
Week 3

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Content

• Arrays

NWEN 241: 3

Arrays

3

NWEN 241: 4

Arrays

• An array is a collection of data that holds a fixed number of data (values) of the

same type

• We distinguish between two types of arrays:

– One-dimensional arrays

– Multi-dimensional arrays

• The C language places no limits on the number of dimensions in an array, though
specific implementations may

NWEN 241: 5

One-Dimensional Array Overview (1)

5 10 15 -3 0 77 21 1 -15 -6

size of array: 10

array of ints

NWEN 241: 6

One-Dimensional Array Overview (2)

5 10 15 -3 0 77 21 1 -15 -62.3 -3.2 0.7 2.8 0.0 4.8 7.2 1.2 -1.1 1.6

size of array: 10

array of floats

NWEN 241: 7

One-Dimensional Array Overview (3)

5 10 15 -3 0 77 21 1 -15 -6H i 2 4 1 !

size of array: 10

array of chars

NWEN 241: 8

One-Dimensional Array Overview (4)

H i 2 4 1 !

size of array: 10

array elements

0 1 2 3 4 5 6 7 8 9 indexes

element at index 7
array[7]

NWEN 241: 9

Arrays

• The simplest interpretation of an array is one-dimensional array, often referred to

as a list

• The individual elements of the array can be accessed via indixes

– The first index of an array starts at 0

– If the size of an array is n, to access the last element the index n-1 is used

– This is because the index in C is actually an offset from the beginning of the array

• The first element is at the beginning of the array, and hence has zero offset

NWEN 241: 10

Declaring Arrays

• Declaring arrays in C differs slightly compared to Java

• Syntax for declaring a one-dimensional array:

• Example:

– We declare an array named data of float type and size 4 as:

– It can hold 4 floating-point values

• The size and type of arrays cannot be changed after their declaration!

data_type array_name[size];

float data[4];

NWEN 241: 11

Initializing Arrays (1)

• Arrays can be initialized one-by-one

• For example:

• In the case of large arrays this method is inefficient

float data[4];
data[0] = 22.5;

data[1] = 23.1;
data[2] = 23.7;
data[3] = 24.8;

NWEN 241: 12

Initializing Arrays (2)

• Arrays can be also initialized when they are declared (just as any other

variables):

• An array may be partially initialized, by providing fewer data items than the size

of the array

– The remaining array elements will be automatically initialized to zero

• If an array is to be completely initialized, the dimension (size) of the array is not

required

– The compiler will automatically size the array to fit the initialized data

float data[4] = {22.5, 23.1, 23.7, 24.8};

float data[4] = {22.5, 23.1};

float data[] = {22.5, 23.1, 23.7, 24.8};

NWEN 241: 13

Arrays and Loops

• Arrays are commonly used in connection with loops
– in order to perform the same calculations on all (or some part) of the data items in the array:

int idx = 0;
while(idx < 10) {

/* do something with array[idx] */
idx++;

}

for (int idx = 0; idx < 10; idx++){
 /* do something with array[idx] */
}

int array[10] = {1, 2};

NWEN 241: 14

Off-By-One Error

• The most common mistake when working with arrays in C is forgetting that
indixes start at 0 and stop one less than the array size

– We often refer to this issue as “off-by-one error”

• The compiler does not control the limits of the array!

• This type of error can be detected using static code analysis

– For example using the cppcheck tool

int data[]={1,2,3,4,5}; /* number of elements is 5 */
for (int idx = 0; idx <= 5; idx++){
 /* do something with data[idx] */
}

NWEN 241: 15

Determining Size of Array

• The size of an array can be determined using the sizeof() operator

• It will return the number of bytes the array "occupies" in the memory

• To determine the number of elements in the array, the returned value must be

divided by the number of bytes reserved for the data type !

NWEN 241: 16

Determining Size of Array

int data[] = {1, 2, 3, 4, 5};
int bytes, len;

/* Print number of bytes used by array */
bytes = sizeof(data);
printf("Bytes used: %d\n", bytes);

/* Print number of elements or items in array */
len = sizeof(data)/sizeof(int);
printf("Number of items: %d\n", len);

/* To traverse array, use number of elements as limit */
for (int idx = 0; idx < len; idx++) {
 /* do some stuff on element data[idx] */
}

NWEN 241: 17

Passing 1D Arrays to Functions (1)

• Passing a single array element to a function

– can be passed in a similar manner as passing a variable to a function

void display(int a) {
 printf("%d", a);
}

int main(void) {
 int age[] = { 18, 19, 20 };

 display(age[2]); /* Passing element age[2] only */

 return 0;
}

NWEN 241: 18

Passing 1D Arrays to Functions (2)

• Passing an entire array to a function

• When passing an array as an argument to a function, it is passed by its memory address (starting address
of the memory area) and not its value (call-by-address)!

• Because a function accesses the original array values, we must be very careful that we do not
inadvertently (accidentally) change values in an array within a function.

float average(int a[]) {
 int sum = 0;
 for (int i = 0; i < 6; ++i)
 sum += a[i];
 float avg = ((float)sum / 6);
 return avg;
}
int main(void) {
 int age[] = {18,19,20,21,22,23};
 float avg = average(age);
 printf("Average age=%.2f\n", avg);
}

NWEN 241: 19

Passing 1D Arrays to Functions (2)

• Better design

float average(int a[], int len) {
 int sum = 0;
 for (int i = 0; i < len; ++i){
 sum += a[i];
 }
 float avg = ((float)sum / len);
 return avg;
}
int main(void) {
 int age[] = {18,19,20,21,22,23}, len;

 len = sizeof(age) / sizeof(int);

 float avg = average(age, len);
 printf("Average age=%.2f\n", avg);
}

	Introduction
	Slide 1: Week 3 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: Content
	Slide 3: Arrays
	Slide 4: Arrays
	Slide 5: One-Dimensional Array Overview (1)
	Slide 6: One-Dimensional Array Overview (2)
	Slide 7: One-Dimensional Array Overview (3)
	Slide 8: One-Dimensional Array Overview (4)
	Slide 9: Arrays
	Slide 10: Declaring Arrays
	Slide 11: Initializing Arrays (1)
	Slide 12: Initializing Arrays (2)
	Slide 13: Arrays and Loops
	Slide 14: Off-By-One Error
	Slide 15: Determining Size of Array
	Slide 16: Determining Size of Array
	Slide 17: Passing 1D Arrays to Functions (1)
	Slide 18: Passing 1D Arrays to Functions (2)
	Slide 19: Passing 1D Arrays to Functions (2)

