
Week 2

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Admin

• Exercise 1 is out

• Due to 22 September 7:00 pm (China Time)

NWEN 241: 3

Content

• C Fundamentals

• Basic I/O

NWEN 241: 4

C Fundamentals

NWEN 241: 5

Identifiers

• Identifier is used to name macros, variables, functions, structs, unions, and

other entities in a computer program

• Java and C have similar rules for identifiers, except:

• In C, $ is not allowed in identifiers (though some compilers allow $)

NWEN 241: 6

Rules on Identifiers

• An identifier is a sequence of letters and digits

– The first character must be a letter

• The underscore character _ counts as a letter

• Upper and lower case letters are different

• Identifiers may have any length

– Usually, only the first 31 characters are significant

– For macro names, only the first 63 characters are significant

• Reserved keywords cannot be used as identifiers!

NWEN 241: 7

Examples

counter

_Temp_variable_2

1myVariable

$steps

continue

Valid: consists of letters

Valid: consists of letters and digits

Invalid: first character is not a letter

Invalid: $ is not allowed in C

Invalid: reserved word

NWEN 241: 8

Reserved Keywords

auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

NWEN 241: 9

Data Types

• Recall: Java has 8 basic data types which have fixed sizes

Data Type Size (bytes)

boolean 1

byte 1

char 2

short 2

int 4

long 8

float 4

double 8

NWEN 241: 10

Data Types

• C data types:

Data Type Size (bytes)

boolean 1

byte 1

char 2 1

short (short int) 2 Machine-dependent

int 4 Machine-dependent

long (long int) 8 Machine-dependent

long long (long long int) Machine-dependent

float 4 Machine-dependent

double 8 Machine-dependent

long double 16 Machine-dependent

Integral

types

Float

types

NWEN 241: 11

Data Type Size

• Sizes of different types

– Use sizeof() to find out

– Some of the types size may vary from machine to machine

• The following rules are always guaranteed:

• sizeof(char) == 1

• sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long) <= sizeof(long
long)

• sizeof(float) <= sizeof(double) <= sizeof(long double)

NWEN 241: 12

Data Types

• Integral types can either be signed or unsigned

signed int var1; // Signed integer

unsigned int var2; // Unsigned integer

int var1; // If signed or unsigned is not present, default is signed

NWEN 241: 13

char Data Type

• unsigned char: 0 to 255; signed char: -128 to 127

• char is meant to hold 1 ASCII character

• see https://www.asciitable.com/

| 0 NUL| 1 SOH| 2 STX| 3 ETX| 4 EOT| 5 ENQ| 6 ACK| 7 BEL|

| 8 BS | 9 HT | 10 NL | 11 VT | 12 NP | 13 CR | 14 SO | 15 SI |

| 16 DLE| 17 DC1| 18 DC2| 19 DC3| 20 DC4| 21 NAK| 22 SYN| 23 ETB|

| 24 CAN| 25 EM | 26 SUB| 27 ESC| 28 FS | 29 GS | 30 RS | 31 US |

| 32 SP | 33 ! | 34 " | 35 # | 36 $ | 37 % | 38 & | 39 ' |

| 40 (| 41) | 42 * | 43 + | 44 , | 45 - | 46 . | 47 / |

| 48 0 | 49 1 | 50 2 | 51 3 | 52 4 | 53 5 | 54 6 | 55 7 |

| 56 8 | 57 9 | 58 : | 59 ; | 60 < | 61 = | 62 > | 63 ? |

| 64 @ | 65 A | 66 B | 67 C | 68 D | 69 E | 70 F | 71 G |

| 72 H | 73 I | 74 J | 75 K | 76 L | 77 M | 78 N | 79 O |

| 80 P | 81 Q | 82 R | 83 S | 84 T | 85 U | 86 V | 87 W |

| 88 X | 89 Y | 90 Z | 91 [| 92 \ | 93] | 94 ^ | 95 _ |

| 96 ` | 97 a | 98 b | 99 c |100 d |101 e |102 f |103 g |

|104 h |105 i |106 j |107 k |108 l |109 m |110 n |111 o |

|112 p |113 q |114 r |115 s |116 t |117 u |118 v |119 w |

|120 x |121 y |122 z |123 { |124 | |125 } |126 ~ |127 DEL|

NWEN 241: 14

Example

What do you see?01000001
• Interpreted as an integer: 65

• Interpreted as an ASCII character: ‘A’

NWEN 241: 15

Variable Declaration

• Similar syntax as Java

• A variable must be declared before it can be used

• A variable may be initialized in its declaration

– If variable name is followed by an equals sign and an expression, the latter serves as an initializer

• Possible initializers

– Constant

– Expression

int i = 0, j = 1, k = 2;
char c = 'A';
float f = 1.25;

NWEN 241: 16

Constants and Literals

• Constants are fixed values that cannot be changed during a program’s execution

• The fixed values are called literals

• Literals

• Integer

• Floating Point

• Character

• String

• Enumeration

NWEN 241: 17

Integer Literals

• Used for representing integer-valued constants

• Can be written in decimal (no prefix), octal (prefix 0), or hexadecimal (prefix 0x)

• Can have suffix that is a combination of U (unsigned) and L (long) in any order

• No suffix means the literal is of type int

12345

12345u

0xbeef

081

Valid

Valid: unsigned

Valid: hexadecimal

Invalid: 8 is not a valid octal digit

0x123uu Invalid: same suffix is repeated

NWEN 241: 18

Floating Point Literals

• Used for representing real-valued constants

• Can be written in decimal form or exponential form

• Can have suffix f (float) or L (long double)

• No suffix means the literal is of type double

3.1415

31415e-4

31415e-4L

6.22e

Valid (decimal form)

Valid (exponential form)

Valid: long double

Invalid: incomplete exponent

.e23 Invalid: missing decimal/fraction part

NWEN 241: 19

Character Literals

• Used for representing character constants

• Enclosed in single quotes (')

• Can be plain (single character) or escape (single character preceded by \)

'A'

'\t'

'Aa'

'\z'

Valid (plain character)

Valid (escape character): tab

Invalid: multiple characters in single quotes

Invalid: not a valid escape character

NWEN 241: 20

Escape sequences

Escape sequence Character represented

\a Alert (bell, alarm)

\b Backspace

\f Form feed (new page)

\n New-line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark

\" Double quotation mark

\? Question mark

\\ Backslash

NWEN 241: 21

Declaring Constants

• Constants can be declared using const qualifier or #define pre-processor

• Such named constants are also called symbolic constants

const float PI = 3.14;
const int MAX = 12345;

#define PI 3.14
#define MAX 12345

NWEN 241: 22

Type Casting

• Type casting is a way to convert a variable from one data type to another data type

• C performs automatic type casting (implicit type conversion)

int i = 2;

double d = 2.5;

i = (int)d; // explicit type casting

i = d; // d is converted to an int
 // and then assigned to i

NWEN 241: 23

Operators

• Java and C share many of the built-in operators

• Arithmetic

• Assignment

• Increment/decrement

• Relational

• Equality and logical

• Bitwise

• C specific operators

• Pointers and reference related operators (*, &, ->)

• Others (sizeof, scope, casting)

NWEN 241: 24

Operator Precedence

• Operator precedence determines the sequence in which operators in an

expression are evaluated

• Associativity determines execution for operators of equal precedence

• Precedence can be overridden by explicit grouping using parenthesis: (and)

24

NWEN 241: 25

Operator Precedence Table (not complete)

Unary operators

Arithmetic
operators

Ternary operator

Assignment operators

25

NWEN 241: 26

Important Things to Remember

• / denotes integer division if both operands are of integral types

• 5/2 evaluates to 2 (integer part is used, decimal part is truncated)

• % denotes modulo operation

• 5%2 evaluates to 1 (the remainder after dividing 5 with 2)

NWEN 241: 27

Increment/decrement operators

• Increase (++) or decrease (--) variable by 1

• Can be applied to variables, but not constants and ordinary expressions

• ++ and – are called unary operators because they operate on 1 operand

++ --

i++; i = i + 1;

j--; j = j - 1;

NWEN 241: 28

Increment/decrement operators

++ and -- can be used postfix or prefix:

777++;
(a + b*c)--;

k++;
counter--;

Valid if k and counter are
variables of basic types

Invalid

a = b++;

a = ++b;

Postfix: use the current value of b in the assignment,
then increment b after the assignment

Prefix: increment b first, then assign it to a

NWEN 241: 29

Increment/decrement operators

What are the values of a, b and c immediately after line 4?

1.int a, b, c = 0;
2.
3.a = ++c;
4.b = c++;

NWEN 241: 30

True and false

• Unlike newer programming languages, C doesn’t have native types for Boolean (logical
true and false)

–Zero (0) is used to denote false

–Conceptually, one (1) is used to denote true
• Any non-zero (positive and negative) value is also treated as true

• Relational, equality and logical operations evaluate to either true (1) or false (0)

NWEN 241: 31

“Conversion hierarchy”

• What happens when operands have different types in an arithmetic expression?

– Implicit type conversion is performed: compiler automatically converts any intermediate values to the
proper type so that the expression can be evaluated without losing any significance

long int

Conversion
hierarchy

charshort

float

double

long double

int

unsigned long int

NWEN 241: 32

Implicit Type Conversion Example

int i, x;
float f;
double d;
long int li;

Suppose:

long

long

float

float

float

float

double

doubleint

x = li / i + i * f – d

The final result of the right hand side expression is converted to the type of the
variable on the left of the assignment

NWEN 241: 33

Basic I/O

33

NWEN 241: 34

Content

• Basic I/O

• Control flow

• If-else

• Else-if

• Switch

• Iterations

• While-loop

• For-loop

• Do-while-loop

• Same syntax as Java

NWEN 241: 35

I/O Using Standard C Library

• Recall: C provides a set of header files (standard C library) that you can use to

write your code

• You don’t have to start from scratch!

C provides a standard library which consists of the following headers:

assert.h
ctype.h
errno.h

float.h
limits.h
locale.h

math.h
setjmp.h
signal.h

stdarg.h
stddef.h
stdio.h

stdlib.h
string.h
time.h

NWEN 241: 36

I/O Streams

• C provides functions with input and output capability

• From the program’s point of view, data input and data output are made possible

through files

• Every C program has access to 3 such files: stdin, stdout, stderr

File Description Remarks

stdin Standard input file Connected to the keyboard

stdout Standard output file Connected to the screen

stderr Standard error file Connected to the screen

NWEN 241: 37

I/O Functions

• C input/output functions can be classified into 2 types:

• Non-formatted input/output

• getchar

• putchar

• gets

• puts

• Formatted input/output

• printf and its variants

• scanf and its variants

NWEN 241: 38

How To Use a Function

• Find its manual or documentation

• In Linux terminal, use the man command

• You can also search online

• This website provides a pretty good documentation for the standard C library:

https://www.tutorialspoint.com/c_standard_library/index.htm

• What to look for in the function manual?

• What the function does

• What header file(s) to include

• What are the arguments to the function

• What is the return type

• What happens in case of errors

https://www.tutorialspoint.com/c_standard_library/index.htm

NWEN 241: 39

printf()

• printf() writes a string to the standard output stream (stdout)

• The string is formatted using additional arguments that follow the initial string.

•%d format specifier to display the value of an integer variable.

•%c to display character,

•%f to display float variable,

•%s to display string variable

• To generate a newline, we use “\n” in C printf() statement.

char ch = ‘A’;
printf("Character is %c \n", ch);

NWEN 241: 40

Format specifiers in C

Format Specifier Type

%c Character

%d Signed integer

%u Unsigned int

%e or %E Scientific notation of floats

%f Float values

%hi Signed integer (short)

%ld Long

%lf Double

%Lf Long double

%lli or %lld Long long

%o Octal representation

%p Pointer

%s String

%x or %X Hexadecimal representation

%% Prints % character

NWEN 241: 41

scanf()

• scanf() accepts input from the standard input stream (stdin).

• The format of the expected items is specified, and it returns the number of items

successfully scanned

• The format specifier %d is used in scanf() statement. So, the value entered is

received as an integer and %s for string.

• Ampersand is used before the variable name in scanf() statement.

char ch;
scanf("%c", &ch);

NWEN 241: 42

Control flow

42

NWEN 241: 43

Control flow: if-else statement

if (expression){
 statement

 }

• If expression evaluates to true, statement is

executed

*Recall: true non-zero;
 false zero

if (x != 0.0)
 y /= x;

if (c == ' ') {
 ++blank_counter;
 printf("Found another blank\n");
}

if (a > b)
 max = a;
else
 max = b;

NWEN 241: 44

Conditional expression (ternary operator)

• expr1 is evaluated first

• If expr1 evaluates to true, then expression expr2 is evaluated
and that is used as the value of the expression

• Otherwise, expr3 is evaluated and that is used as the value of
the expression

• Example:

expr1 ? expr2 : expr3

z = (a > b) ? a : b; /* z = max(a, b) */

NWEN 241: 45

Boolean expressions

What can go in the condition of an if statement?

• Boolean expressions:

• numeric comparisons: (x > 0) (day <= 7),

 (x == y), (day != 7)

• logical operators: !, &&, || (not, and, or)

 (x > 0 && x < 7)

NWEN 241: 46

Writing Boolean expressions

Mostly, boolean expressions are straightforward,
There are just a few traps:

• == is the "equals" operator for simple values,

= is assignment

 (age == 15) vs (age = 15);

• But only use == for numbers (or characters, or references)

NWEN 241: 47

Using else-if statement

• Can put another if statement in the else part:

if (〈condition1 〉) {

 〈actions to perform if condition1 is true〉
 :

}

else if (〈condition2 〉) {

 〈actions to perform if condition 2 is true (but not condition 1) 〉
 :

}

else if (〈condition3 〉) {

 〈actions to perform if condition 3 is true (but not conditions 1, 2)〉
 :

}

else {

 〈actions to perform if other conditions are false〉
 :

}

NWEN 241: 48

Traps with Boolean expressions

• When combining with && and ||, which binds tighter?

if (x > 5 && y <= z || day == 0) { ….

• Use (and) whenever you are not sure!

 if ((x > 5 && y <= z) || day == 0) { …

 if (x > 5 && (y <= z || day == 0)) { …

• The not operator ! goes in front of expressions:

• if (!(x > 5 && y <= z) { … NOT if ((x !> 5 && y !<= z)

NWEN 241: 49

Example: else-if statement

if (temp <= 0)
 printf("It's freezing out there.\n");
else if (temp <= 10) {
 too_cold++;
 printf("It's too cold for me.\n");
} else if (temp <= 20)
 printf("It's still cold.\n");
else
 printf("Awesome!\n");

NWEN 241: 50

Control flow: switch statement

• The default part is optional

• const_expr1 to const_exprN
must be integer constants or
constant expressions

• If expression matches
const_exprk, execution starts at
that case

• default is executed if none of the
cases match

• The statements can consist of
single or multiple statements
statements, or compound
statements

switch (expression) {
 case const_expr1:
 statements1
 break;
 case const_expr2:
 statements2
 ...
 case const_exprN:
 statementsN
 default:
 statements
}

NWEN 241: 51

Switch statement

expression

const_expr1 statements1

Does it have break?

const_expr2 statements2

default

Does it have break?

Yes

Yes

Yes

Yes

No

No

No

No

NWEN 241: 52

Example: switch statement

char c = getchar();

switch(c) {
 case 'Y’:
 case 'y':
 printf("You answered yes.\n");
 break;
 case 'N’:
 case 'n':
 printf("You answered no.\n");
 break;
 default:
 printf("What was that?\n");
 break;
}

Is this necessary?

NWEN 241: 53

Iterations

53

NWEN 241: 54

Iteration: while-loop statement

• If expression evaluates to
true:

– statement is executed

– expression is re-evaluated again

• Cycle continues until
expression evaluates to false

• statement can be single or
compound statement

while (expression)
 statement

NWEN 241: 55

Iteration: for-loop statement

• The expressions are optional

• expr1 and expr3 are usually assignments or
function calls

• expr2 is usually a relational expression

– If expr2 is missing, it is taken as permanently true

for (expr1; expr2; expr3)
statement

expr1;
while (expr2) {
 statement
 expr3;
}

NWEN 241: 56

Iteration: do-while-loop statement

• statement is executed,
then expression is
evaluated

• If expression evaluates to
true, statement is
executed again

• Loop terminates when
expression evaluates to
false

do
 statement
while (expression);

NWEN 241: 57

Example: loop statements

while(1); for (;;); do {} while(1);

Infinite loops:

int i = 10;
while(i > 0) {
 printf("%d\n", i);
 i--;
}

for(int i = 10; i > 0; i--) {
 printf("%d\n", i);
}

do {
 printf("Do you agree with the contract?\n");
 ans = getchar();
} while (ans != 'Y' || ans != 'y');

NWEN 241: 58

Statements that can alter control flow & loop

• break, return and continue

– break: jumps out of the loop or switch

– return: jumps out of the loop or

switch (the loop or switch must be

inside a function)

– continue: stops current loop iteration

and starts next iteration

NWEN 241: 59

Differences

Condition in if-else, else-if, while-loop, for-loop and do-while-

loop

• In Java, the condition must be an expression that evaluates to boolean

• In C, the condition is an expression that evaluates to any type

• Considered true if expression evaluates to non-zero value, otherwise false

Break and continue

• In Java, break and continue statements can be labelled or unlabelled

• In C, break and continue statements do not support labels

NWEN 241: 60

Example

• Valid in C

• Will generate syntax error in Java

• Condition inside while-loop should be

changed to an expression that will

evaluate to boolean type, e.g. i-- > 0

int i = 100;

while (i--) {
 // do stuff
}

NWEN 241: 61

Next Lecture

• Function

61

	Introduction
	Slide 1: Week 2 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: Admin
	Slide 3: Content
	Slide 4: C Fundamentals
	Slide 5: Identifiers
	Slide 6: Rules on Identifiers
	Slide 7: Examples
	Slide 8: Reserved Keywords
	Slide 9: Data Types
	Slide 10: Data Types
	Slide 11: Data Type Size
	Slide 12: Data Types
	Slide 13: char Data Type
	Slide 14: Example
	Slide 15: Variable Declaration
	Slide 16: Constants and Literals
	Slide 17: Integer Literals
	Slide 18: Floating Point Literals
	Slide 19: Character Literals
	Slide 20: Escape sequences
	Slide 21: Declaring Constants
	Slide 22: Type Casting
	Slide 23: Operators
	Slide 24: Operator Precedence
	Slide 25: Operator Precedence Table (not complete)
	Slide 26: Important Things to Remember
	Slide 27: Increment/decrement operators
	Slide 28: Increment/decrement operators
	Slide 29: Increment/decrement operators
	Slide 30: True and false
	Slide 31: “Conversion hierarchy”
	Slide 32: Implicit Type Conversion Example
	Slide 33: Basic I/O
	Slide 34: Content
	Slide 35: I/O Using Standard C Library
	Slide 36: I/O Streams
	Slide 37: I/O Functions
	Slide 38: How To Use a Function
	Slide 39: printf()
	Slide 40: Format specifiers in C
	Slide 41: scanf()
	Slide 42: Control flow
	Slide 43: Control flow: if-else statement
	Slide 44: Conditional expression (ternary operator)
	Slide 45: Boolean expressions
	Slide 46: Writing Boolean expressions
	Slide 47: Using else-if statement
	Slide 48: Traps with Boolean expressions
	Slide 49: Example: else-if statement
	Slide 50: Control flow: switch statement
	Slide 51: Switch statement
	Slide 52: Example: switch statement
	Slide 53: Iterations
	Slide 54: Iteration: while-loop statement
	Slide 55: Iteration: for-loop statement
	Slide 56: Iteration: do-while-loop statement
	Slide 57: Example: loop statements
	Slide 58: Statements that can alter control flow & loop
	Slide 59: Differences
	Slide 60: Example
	Slide 61: Next Lecture

