
Family Name: . Other Names: .

Student ID: . Signature .

NWEN 241: Test 1

2023, October 27 ** WITH SOLUTIONS **

Instructions

• Time allowed: 90 minutes

• Attempt all the questions. There are 44 marks in total.

• Write your answers in this exam paper and hand in all sheets.

• If you think a question is unclear, ask for clarification.

• You may use unmarked paper Chinese-English translation dictionaries.

• You may write notes and workings on this paper, but make sure your answers are
clear.

Questions Marks

1. True or False [15]

2. Multiple Choice [12]

3. Short Answer [17]

TOTAL:

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

NWEN 241 (Test 1) Page 2 of 14

Student ID: .

Question 1. True of False [15 marks]

For the following statements, circle “true” or “false” for each statement.

(a) [1 mark] 123variable is a valid C identifier.

true false

(b) [1 mark] 6.022E23L is a valid C identifier.

true false

(c) [1 mark] The statement int c = ’A’++; is valid, resulting in the variable c having a
value of 66 since the numeric value of the character ’A’ is 65.

true false

(d) [1 mark] The expression 5.5 + ’X’ / 8 evaluates to a value that has type float.

true false

(e) [1 mark] Arrays in C can have a dynamic size that changes during program execution.
float.

true false

(f) [1 mark] An array name in C is a pointer to the first element of the array.

true false

(g) [1 mark] The following C code will compile successfully:

true false

int foo(const int *a, const int *b)
{

(*b)++;
return *a + *b;

}

(h) [1 mark] When you pass an array to a function in C, it is always passed by value,
making a copy of the entire array.

true false

(i) [1 mark] The following C code will compile successfully:

true false

#include <stdio.h>
int main(void)
{

char *str = "nWEN241";
str [0] = ’N’;

}

(Question 1 continued on next page)

NWEN 241 (Test 1) Page 3 of 14

Student ID: .

(Question 1 continued)

(j) [1 mark] In the following declaration:

register int count;

the value of variable count is NOT guaranteed to be stored in a CPU register.

true false

(k) [1 mark] Declaring auto variables of the same name in two different non-overlapping
blocks will cause compilation issues.

true false

(l) [1 mark] In C, a string is an array of characters terminated by a null character (′\0′)

true false

(m) [1 mark] The strlen() function in C returns the length of a string including the null
character.

true false

(n) [1 mark] The arrow operator (->) is used to access structure members through a pointer
to a structure.

true false

(o) [1 mark] A pointer to a function can be used to call that function.

true false

NWEN 241 (Test 1) Page 4 of 14

Student ID: .

Question 2. Multiple choice �X [12 marks]

Hint: There might be more than one correct answer for each question

(a) [1 mark] Which of the following are valid integer literals in C?

� 42 �X
� 3.14
� 0x1A �X
� 1e5
� ’A’

(b) [1 mark] A C program contains the following declarations:

int i , j ;
long ix ;
short s ;
float x;
char c;

What is the resulting data type of the expression?

3.5 * i + (short) (ix / s) = x * c / j

� float �X
� double
� int
� long
� char

(c) [1 mark] Consider the following function-like macro:

#define FUNCMACRO(X,Y) X/Y

What value does the macro evaluate when invoked as FUNCMACRO(1+8, 4-3)?

� 0 �X
� 9
� the string ”1+8/4-3”
� None of the above

(d) [1 mark] Which of the following is a correct way to use a function-like macro?

� #define SQUARE(x) x * x
� int result = SQUARE(5); �X
� int result = SQUARE(5 + 2); �X
� #define SUM(a, b) a + b

(Question 2 continued on next page)

NWEN 241 (Test 1) Page 5 of 14

Student ID: .

(Question 2 continued)

(e) [1 mark] Consider the following statement:

char str [] = "Seven";

What is the size of the array str?

� 5
� 6 �X
� 7
� None of the above

(f) [1 mark] Consider the following C code snippet:

char str1 [] = "String 1";
char *str2 = "String 2";

Select ALL valid statements from the following:

� str1[0] = ’s’; �X
� str2[0] = ’s’;

� strcpy(str1, str2); �X
� strcpy(str2, str1);

� str2 = str1; �X

(g) [1 mark] Suppose the following declarations are given:

int i = 5, j = 10, *ip ;
ip = &i;

Which of the following statements use * for indirection?

� int *x = ip;

� i = i * j;

� j = j * *ip; �X
� int **y = &ip;

(h) [1 mark] Consider the following code snippet:

int a = 2, b = 3, *x, *y;
x = &a;
y = &b;
*x = *x + *y;

What is the resulting value of a?

� 2
� 3
� 5 �X
� 8

(Question 2 continued on next page)

NWEN 241 (Test 1) Page 6 of 14

Student ID: .

(Question 2 continued)

(i) [1 mark] Consider the following C snippet:

int a[] = {2, 4, 6, 8};
int *p = a;

Select ALL expressions that will return the value of the third element of the array a, that is,
the value 6.

� a[2] �X
� *a+2

� *(p+2) �X
� p[2] �X
� p+2

(j) [1 mark] Consider the following code snippet:

int n[] = {1, 2, 3, 4, 5, 6, 7, 8};
int *p = n + *n;

What is the value of *(n + *p)?

� 2
� 3 �X
� 4
� 5

(k) [1 mark] Consider the following C code snippet:

enum loudness { moderate, defeaning = 2, painful };

What is the value of painful?

� 0
� 1
� 2
� 3 �X

(l) [1 mark] Consider the following C code snippet:

union {
char c;
short s ;
int i ;
long l ;

} u;

u. i = 4;

What is the size of the variable u equal to?

� sizeof(char)

� sizeof(short)

� sizeof(int) �X
� sizeof(long)

NWEN 241 (Test 1) Page 7 of 14

Student ID: .

Question 3. Short Answer questions [17 marks]

(a) [1 mark] Consider the following C program:

#include <stdio.h>

int foo(int a, int b)
{

return ++b / a;
}

int main(void)
{

int i = 4;
int j = 2 * foo(1+2, i+1);
printf ("%d %d", i, j);
return 0;

}

What is the output of the program?

44

(b) [2 marks] Re-write foo(int a, int b) from the program in the previous question
into a function-like FOO(A, B). This will ensure that replacing the call to foo(1+2, i+1)

with FOO(1+2, i+1) will result in the same output.

#define FOO(A,B) (((B)+1)/(A))

(Question 3 continued on next page)

NWEN 241 (Test 1) Page 8 of 14

Student ID: .

(Question 3 continued)

(c) [2 marks] Consider the following declaration:

struct point {
int x;
int y;

};

Write a single statement declaring a variable p1 of type struct point with the members x
and y initialised to 10 and 20, respectively.

struct point p1 = {10, 20};

//or

//struct point p1 = { x: 10, y: 20}; // x and y can be in any order

//struct point p1 = { .x = 10, .y = 20}; // x and y can be in any order

(d) [2 marks] What will be the output of the following program?

#include <stdio.h>

void swap(int*, int *);

int main(void) {

int a = 10;
int b = 12;
swap(&a, &b);
printf ("%d : %d\n", a, b);

}
void swap(int* a, int* b) {

int temp = *a;
*a = *b;
*b = temp;

}

12 : 10

(Question 3 continued on next page)

NWEN 241 (Test 1) Page 9 of 14

Student ID: .

(Question 3 continued)

(e) [5 marks] What will be the output of the following program?

Note: Suppose that a short occupies 2 bytes in memory. The array a is at memory address
100, while ip is at memory address 200 (all addresses are in decimal).

#include <stdio.h>
#include <string.h>

int main(void) {
short a[] = {1, 2, 3, 4, 5, 6};
short *ip = a;

printf ("1: %d\n", a);
printf ("2: %d\n", ip+1);
printf ("3: %d\n", &a[2]);
printf ("4: %d\n", *(ip+2));
printf ("5: %d\n", *++ip);

return 0;
}

1: 100

2: 102

3: 104

4: 3

5: 2

(Question 3 continued on next page)

NWEN 241 (Test 1) Page 10 of 14

Student ID: .

(Question 3 continued)

(f) [5 marks] Consider the following C program:

1 #include<stdio.h>
2
3 int a;
4
5 int func(int i)
6 {
7 int b;
8 static int c = 10;
9 b = c;
10 if (i == 0) c = c+b;
11 else if (i < 0) c==;
12 else c++;
13
14 return c;
15 }
16
17 int main(void)
18 {
19 int d = =1, e;
20 func(d);
21 d++;
22 func(d);
23 e = func(++d);
24 printf ("%d", e);
25 return 0;
26 }

i. [1 mark] What is storage class of variable a?

extern

ii. [1 mark] In which memory segment is the variable b stored?

stack

iii. [1 mark] What is the lifetime of variable c?

static

iv. [1 mark] Until what line is variable e allocated space in memory?

Until line 26 or last line of the program.

NWEN 241 (Test 1) Page 11 of 14

Student ID: .

v. [1 mark] What is the output of the program?

19

* * * * * * * * * * * * * * *

NWEN 241 (Test 1) Page 12 of 14

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

NWEN 241 (Test 1) Page 13 of 14

C Operator Precedence and Associativity
This page lists all C operators in order of their precedence (highest to lowest). Their
associativity indicates in what order operators of equal precedence in an expression are
applied.

Operator Description Associativity

() Parentheses (grouping) left-to-right
[] Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer

++ --
+ -
! ~
(type)

*
&

sizeof

Unary preincrement/predecrement
Unary plus/minus
Unary logical negation/bitwise complement
Unary cast (change type)
Dereference
Address
Determine size in bytes

right-to-left

* / % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right
< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to
== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right
^ Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
|| Logical OR left-to-right
?: Ternary conditional right-to-left
= Assignment right-to-left

+= -= Addition/subtraction assignment
*= /= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
^= |= Bitwise exclusive/inclusive OR assignment

<<= >>= Bitwise shift left/right assignment
, Comma (separate expressions) left-to-right

