
Week 11
XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Felix Yan
School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2
Content
• System calls

• Interprocess communication

2

NWEN 241: 3
System calls - What and Why?

Conceptual View of a Computer System

Hardware

Applications

Operating System

Users

NWEN 241: 4System calls - What and Why?

- Typically needs access to system resources.

- System resources can be:
 a) physical – e.g. input devices, screen displays.
 OR
 b) Virtual – e.g. files, network connections, threads.

- Applications need O.S. to enable them access these
resources.

Conceptual View of a Computer System

Hardware

Applications

Operating System

Users

NWEN 241: 5System calls - What and Why?

• Operating Systems do not allow application software to
access system resources directly due to security and
reliability issues.

• A program can request the services of system resources
from O.S through system calls.

• System cal ls are funct ion invocations made from
application into the OS in order to request some service
or resource from the operating system.

• Application developers often do not have direct access to
system calls but can access them through a system call
API, which in turn invokes the system call.

Hardware

Applications

Operating System

Users

System Call Interface

NWEN 241: 6
An example of a system call usage

• Consider the following example:

C Library function printf "asks"
the operating system to print
for the calling program by
using the system call API
routines

#include<stdio.h>

int main()
{
 printf("Hello World");
 return 0;
}

NWEN 241: 7
System call invocation –Example

#include <stdio.h>
void main(void)
{
 printf("Hello, world\n");
 exit(0);
}

System Call Interface
User mode

Kernel mode

Standard C Library
write()

sys_write()
system call

NWEN 241: 8

Interprocess Communication

NWEN 241: 9
What is a process ?

 Program and process are related terms.

Program is a set of instructions to
carry out a specified task

Process is a program in execution

Passive entity Active entity
Program is a stored in disk and
does not require any other
resource.

Process requires system
resources such as CPU, memory,
I/O etc.

Life span - Longer Life span – limited
Each time a program is run a new process is created.

NWEN 241: 10
Process lifecycle
As a process executes, it changes state

• new: The process is being created

• ready: The process is waiting to be
assigned to a processor

• running: Instructions are being executed

• waiting: The process is waiting for some
event to occur

• terminated: The process has finished
execution

new

ready running

waiting

terminated

admitted

interrupt

exit

I/O or
event completion I/O or

 event
wait

Scheduler dispatch

NWEN 241: 11
Process management system calls
The following system calls are used for basic process management.

• fork()

• exec()

• wait()

• exit()

Defined in unistd.h

Defined in sys/wait.h

Defined in stdlib.h

NWEN 241: 12
Process - Independent Vs Cooperating
• Independent processes: processes that don’t interact with other processes

• Cooperating processes: process can affect or be affected by other processes.

• In order to co-operate processes, need to communicate
• Inter Process Communication

NWEN 241: 13
Cooperating Processes
• Reasons for cooperating processes:

• Information sharing
• Computation speedup
• Modularity
• Convenience

• Cooperating processes can reside on same machine or in different machines (on a
network).

NWEN 241: 14
Inter-process communication

• Cooperating processes need Inter-process communication (IPC)

• Two primary models of IPC

• Message passing

• Shared memory

NWEN 241: 15
Message passing

• Processes communicate with each other
without resorting to shared variables

• IPC facility provides two primitive operations:
•send(message)
• receive(message)

• If A and B wish to communicate, they need to:
• establish a communication link between them
• exchange messages via send/receive

NWEN 241: 16

Design options - Synchronization

send receive

Process A

Process B

Process A...…....blocked…..,….

receive send

send receive

Process A

Process B

receive send

Non-blocking (Asynchronous)Blocking (Synchronous)

NWEN 241: 17
Design options - Synchronization

Blocking Non - Blocking

Send Has the sender block until the
message is received

Has the sender send the
message and continue

Receive Has the receiver block until a
message is available

Has the receiver shown its
willing to receive message and
continue

Different combinations possible

NWEN 241: 18
Design options - Buffering

• Queue of messages attached to the link

• Implemented in one of three ways:
• Zero capacity – 0 messages

Sender must wait for receiver
• Bounded capacity – finite length of n messages

Sender must wait if link full
• Unbounded capacity – infinite length

Sender never waits

Process BProcess A

Process BProcess A

NWEN 241: 19

Client-server model

• Most common IPC paradigm

• Based on the producer-consumer model of
process cooperation

• Client makes the request for some resource
or service to the server process

• Server process handles the request and
sends the response (result) back to the
client

Client process Server process

Request

Response

NWEN 241: 20
Client-server model

• Client process needs to know the existence
and the address of the server

• However, the Server does not need to know
the existence or address of the client prior to
the connection

• Once a connection is established, both sides
can send and receive information Client process Server process

Request

Response

NWEN 241: 21
Next Lecture
• TCP Socket Programming

