
Week 12 Lecture 1
XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Felix Yan
School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2
Admin
• Exercise #3

• Due date: 1 December

NWEN 241: 3
Content
• Interprocess communication

• TCP Socket Programming

NWEN 241: 4Recall: System calls - What and Why?

• Operating Systems do not allow application software to
access system resources directly due to security and
reliability issues.

• A program can request the services of system resources
from OS through system calls.

• System cal ls are funct ion invocations made from
application into the OS in order to request some service
or resource from the operating system.

• Application developers often do not have direct access to
system calls but can access them through a system call
API, which in turn invokes the system call.

Hardware

Applications

Operating System

Users

System Call Interface

NWEN 241: 5
Recall: System call invocation –Example

#include <stdio.h>
void main(void)
{
 printf("Hello, world\n");
 exit(0);
}

System Call Interface
User mode

Kernel mode

Standard C Library
write()

sys_write()
system call

NWEN 241: 6
Recap: What is a process ?

 Program and process are related terms.

Program is a set of instructions to
carry out a specified task

Process is a program in execution

Passive entity Active entity
Program is a stored in disk and
does not require any other
resource.

Process requires system
resources such as CPU, memory,
I/O etc.

Life span - Longer Life span – limited
Each time a program is run a new process is created.

NWEN 241: 7
Recap: Interprocess communication

• Cooperating processes need
interprocess communication
(IPC)

• Two primary models of IPC

• Message passing

• Shared memory

NWEN 241: 8

Client-server model
• Most common IPC paradigm

• Based on the producer-consumer model
of process cooperation

• Client makes the request for some
resource or service to the server
process

• Server process handles the request and
sends the response (result) back to the
client

Client process Server process

Request

Response

NWEN 241: 9
Client-server model

• Client process needs to know the existence
and the address of the server

• However, the Server does not need to know
the existence or address of the client prior to
the connection

• Once a connection is established, both sides
can send and receive information Client process Server process

Request

Response

NWEN 241: 10Side Note: How to know which system calls are invoked?

Two commands:
a) ltrace – traces call to library functions
b) strace -traces system calls

• Details in Linux manual pages :
 - >Open terminal -> write man <command-name>
Example: man ltrace

• Usage : ltrace ./<program executable file>
 ltrace –S ./<program executable file> (also display system calls)

NWEN 241: 11
Client-server communication
• Remote Procedure Calls

• Pipes

• Sockets

NWEN 241: 12
What is socket?

• What do we need to know to allow two processes on a
network to communicate?

• Identity of the communicating machines
• IP Address

• Identity of the communicating processes on these machines
• Port

• Concatenation of IP address and port defines a socket - A
socket is defined as an endpoint for communication

• Example: The socket 161.25.19.8:1625 refers to port 1625
on host 161.25.19.8

NWEN 241: 13
Socket communication

NWEN 241: 14
Port numbers

• Each host has 65,536 ports

• Use of ports 1-1023 requires privileges

• Some ports are reserved for specific
apps

• 20, 21: FTP
• 23: Telnet
• 80: HTTP
• see RFC 1700 (about 2000 ports are

reserved)

Port 0

Port 1

Port 65535

NWEN 241: 15
Sockets as programming interface

• An interface between application and network
• The application creates a socket
• The socket type dictates the style of communication
• TCP VS UDP

• reliable vs. best effort
• connection-oriented vs. connectionless

Client Application Server ApplicationNetwork
Socket Socket

NWEN 241: 16
Socket types

• SOCK_STREAM
• a.k.a. TCP
• reliable delivery
• in-order guaranteed
• connection-oriented
• bidirectional

• SOCK_DGRAM
• a.k.a. UDP
• unreliable delivery
• no order guarantees
• no notion of “connection” –

app indicates dest. for each
packet

• can send or receive

We will focus on SOCK_STREAM or TCP socket
type

NWEN 241: 17
System calls
• socket()
• bind()
• listen()
• accept()
• connect()
• send() / sendto()
• recv() / recvfrom()

sys/types.h
sys/socket.h

Include

NWEN 241: 18
TCP Client overview

1) Create a socket with the
system call

2) Connect the socket to the
address of the server using
the system call

3) Send and receive data
Client / Server

Session

Client Server

socket socket

bind

listen

recv

sendrecv

send

Connection
request

recv

close

close EOF

acceptconnect

NWEN 241: 19
TCP Server overview
1) Create a socket with the

 system call

2) Bind the socket to an address
using the system call

3) Listen for connections with the
system call

4) Accept a connection with the
system call

5) Send and receive data

Client / Server
Session

Client Server

socket socket

bind

listen

recv

sendrecv

send

Connection
request

recv

close

close EOF

acceptconnect

NWEN 241: 20Client-server communication overview - UDP

Client Server

socket

socket

bind

recvfrom

sendtorecvfrom

sendto

close

NWEN 241: 21
Server: step 1
• Create a socket with the socket() system call

•domain – communication domain (protocol family) such as AF_INET (IPv4) or
AF_INET6 (IPv6)

• type – communication semantics such as SOCK_STREAM (TCP) or
SOCK_DGRAM (UDP)

•protocol specifies the protocol, usually 0.

• Creates an endpoint of communication.
• If successful, returns socket file descriptor, otherwise, returns -1

int socket(int domain, int type, int protocol);

NWEN 241: 22
Server: step 1 example
• Create TCP socket

• Create UDP socket

int fd = socket(AF_INET, SOCK_STREAM, 0);
if (fd == -1) {
 printf("Error creating socket");
 exit(0);
}

int fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd == -1) {
 printf("Error creating socket");
 exit(0);
}

NWEN 241: 23
Server: step 2
• Bind the socket to an address using the bind() system call

•sockfd is the socket file descriptor (returned by socket())

•addr is a pointer to the structure struct sockaddr (generic data type for
address) which contains the host IP address and port number to bind to

•addrlen is the length of what addr points to

• Binding means associating and reserving a port number for use by the socket
• If successful, returns 0, otherwise, returns -1

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

NWEN 241: 24
struct sockaddr

• struct sockaddr_in in IPv4 (included the <netinet/in.h> header)

struct sockaddr_in {
 short sin_family; // AF_INET
 unsigned short sin_port; // port number
 struct in_addr sin_addr; // Internet address in
 //network byte order
};

struct in_addr {
 unsigned long s_addr; // IPv4 address in network

 //byte order
};

NWEN 241: 25
Host and network byte order
• Little-endian and big-endian issue?

NWEN 241: 26
Host and network byte order

uint32_t htonl(uint32_t hostlong); \\host to network long
uint16_t htons(uint16_t hostshort); \\host to network short
uint32_t ntohl(uint32_t netlong); \\network to host long
uint16_t ntohs(uint16_t netshort); \\network to host short

• Byte ordering also matters in network communication
• Host and network may differ in byte ordering
• Host byte order may be little-endian or big-endian
• Network byte order is always big-endian

• Functions for converting between host and network byte order:

long is 32 bits.
short is 16 bits.

NWEN 241: 27
Server: step 2 example

int fd = socket(AF_INET, SOCK_STREAM, 0);
…

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; // any address
addr.sin_port = htons(1234); // port 1234

if (bind(fd, (struct sockaddr *)&addr, sizeof(addr))<0) {
 printf("Error binding socket");
 exit(0);
}

struct sockaddr_in {
 short sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
};

struct in_addr {
 unsigned long s_addr;
};

NWEN 241: 28
Server: step 3
• Listen for connections with the listen() system call

•sockfd is the socket file descriptor (returned by socket())
•backlog is the maximum number of pending connections to allow for this socket

• SOMAXCONN is defined as the number of maximum pending connections
allowed by the operating system

• If successful, returns 0, otherwise, returns -1

int listen(int sockfd, int backlog);

NWEN 241: 29
Server: step 3 example

int fd = socket(AF_INET, SOCK_STREAM, 0);
…

if(listen(fd, SOMAXCONN) < 0) {
 printf("Error listening for connections");
 exit(0);
}

NWEN 241: 30
Server: step 4
• Accept a connection with the accept() system call

•sockfd is the socket file descriptor (returned by socket())
•addr is a pointer to the structure struct sockaddr which will contain the details

of the peer socket
•addrlen is a pointer to the length of what addr points to

• If successful, returns non-negative socket file descriptor, otherwise, returns -1

int accept(int sockfd, struct sockaddr *addr,
 socklen_t *addrlen);

NWEN 241: 31
Server: step 4 example

int fd = socket(AF_INET, SOCK_STREAM, 0);
…
struct sockaddr_in client_addr;
int addrlen = sizeof(client_addr);

int client_fd = accept(fd, (struct sockaddr *)&client_addr,
 (socklen_t*)&addrlen);
if(client_fd < 0) {
 printf("Error accepting connection");
 exit(0);
}

