
Week 4

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Content

• More on Arrays

NWEN 241: 3

Recall: Large C Program

.h

Header files

from standard

C library
.h Own header

files

.c Source files

NWEN 241: 4

Multi-dimensional Arrays

4

NWEN 241: 5

Multi-dimensional Arrays

• In C, you can create array of an array known as multidimensional array

• The simplest interpretation of a multi-dimensional array is a table, i.e. a two-
dimensional array

– each row has the same number of columns

NWEN 241: 6

Two-Dimensional Arrays Overview (1)

rows: 3

columns: 5 size of array: 15

NWEN 241: 7

Two-Dimensional Arrays Overview (2)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

array of ints

NWEN 241: 8

Two-Dimensional Arrays Overview (3)

1.0 2.0 3.0 4.0 5.0

6.0 7.0 8.0 9.0 10.0

11.0 12.0 13.0 14.0 15.0

array of floats

NWEN 241: 9

0 e l l o

1 W o r l

2 ? !

0 1 2 3 4

W o r l

d ? !

Two-Dimensional Arrays Overview (4)

H e l l o

W o r l

d ? !

size of array: 15

array elements

element at row 3 column 4
array[2][3]

NWEN 241: 10

Two-Dimensional Arrays

• Declaring a char array with 3 rows and 5 columns

– The array can hold 15 char elements

• Accessing a value

• Modifying a value

• The array can be initialized in one of the following ways

– The number of columns must be explicitly stated. The compiler will find the appropriate amount of

rows based on the initializer list

char two_d[3][5];

char ch;
ch = two_d[2][4];

two_d[0][0] = 'x';

int two_d[2][3] = {{5, 2, 1}, {6, 7, 8}};
int two_d[2][3] = {5, 2, 1 , 6, 7, 8};
int two_d[][3] = {{5, 2, 1}, {6, 7, 8}};

NWEN 241: 11

Passing 2D Arrays to Functions (1)

• Passing a single array element to a function

– can be passed in a similar manner as passing a variable to a function

void display(int a) {
 printf("%d", a);
}

int main(void) {
 int age[2][3] = { {18, 19, 20}, {21, 22, 23} };

 display(age[1][2]); /* Passing element age[1][2] only */

 return 0;
}

NWEN 241: 12

Passing 2D Arrays to Functions (2)

• Passing an entire array to a function

• When passing an array as an argument to a function, it is passed by its memory address (starting address
of the memory area) and not its value(call-by-address)!

• Because a function accesses the original array values, we must be very careful that we do not
inadvertently (accidentally) change values in an array within a function.

void enterData(int d[][10]) {
 /* Code for reading and saving data into 2D array */
}

int main(void)
{
 int data[10][10];

 enterData(data);
}

NWEN 241: 13

Arrays

• Arrays are second class citizens

• With an array, you can NOT:

• Change the size after initialization

• Assign a new array using ‘=’

• In addition, arrays automatically ‘decay’ into pointers, losing information about their

size (with few exceptions).

• More on array decay (after you learn pointers)!

NWEN 241: 14

2D Arrays

• Multi-dimensional arrays are typically contiguous.

• They also need additional information to index into the correct position. When

passed to a function for example, it needs to know how many values to ‘skip’ to get

to an inner array.

NWEN 241: 15

Next Lecture

• Strings

	Slide 1: Week 4 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: Content
	Slide 3: Recall: Large C Program
	Slide 4: Multi-dimensional Arrays
	Slide 5: Multi-dimensional Arrays
	Slide 6: Two-Dimensional Arrays Overview (1)
	Slide 7: Two-Dimensional Arrays Overview (2)
	Slide 8: Two-Dimensional Arrays Overview (3)
	Slide 9: Two-Dimensional Arrays Overview (4)
	Slide 10: Two-Dimensional Arrays
	Slide 11: Passing 2D Arrays to Functions (1)
	Slide 12: Passing 2D Arrays to Functions (2)
	Slide 13: Arrays
	Slide 14: 2D Arrays
	Slide 15: Next Lecture

