
• Open or create a file named sample.txt for appending:

FILE *fp;
fp = fopen ("sample.txt", "a");

• Creates a new file for writing if
does not exist

• File writing is positioned at the
end of file

NWEN 241: 19Did fopen() Succeed?
• If the file was not able to be opened, then the value returned by the fopen() is

NULL
• Always check return value of fopen()

FILE *fp;
fp = fopen ("mydata", "r");
if (fp == NULL) {

printf ("File open failed.\n");
return 0;

 }

Reasons for opening failure:
• File does not exist

• File is already open

• File cannot be created

• File cannot be accessed
(insufficient permissions)

NWEN 241: 20
Closing a File
• After completing all operations on a file, it must be closed to ensure that all file data

stored in the buffer are written to the file
• General format: fclose (file_pointer);

FILE *fp; // pointer to data type FILE
 :::

fp = fopen (filename, mode);
 :::
fclose (fp); // close the file

NWEN 241: 21
Flushing Buffer Contents
• To force writing of buffer content to file without closing it, call the fflush() function
• General format:

fflush (file_pointer);

FILE *fp; // pointer to data type FILE
 :::

fp = fopen (filename, mode);
 :::
fflush (fp); // write buffer to file
 :::

NWEN 241: 22
Read/Write Operations on Files
• Simplest file input-output (I/O) function: fgetc() & fputc()

• fgetc() reads one character from stream
• fgetc() return an end-of-file marker EOF, when the end of the file has been

reached

char ch;
FILE *fp;

:::
ch = fgetc(fp);

getchar() -> fgetc(stdin)

NWEN 241: 23
Read/Write Operations on Files

• fputc() is used to write a character to a stream

char ch;
FILE *fp;

:::
fputc(ch, fp);

putchar(ch) -> fputc(ch,stdout)

NWEN 241: 24Example with fgetc() and fputc()

int main(void)
{
 FILE *ifp, *ofp;
 char c;

 ifp = fopen ("ifile.dat","r");
 ofp = fopen ("ofile.dat","w");

 while ((c = fgetc (ifp)) != EOF)
 fputc (toupper(c), ofp);
 fclose (ifp);
 fclose (ofp);
}

Hello nwen241!
ifile.dat:

HELLO NWEN241!
ofile.dat:

NWEN 241: 25
fgetc() vs getc()

 Both routines read a character from a stream

 fgetc() is implemented as a function while getc() is implemented as a function-
like macro

 Argument to getc() should not be an expression with side effects

 Example: fgetc(*p++) works but getc(*p++) fails

NWEN 241: 26
fputc() vs putc()

 Both routines write a character to a FILE stream

 fputc() is implemented as a function while putc() is implemented as a function-
like macro

 Same considerations as fgetc() and getc()

NWEN 241: 27Recall: scanf()

• Reads user input from keyboard (stdin stream)

• Consider:

int a, b;
scanf("%d %d", &a, &b);

Format specifier expects 2
integers in decimal

2 numbers entered by user on
keyboard will be stored here

scanf() [and printf()] are
variadic functions: the number
of arguments they accept is not
fixed

NWEN 241: 28
fscanf()

• Same as scanf() except need stream (FILE *) as an argument
•scanf() reads formatted input from stdin stream
• fscanf() reads formatted input from specified stream

• Example:

int a, b;
FILE *fp;
fp = fopen ("datafile", "r");
fscanf(fp, "%d %d", &a, &b);

fscanf() would read values
from the stream pointed by
fp and assign those values to
a and b

scanf("%d", &a) -> fscanf(stdin, "%d", &a)

NWEN 241: 29
Example (1)
• Consider:

• Contents of datafile:

• What is the value assigned to a and b?

int a, b;
FILE *fp;
fp = fopen ("datafile", "r");
fscanf(fp, "%d %d", &a, &b);

100 200

a = 100, b = 200

NWEN 241: 30
Example (2)
• Consider:

• Contents of datafile:

• What is the value assigned to a and b?

int a, b;
FILE *fp;
fp = fopen ("datafile", "r");
fscanf(fp, "%d %x", &a, &b);

100 200

a = 100, b = 512

200 is taken as a
hexadecimal number

NWEN 241: 31Detecting End of File using EOF

• End-of-file indicator EOF informs the program when there are no more data (no
more bytes) to be processed

• fscanf() returns EOF if end-of-file is reached, or errors were encountered when
reading from stream

• Example:

int ret, var;
ret = fscanf (fp, "%d", &var) ;
if (ret == EOF) {

printf ("End-of-file encountered.\n");
}

NWEN 241: 32Detecting End of File using feof()

• Use the feof() function which returns a non-zero value (true) or zero (false)
condition

• True if EOF is reached, or errors were encountered during read operation
• False otherwise

• Example:

int var;
fscanf (fp, "%d", &var) ;
if (feof(fp)) {

printf ("End-of-file happened.\n");
}

NWEN 241: 33Recall: printf()

• Writes to screen (stdout stream)

• Consider:

int a = 1, b = 2;
printf("%d %d", a, b);

Format specifier will write
2 integers in decimal

2 numbers to be written to
screen

NWEN 241: 34
fprintf()

• Same as prinf() except need stream (FILE *) as an argument
•printf() writes formatted output to stdout stream
• fprintf() writes formatted output to specified stream

• Example:

int a = 100, b = 200;
FILE *fp;
fp = fopen ("datafile", "w");
fprintf(fp, "%d %d", a, b);

fprintf() would write the values
stored in a and b to the stream
pointed to by fp

printf("%d", a) -> fprintf(stdout, "%d", a)

NWEN 241: 35
Example (1)

• What will be the contents of datafile after running this code?

int a = 100, b = 200;
FILE *fp;
fp = fopen ("datafile", "w");
fprintf(fp, "%d %d", a, b);

100 200

NWEN 241: 36
Example (2)

• What will be the contents of datafile after running this code?

int a = 100, b = 200;
FILE *fp;
fp = fopen ("datafile", "w");
fprintf(fp, "%d %x", a, b);

100 c8 c8 is the hexadecimal
representation of 200

NWEN 241: 37
Handling Binary Files

 Same as dealing with text files except in the opening step

FILE *fp; // pointer to stream

 :::
fp = fopen (filename, mode);

"rb" – open the file in binary mode for reading
only

"wb" – open the file in binary mode for writing
only

"ab" – open the file in binary mode fo r appending
 data to it

NWEN 241: 38
Reading Binary Files
• Read blocks of binary data from stream

• fread() returns the actual number of elements read

size_t fread (void *ptr, size_t size, size_t nmemb,
 FILE *stream);

Where to store the
data read from file Size of 1 block

Max number of blocks
to read

Stream to read

NWEN 241: 39
Example

• Will read the first 10 bytes of file1.exe and store them in buffer

39

FILE *fp;
unsigned char buffer[10];

fp = fopen("file1.exe", "rb");
fread (buffer, sizeof(buffer), 1, fp);

NWEN 241: 40
Writing Binary Files

• Writes blocks of binary data to stream

• fwrite() returns the actual number of elements written

size_t fwrite (void *ptr, size_t size, size_t nmemb,
 FILE *stream);

Location of data to
write Size of 1 block

Number of blocks to
write

Stream to write

NWEN 241: 41
Example

 Will write the data array to datafile

FILE *fp;
int data[4] = {15, 31, 63, 127};

fp = fopen("datafile", "wb");
fwrite (data, sizeof(int), 4, fp);

NWEN 241: 42
Example
• In Linux, you can use hexdump to view contents of binary file

• hexdump –d datafile will display the contents of datafile in decimal

00015 00000 00031 00000 00063 00000 00127
00000

datafile:

15 31 63 127

NWEN 241: 43
Random Access
• After opening a file, read/write position is either at start or end of file

• To change position, use either fseek() or rewind()

• To know current position, use ftell()

NWEN 241: 44
fseek()

•fseek() allows repositioning within a file

• New position in the file is determined by:
• offset – byte count (possibly -ve) relative to the position specified by

startpoint where
• startpoint: {SEEK_SET, SEEK_CUR, SEEK_END}

int fseek(FILE *stream, long int offset, int startpoint);

Beginning of file Current file position End of file

NWEN 241: 45
ftell()

• ftell() returns the current file position:

• This may be saved and later passed to fseek():

long ftell(FILE *stream);

long file_pos;
file_pos = ftell(fp);
…
fseek(fp, file_pos, SEEK_SET);
/* return to previous position */

NWEN 241: 46
rewind()

• Reposition reading/writing to start of file

•rewind(fp) is equivalent to:

 fseek(fp, 0, SEEK_SET)

46

