
Week 1 Lecture 2

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Admin

• Exercise 0 is out.

• Exercise 1 will be out on Sep 9.

NWEN 241: 3

Content

Systems Programming

C Program Design

C Compilation Process

NWEN 241: 4

What is Systems

Programming?

4

NWEN 241: 5

Systems Programming

• Systems programming refers to the implementation of systems programs or

software

• Systems program / software:

• Programs that support the operation and use of the computer system itself

• Maybe used to support other software and application programs

• May contain low-level or architecture-dependent code

• Low-level or architecture-dependent code:

• Program that directly accesses registers or memory locations

• Program that uses instructions specific to a computer architecture

NWEN 241: 6

Example Systems Programs

• Operating system

• Embedded system software (firmware)

• Device drivers

• Text editors, compilers, assemblers

• Virtual machines

• Server programs

• Database systems

• Network protocols

NWEN 241: 7

Why C?

• C supports high-level abstractions and low-level access to hardware at the same

time

• High-level abstractions:

• User-defined types (structures)

• Data structures (stacks, queues, lists)

• Functions

• Low-level access to hardware:

• Possible access to registers

• Dynamic memory allocation

• Inclusion of assembly code

NWEN 241: 8

Comparing C, C++ and Java

• C is the basis for C++ and Java

– C evolved into C++

– C++ change into Java

– The “class” is an extension of “struct” in C

• Similarities

– Java uses a syntax similar to C++ (for, while, …)

– Java supports OOP as C++ does (class, inheritance, …)

• Differences

– Java does not support pointer

– Java frees memory by garbage collection

– Java is more portable by using bytecode and virtual machine

– Java does not support operator overloading

NWEN 241: 9

C Program Design

9

NWEN 241: 10

Program Structure

• A typical C program consists of

• 1 or more header files

• 1 or more C source files

/* Simple Program
 * structure
*/

#include <stdio.h>

int main(void)
{
 printf("Hello world\n");

 return 0;
}

Preprocessor directive to include
stdio.h header file which contains
printf function prototype

main function definition, invoking
printf to display “Hello, world”,
and return 0

Block Comment or multi-line comment

NWEN 241: 11

Comments

• Compiler ignores everything from /* to */

• Compiler ignores everything from // to the end of the line

• This commenting style originated from C++ and was adopted by

C (C99 standard)

/* Comment text */

// Comment text

NWEN 241: 12

Main Function

• A C program must have exactly one main function

• Execution begins with the main function

int main(void)
{
 /* Main function body */
}

NWEN 241: 13

Header File Inclusion

• Include file named filename

• Preprocessor searches for file in pre-defined locations

• Include file named filename

• Preprocessor searches for file in current directory first, then in
locations specified by programmer

#include <filename>

#include "filename"

NWEN 241: 14

Header Files

• A header file usually contains function prototypes, constant definitions, type

definitions, etc.

• Which header file to include?

– Include header files that contain the function prototype, constant definition, type definition, etc., used in
your program

NWEN 241: 15

Standard C Library Header Files

• To know more about the C standard library, visit

https://www.tutorialspoint.com/c_standard_library/index.htm

C provides a standard library* which consists of the following headers:

assert.h
ctype.h
errno.h

float.h
limits.h
locale.h

math.h
setjmp.h
signal.h

stdarg.h
stddef.h
stdio.h

stdlib.h
string.h
time.h

*C99 and C11 standards added more header files.

NWEN 241: 16

Large C Program

.h

Header files

from standard

C library
.h Own header

files

.c Source files

NWEN 241: 17

C Compilation Process

17

NWEN 241: 18

Compilation Process At A Glance

1) Preprocessing Phase

2) Compilation Phase

3) Assembly Phase

4) Linking Phase

NWEN 241: 19

Preprocessing Phase

• The preprocessor modifies the original C program

according to directives that begin with the '#'

character

• Example: #include <stdio.h> command tells the

preprocessor to read the contents of the system header

file stdio.h and insert it directly into the program text.

• The result is another C program, typically with the

.i suffix.
Source file

.c Pre-
Processor

.h
.hh

.h
.hh .h

Included header files

.i

Expanded

source file /
Compilation
unit

NWEN 241: 20

Compilation Phase

• The compiler translates the text file (.i) into the text file (.s), which contains

an assembly-language program.

.i

Expanded

source file /
Compilation
unit

Compiler .s

Assembler file

Machine-dependent

NWEN 241: 21

Assembly Phase

• The assembler translates assembler file

(.s) into machine-language instructions,

packages them in a form known as a

relocatable object program, and stores

the result in the object file (.o).

• Object files are binary - if you try to

open one with a text editor, it would

appear to be gibberish.

.s

Assembler file

Assembler .o

Object file

NWEN 241: 22

Linking Phase

• The linker looks for external object files

needed by the program and merges

these with the object file generated in

the assembly phase, creating an

executable object file (or simply

executable) that is ready to be loaded

into memory and executed by the

system.

.o

Object file

Linker

.h
.hh

.h
.hh .o

Executable file

NWEN 241: 23

In Practice- GCC compiler

• All the phases can be done in one step using the GNU C Compiler (GCC)

• Usually, we use gcc to do all the phases and directly generate the binary

executable

• We can also ask gcc to do certain phases

#include <stdio.h>
int main(void)
{
 printf("Hello world\n");

 return 0;
}

hello.c

gcc hello.c

gcc hello.c -o hello

Generates executable
file a.out

Generates executable
file hello

NWEN 241: 24

gcc Options

Phase Gcc Option Result Output File

Preprocessing -E Compilation unit .i .ii

Compilation -S Assembler file .s

Assembly -c Object file .o .obj

Linking Executable Binary excutable

(.exe in Windows)

NWEN 241: 25

What You Need to Program in C

• Text editor to type in code

• Any text editor will do (even notepad)

• Suggested editors: Sublime Text, Atom, Kate (Linux only)

• C toolchain (pre-processor, compiler, assembler, linker, debugger)

• Terminal to run compilation commands and execute program

OR

• IDE

	Introduction
	Slide 1: Week 1 Lecture 2 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: Admin
	Slide 3: Content
	Slide 4: What is Systems Programming?
	Slide 5: Systems Programming
	Slide 6: Example Systems Programs
	Slide 7: Why C?
	Slide 8: Comparing C, C++ and Java
	Slide 9: C Program Design
	Slide 10: Program Structure
	Slide 11: Comments
	Slide 12: Main Function
	Slide 13: Header File Inclusion
	Slide 14: Header Files
	Slide 15: Standard C Library Header Files
	Slide 16: Large C Program
	Slide 17: C Compilation Process
	Slide 18: Compilation Process At A Glance
	Slide 19: Preprocessing Phase
	Slide 20: Compilation Phase
	Slide 21: Assembly Phase
	Slide 22: Linking Phase
	Slide 23: In Practice- GCC compiler
	Slide 24: gcc Options
	Slide 25: What You Need to Program in C

