
NWEN 241: 32
Server: step 5
• Send and receive data

• sockfd is the socket file descriptor (returned by accept())
•buf is a pointer to buffer to be sent
• len is the length of buffer to be sent
• flags is bitwise OR of zero or more options

• Used in connection-oriented sockets (TCP)
• If successful, returns number of characters sent, otherwise, returns -1
• send(sockfd, buf, len, 0); is equivalent to write(sockfd, buf, len);

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

NWEN 241: 33
Server: step 5
• Send and receive data

• sockfd is the socket file descriptor (returned by socket())
•buf is a pointer to buffer to be sent
• len is the length of buffer to be sent
• flags is bitwise OR of zero or more options
•dest_addr is a pointer to the structure struct sockaddr which will contain the details

of the peer socket
• addrlen is a pointer to the length of what dest_addr points to

• Used in non-connection-oriented sockets (UDP)
• If successful, returns number of characters sent, otherwise, returns -1

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
 const struct sockaddr *dest_addr, socklen_t addrlen);

NWEN 241: 34Server: step 5 example using send()

int fd = socket(AF_INET, SOCK_STREAM, 0);
…
int client_fd = accept(fd, (struct sockaddr *)& client_addr,
 (socklen_t*)&addrlen);
…

char msg[] = "hello, world";
ssize_t r = send(client_fd, msg, strlen(msg), 0);
if(r < 0) {
 printf("Error sending message");
 close(client_fd);
 exit(0);
}

NWEN 241: 35
Server: step 5
• Send and receive data

• sockfd is the socket file descriptor (returned by accept())
•buf is a pointer to buffer to be received
• len is the length of buffer to be received
• flags is bitwise OR of zero or more options

• Used in connection-oriented sockets (TCP)
• If successful, returns number of characters received, otherwise, returns -1
• If peer socket is shutdown/closed, will return 0
• recv(sockfd, buf, len, 0); is equivalent to read(sockfd, buf, len);

ssize_t recv(int sockfd, void *buf, size_t len, int flags);

NWEN 241: 36
Server: step 5
• Send and receive data

• sockfd is the socket file descriptor (returned by socket())
•buf is a pointer to buffer to be received
• len is the length of buffer to be received
• flags is bitwise OR of zero or more options
• src_addr is a pointer to the structure struct sockaddr which will contain the details

of the peer socket
• addrlen is a pointer to the length of what src_addr points to

• Used in non-connection-oriented sockets (UDP)
• If successful, returns number of characters received, otherwise, returns -1
• If peer socket is shutdown/closed, will return 0

ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
 struct sockaddr *src_addr, socklen_t *addrlen);

NWEN 241: 37Server: step 5 example using recv()

int fd = socket(AF_INET, SOCK_STREAM, 0);
…
int client_fd = accept(fd, (struct sockaddr *)& client_addr,
 (socklen_t*)&addrlen);
…

char incoming[100];
ssize_t r = recv(client_fd, incoming, 100, 0);
if(r <= 0) {
 printf("Error receiving message");
 close(client_fd);
 exit(0);
}
// Do something with receiving message
printf("Received message: %s", incoming);

NWEN 241: 38

• Create a socket with the socket()
system call

• Same as server step 1

Client /
Server
Session

Client Server

socket socket

bind

listen

recv

sendrecv

send

Connection
request

recv

close

close EOF

acceptconnect

Client: step 1

NWEN 241: 39
Client: step 2

• Connect the socket to the address of the server using the connect() system call
• This step is only required for connection-oriented sockets (TCP)

• sockfd is the socket file descriptor (returned by socket())
• addr is a pointer to the structure struct sockaddr which will contain the details of

the server socket
• addrlen is a pointer to the length of what addr points to

• If successful, returns 0, otherwise, returns -1

int connect(int sockfd, const struct sockaddr *addr, socklen_t
addrlen);

NWEN 241: 40
Client: step 3
• Send and receive data

• Same as server step 5

NWEN 241: 41
Closing a socket

• Socket must be closed after its use

•sockfd is the socket file descriptor (returned by socket())
•how can either be SHUT_RD (further receptions disallowed), SHUT_WR (further

transmissions disallowed), or SHUT_RDWR (further receptions and
transmissions disallowed)

• If successful, returns 0, otherwise, returns -1

int shutdown(int sockfd, int how);

int close(int sockfd);

Week 12 Lecture 2
XMUT-NWEN 241 - 2024 T2

Systems Programming

.

Felix Yan
School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2
Content
• System calls (in a bit more detail)

• Categories of System Calls

NWEN 241: 3
Recap: System call invocation –Example

#include <stdio.h>
void main(void)
{
 printf("Hello, world\n");
 exit(0);
}

System Call Interface
User mode

Kernel mode

Standard C Library
write()

sys_write()
system call

NWEN 241: 4
The Complete picture
• A system call is a call to a function that is a part of the kernel to request service

from the operating system.

• When a program needs to access system resources, it makes a system call and
a context-switch between the user program and the kernel is performed.

User process
executing

Calls system
call Return to user mode

Execute
system call

Set mode bit =1 before switching
to user mode

User mode
(mode bit =1)

Kernel mode
(mode bit =0)

TrapSet mode bit =0 before switching
to kernel mode

NWEN 241: 5

#include<stdio.h>

int main()
{
 printf(”Hello World”) ;
 return 0;
}

hello.c

Compile

Run

Output

ltrace

ltrace
output

How to know which system calls are invoked?

NWEN 241: 6

strace output

How to know which system calls are invoked?

NWEN 241: 7
Invoking System calls

There are two different methods by which a program
can invoke system calls:
• Directly: by making a system call to a function (i.e.,

entry point) built directly into the kernel, or
• Indirectly: by calling a higher-level library routine

(provided by Linux system library and language
library) that invokes the system call.

• The system calls and system libraries together
constitute the system call application programming
interface (API).

Three most common APIs:
 - Win32 API for Windows
 - POSIX API for POSIX-based systems (including
 UNIX, Linux, and Mac OS X)
 - Java API for the Java virtual machine (JVM)

User Applications

System Libraries

System Call Interface

Direct system
call

System call via API

NWEN 241: 8
System call implementation
• Typically, a number is associated with each system call

• System call interface maintains a table indexed according to these
numbers

• System call interface invokes intended system call in kernel and
returns status of the system call and any return values

• Caller need not know about how the system call is implemented
• Just needs to obey API and understand what OS will do as a result

call
• Most details of OS interface hidden from programmer by API

NWEN 241: 9
Linux system call table

• First few lines of the
table

• For more information:
https://github.com/torvalds
/linux/blob/v3.13/arch/x86/
syscalls/syscall_64.tbl

#
64-bit system call numbers and entry vectors
#
The format is:
<number> <abi> <name> <entry point>
#
The abi is "common", "64" or "x32" for this file.
#
0 common read sys_read
1 common write sys_write
2 common open sys_open
3 common close sys_close
4 common stat sys_newstat
5 common fstat sys_newfstat
6 common lstat sys_newlstat
7 common poll sys_poll

https://github.com/torvalds/linux/blob/v3.13/arch/x86/syscalls/syscall_64.tbl

NWEN 241: 10
Directly Invoking System calls
• To make a direct system call we need low-level programming,

generally in assembler. User need to know target architecture,
cannot create CPU independent code.

 .global _start

 .text
_start:
 # write(1, message, 13)
 mov $1, %rax # system call 1 is to write
 mov $1, %rdi # file handle 1 is stdout
 mov $message, %rsi # address of string to output
 mov $13, %rdx # number of bytes
 syscall # invoke operating system to do the write
 .data
message:
 .ascii "Hello, world\n"

Tedious and machine
dependent

NWEN 241: 11Invoking System calls through library routines

User Space

Kernel Space

main()
{
 write(1,"Hello World",strlen("Hello World"));
}

sys_write()
{
.
.
.
}

unistd.h
string.h

NWEN 241: 12

Categories of System calls

NWEN 241: 13
Categories and examples of system calls

• Unix and Linux both conform to
POSIX standard (GNU C Library -
glibc)

• POSIX: Portable Operating System
Interface

NWEN 241: 14
Categories of System Calls
• File manipulation – (create, delete, open, close)

• Process Control – (create, terminate)

• Device Management – (request, release)

• Information Maintenance – (time, date, get / set system date)

• Communications – (create , delete connection, receive, send message)

• Protection – (create , delete connection, receive, send message)

14

NWEN 241: 15
Recap: Process Vs Program

• Program is static, with the potential for execution

• Process is a program in execution and have a state

• One program can be executed several times and thus has several

processes

NWEN 241: 16
Process in memory

Code Segment
(Text Segment)

Data Segment

Heap Segment

free

Stack Segment

 Text / Code Segment
 Contains program’s machine code

 Segments for Data
spread over:

 Data Segment – Fixed space for global
variables and constants

 Stack Segment – For temporary data,
e.g.,
local variables in a function; expands /
shrinks as program runs

 Heap Segment – For dynamically allocated
memory; expands / shrinks as program
runs

NWEN 241: 17Recap: Process lifecycle

new

ready running

waiting

terminated

admitted

interrupt

exit

I/O or
event completion I/O or

 event wait

Scheduler dispatch

NWEN 241: 18
Process control block

• Information associated with each process
– Process state
– Program counter
– CPU registers
– CPU scheduling information
– Memory-management information
– Accounting information
– I/O status information

• A process is named using its
process ID (PID) or process #

• Data is stored in a process control
block (PCB)

NWEN 241: 19
Process representation in Linux
• Represented by structure task_struct

• See https://github.com/torvalds/linux/blob/master/include/linux/sched.h for more information

• Some of the structure members

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

NWEN 241: 20
Process representation in Linux
• Represented by structure task_struct

• See https://github.com/torvalds/linux/blob/master/include/linux/sched.h for more information

struct task_struct
Process

information
.
.
;

struct task_struct
Process

information
.
.
;

struct task_struct
Process

information
.
.
;

Current
(currently executing processes)

 . . .

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

NWEN 241: 21
Process switching

NWEN 241: 22
Process scheduling

• Process scheduler selects among ready processes for next
execution on CPU

• Maintains scheduling queues of processes
• Job queue – set of all processes in the system
• Ready queue – set of all processes residing in main memory, ready
and waiting to execute

• Device queues – set of processes waiting for an I/O device
• Processes migrate among the various queues

NWEN 241: 23
Ready queue and various I/O device queues

NWEN 241: 24
Process Initialization on Linux
• The init process (Init is the parent of all processes, executed by the kernel during

the booting of a system).
• A process is created by another process, which, in turn create other processes
 process tree

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

Linux
process
tree

Every
process
has a
process ID
(PID)

NWEN 241: 25Linux ps command

• Used to obtain information
about processes that are
running in the current shell $ ps

 PID TTY TIME CMD
 31843 pts/35 00:00:00 bash
 31850 pts/35 00:00:00 ps

Process ID
Every process is assigned a PID by the kernel

NWEN 241: 26Linux ps command

$ ps -f
UID PID PPID C STIME TTY TIME CMD
sahnijy 31843 31835 0 12:37 pts/35 00:00:00 -bash
sahnijy 32100 31843 0 12:43 pts/35 00:00:00 ps -f

Parent Process ID
PID of the process that started the process

NWEN 241: 27
Parent and child

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

Parent of processes 6 and 200,
Child of process 1

Children of process 2

When liux starts it runs a single
program, init with process id 1

NWEN 241: 28
Next lecture
• System calls for Process Management

