
Week 4

XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Mohammad Nekooei

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

String

2

NWEN 241: 3

Assigning a string after array declaration

char str[10];
…

str = "Hello !"; Illegal! Use strcpy() function

char str[10];
…

strcpy(str, "Hello !");

NWEN 241: 4

Strings

• long int strlen(const char* source);

• Calculates the length of a given string, up to the first null character.

• char* strcpy(char* destination, const char* source);

• Copies the source string to the destination character array.

• int strcmp (const char* str1, const char* str2);
• Compares two strings and returns 0 if both strings are identical.

• char *strcat(char *dest, const char *src);
• Concatenates two strings and stores the result in the first argument.

NWEN 241: 5

Null Terminator ‘\0’

• A string is an array of characters that ends with the first occurrence of '\0'

• What comes after the end of the string doesn't matter, since the string has ended

char str[] = "One\0Two";
printf("%s\n", str);

• The program will print only the string “One”

– The '\0' character terminates the string

– What comes after, does not matter

• The array will contain 8 elements

NWEN 241: 6

Displaying Strings: printf()

• Strings can be displayed on the screen using printf()

• The precision ('%.N') parameter limits the length of longer strings to at most N

• The width ('%N') parameter can be used to print a short string in a long space,

at least N characters

printf("%s\n", str);

printf("%.5s\n", "abcdefg");
 // only "abcde" will be displayed

printf("%5s\n", "abc");
 // prints " abc". Note the leading
 // two spaced at the beginning.

NWEN 241: 7

Displaying Strings: puts()

• The puts() function writes the string out to standard output and automatically

appends a newline character at the end

• The output will be:

This is an example string.

See??

char str[] = "This is an ";
printf("%s", str);
puts("example string.");
printf("See??\n");

NWEN 241: 8

Reading in strings – scanf()

• The standard format specifier for reading strings with scanf() is %s that the '&' is

not required in the case of strings, since the string is a memory address itself

• scanf() appends a '\0' to the end of the character string stored

• scanf() does skip over any leading whitespace characters in order to find the first

non-whitespace character

NWEN 241: 9

Reading in strings – scanf()

• The width field can be used to limit the maximum number of characters to read

from the input

• You should use one character less as input than the size of the array used for

holding the result

char str[6];
printf("Hi\n");
scanf("%5s", str);
 // If you enter "HelloBello123xyz", only the
 // first 5 characters will be read and a
 // concluding '\0' will be put at the end

printf("%s\n", str);

NWEN 241: 10

Reading in strings – scanf()

• scanf() reads in a string of characters, only up to the first non-whitespace

character

– it stops reading when it encounters a space, tab, or newline character

• C supports a format specification known as the edit set conversion code %[...]
– it can be used to read a line containing a variety of characters, including white spaces

char str[20];
printf("Enter a string:\n");
scanf("%[^\n]", str);
printf("%s\n",str);

NWEN 241: 11

Reading in strings – scanf()

• Always use the width field to limit the maximum number of characters to read with

"%s" and "%[...]" in all production quality code!

– No exceptions!

NWEN 241: 12

Reading in strings – gets()

• gets() is used to scan a line of text from a standard input device, until a newline

character input

• The string may include white space characters

• The newline character won't be included as part of the string

• '\0' is always appended to the end of the string of stored characters

NWEN 241: 13

Reading in strings – gets()

• gets() has no provision for limiting the number of characters to read

– This can lead to overflow problems!

char str[15];
printf("Enter your name: \n");
gets(str);
printf("%s\n", str);

NWEN 241: 14

Reading strings character by character

• Read in character by character is useful when

– you don't know how long the string might be,

– or if you want to consider other stopping conditions besides spaces and
newlines

• e.g. stop on periods, or when two successive slashes, //, are encountered.

• The scanf() format specifier for reading individual characters is %c

• If a width greater than 1 is given (%2c), then multiple characters are read,

and stored in successive positions in a char array

NWEN 241: 15

sscanf() and sprintf() functions

• scanf() and printf() functions are used to read from and write to the standard

input/output

• sscanf() and sprintf() are used for the same goal but instead of the standard

input/output, they use strings

• One of their main advantage is when you need to prepare a string for later use

NWEN 241: 16

The <ctype.h> header

• <ctype.h> declares a set of functions to classify and transform individual chars

– #include <ctype.h> is required to use any of these functions

– https://www.tutorialspoint.com/c_standard_library/ctype_h.htm documents the
library

https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

NWEN 241: 17

The <ctype.h> header

• Some of the more commonly used functions:

– isupper() – checks if a character is an uppercase letter

• A value different from zero is returned if the character is an uppercase alphabetic letter, zero
otherwise

– islower() – checks if a character is a lowercase letter

• A value different from zero is returned if the character is a lowercase alphabetic letter, zero
otherwise

– toupper() – converts a character to its uppercase equivalent if the character is an lowercase
letter and has an uppercase equivalent

• If no such conversion is possible, the returned value is unchanged

– tolower() – converts a character to its lowercase equivalent if the character is an uppercase
letter and has a lowercase equivalent

• If no such conversion is possible, the returned value is unchanged

NWEN 241: 18

The <string.h> header

• <string.h> defines several functions to manipulate null-byte terminated arrays of

chars

– #include <string.h> is required to use any of these functions

– https://www.tutorialspoint.com/c_standard_library/string_h.htm
documents the library

https://www.tutorialspoint.com/c_standard_library/string_h.htm

NWEN 241: 19

The <stdlib.h> header

• stdlib.h defines several functions, including searching, sorting and

converting
– #include <stdlib.h> is required to use any of these functions

– https://www.tutorialspoint.com/c_standard_library/stdlib_h.htm documents the library

• Some of the more commonly used functions:
– atoi(), atof(), atol(), atoll() – parses a string of numeric characters into a number of type int,

double, long int, or long long int, respectively

https://www.tutorialspoint.com/c_standard_library/stdlib_h.htm

NWEN 241: 20

Next Lecture

• Pointers

	Introduction
	Slide 1: Week 4 XMUT-NWEN 241 - 2024 T2 Systems Programming .
	Slide 2: String
	Slide 3: Assigning a string after array declaration
	Slide 4: Strings
	Slide 5: Null Terminator ‘\0’
	Slide 6: Displaying Strings: printf()
	Slide 7: Displaying Strings: puts()
	Slide 8: Reading in strings – scanf()
	Slide 9: Reading in strings – scanf()
	Slide 10: Reading in strings – scanf()
	Slide 11: Reading in strings – scanf()
	Slide 12: Reading in strings – gets()
	Slide 13: Reading in strings – gets()
	Slide 14: Reading strings character by character
	Slide 15: sscanf() and sprintf() functions
	Slide 16: The <ctype.h> header
	Slide 17: The <ctype.h> header
	Slide 18: The <string.h> header
	Slide 19: The <stdlib.h> header
	Slide 20: Next Lecture

