NWEN 241: 32
Server: step 5

 Send and receive data

ssize_t send(int sockfd, const void *buf, size_t /en, int flags);

e sockfdis the socket file descriptor (returned by accept())
e bufis a pointer to buffer to be sent

e /en is the length of buffer to be sent

e flags is bitwise OR of zero or more options

« Used in connection-oriented sockets (TCP)
 |f successful, returns number of characters sent, otherwise, returns -1
» send(sockfd, buf, len, 0); is equivalent to write(sockfd, buf, len);

NWEN 241: 33

Server: step 5

 Send and receive data

ssize_t sendto(int sock7d, const void *buf, size_t /en, int flags,
const struct sockaddr *dest_addr, socklen_t adadrien);

e sockfdis the socket file descriptor (returned by socket())
e bufis a pointer to buffer to be sent

e /en is the length of buffer to be sent

e flags is bitwise OR of zero or more options

* dest_addris a pointer to the structure struct sockaddr which will contain the details
of the peer socket

e addrlenis a pointer to the length of what dest_addr points to
« Used in non-connection-oriented sockets (UDP)
* |f successful, returns number of characters sent, otherwise, returns -1

NWEN 241: 34

Server: step 5 example using send()

int fd = socket(AF_INET, SOCK_STREAM, 0);

int client_fd = accept(fd, (struct sockaddr *)& client_addr,
(socklen_t*)&addrlen);

char msg[] = "hello, world";
ssize_t r = send(client_fd, msg, strlen(msg), 0);
if(r < 0) {
printf("Error sending message");
close(client_fd);
exit(0);
}

NWEN 241: 35

Server: step 5

 Send and receive data

ssize_t recv(int sockfd, void *buf, size_t /en, int flags);

e sockfdis the socket file descriptor (returned by accept())
e bufis a pointer to buffer to be received

e len is the length of buffer to be received

e flags is bitwise OR of zero or more options

« Used in connection-oriented sockets (TCP)

* |f successful, returns number of characters received, otherwise, returns -1
* |f peer socket is shutdown/closed, will return O

 recv(sockfd, buf, len, 0); is equivalent to read(sockfd, buf, len);

NWEN 241: 36

Server: step 5

« Send and receive data

ssize_t recvfrom(int sockfd, void *buf, size_t /en, int flags,
struct sockaddr *src_addr, socklen_t *addrien);

e sockfdis the socket file descriptor (returned by socket())
e bufis a pointer to buffer to be received

e /en is the length of buffer to be received

e flags is bitwise OR of zero or more options

* src_addaris a pointer to the structure struct sockaddr which will contain the details
of the peer socket

e addrlenis a pointer to the length of what src_addr points to
« Used in non-connection-oriented sockets (UDP)
* |f successful, returns number of characters received, otherwise, returns -1
* |f peer socket is shutdown/closed, will return O

NWEN 241: 37

Server: step 5 example using recv()

int fd = socket(AF_INET, SOCK_STREAM, 0);

int client_fd = accept(fd, (struct sockaddr *)& client_addr,
(socklen_t*)&addrlen);

char incoming[100];
ssize_t r = recv(client_fd, incoming, 100, 0);
if(r <= 0) {
printf("Error receiving message");
close(client_fd);
exit(0);
}
// Do something with receiving message
printf("Received message: %s", incoming);

Client: step 1

« Create a socket with the socket()

system call

« Same as server step 1

Client /
Server
Session

NWEN 241: 38

Client Server

socket socket

bind

listen
Connection |

connect --IQQMQSL“* accept
v v

> send > recv

recv send
v \ 4

EOF
close W f-----C------- > recv

NWEN 241: 39

Client: step 2

- Connect the socket to the address of the server using the connect() system call
* This step is only required for connection-oriented sockets (TCP)

int connect(int sockfd, const struct sockaddr *addr, socklen_t
addrien);

e sockfdis the socket file descriptor (returned by socket())

® addris a pointer to the structure struct sockaddr which will contain the details of
the server socket

e addrlenis a pointer to the length of what addr points to

* |f successful, returns 0, otherwise, returns -1

NWEN 241: 40

Client: step 3

 Send and receive data

« Same as server step 5

NWEN 241: 41

Closing a socket

 Socket must be closed after its use

int shutdown(int sockfd, int how);

int close(int sockfd);

» sockfd is the socket file descriptor (returned by socket())

e how can either be SHUT_RD (further receptions disallowed), SHUT_WR (further
transmissions disallowed), or SHUT_RDWR (further receptions and
transmissions disallowed)

* If successful, returns 0, otherwise, returns -1

Week 12 Lecture 2
XMUT-NWEN 241 - 2024 T2

Systems Programming

Felix Yan

School of Engineering and Computer Science

Victoria University of Wellington

NWEN 241: 2

Content

« System calls (in a bit more detail)

« Categories of System Calls

NWEN 241: 3

Recap: System call invocation —Example

#tinclude <stdio.h>
void main(void)

{

printf("Hello, world\n");
exit(0);
¥

Standard C Library

write()

User mode

Kernel mode

sys_write()

system call

NWEN 241: 4

The Complete picture

« A system call is a call to a function that is a part of the kernel to request service
from the operating system.

« When a program needs to access system resources, it makes a system call and
a context-switch between the user program and the kernel is performed.

User mode
(mode bit =1)

User process Calls system

: Return to user mode
executing call

Trap Set mode bit =1 before switching

to user mode
Execute

(mode bit =0)

Set mode bit =0 before switching
to kernel mode

NWEN 241: 5

How to know which system calls are invoked?

#include<stdio.h> Compile : B hello hello.c
‘i[nt main() Run
|

hello.c ltrace prantt(THel o Woria)

output Hello World+++ exited (status ©) +++

NWEN 241: 6

How to know which system calls are invoked?

execve("./hello", ["./hello"], ex7fffc8e68920 /* 21 vars */) = @
Strace Output brk (NULL) Ox7FffF38a6000
access("/etc/1ld.so.nohwcap"”, F_0OK) -1 ENOENT (No such file or directory)
access("/etc/1ld.so.preload”, R_OK) -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/etc/ld.so.cache"”, O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|@644, st_size=30022, ...}) = @
mmap(NULL, 30022, PROT_READ, MAP_PRIVATE, 3, 8) = Ox7ff4e26e1000
close(3) =0
access("/etc/1ld.so.nohwcap"”, F_0OK) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/lib/x86_64-1linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\e\0\e\e\e\e\e\e\3\e>\e\1\e\e\e\260\34\2\0\e\e\e\e"..., 832) = 832
fstat(3, {st_mode=S_IFREG|@755, st_size=2036544, ...}) = @
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, @) = Ox7ff4e26d0000
mmap(NULL, 4131552, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, ©) = ©x7ff4e2000000
mprotect (Bx7ff4e21e76000, 2097152, PROT_NONE) = ©
mmap (©x7Ff4e23e7000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, ©x1e7600) = @x7ff4e23e7000
mmap (©x7Ff4e23ed0e0, 15072, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, ©) = ©x7ff4e23edoee
close(3) =0
arch_prctl(ARCH_SET_FS, @x7ffd4e26dl4co) = @
mprotect (0x7ff4e23¢7000, 16384, PROT_READ) = @
mprotect (ex7ff4e2a00000, 4096, PROT READ) = ©
mprotect (ex7ff4e2627000, 4096, PROT READ) = ©
munmap (@x7ff4e26e1000, 30022) =0
fstat(1, {st_mode=S_IFCHR|@660, st_rdev=makedev(4, 1), ...}) = @
ioctl(1, TCGETS, {B38400 opost isig icanon echo ...}) = ©
brk (NULL) ex7ffff38a6000
brk (ex7ffff38c7608) ex7ffff38c7000
write(1l, "Hello World", 11Hello World) =11
exit_group(®@)
+++ exited with 6 +++

NWEN 241:7

Invoking System calls

There are two different methods by which a program
can invoke system calls:

 Directly: by making a system call to a function (i.e.,
entry point) built directly into the kernel, or

* Indirectly: by calling a higher-level library routine
(provided by Linux system library and language
library) that invokes the system call.

 The system calls and system libraries together
constitute the system call application programming
interface (API).

Three most common APIs:
- Win32 API for Windows
- POSIX API for POSIX-based systems (including
UNIX, Linux, and Mac OS X)
- Java API for the Java virtual machine (JVM)

User Applications

Direct system
call

System call via API

System Libraries

NWEN 241: 8

System call implementation

« Typically, a number is associated with each system call

« System call interface maintains a table indexed according to these
numbers

« System call interface invokes intended system call in kernel and
returns status of the system call and any return values

» Caller need not know about how the system call is implemented

« Just needs to obey API and understand what OS will do as a result
call

* Most details of OS interface hidden from programmer by API

Linux system call table

First few lines of the
table

For more information:
https://github.com/torvalds

/linux/blob/v3.13/arch/x86/
syscalls/syscall 64 .tbl

#

64-bit system call numbers and entry vectors
#

The format is:

<number> <abi> <name> <entry point>

#

The abi is "common", "64" or "x32" for this file.

#

0 common read sys_read

1 common write Sys_write

2 common open sys_open

8 common close sys_close

4 common stat sys_newstat
) common fstat sys_newfstat
6 common Istat sys_newlstat
7 common poll sys_poll

NWEN 241: 9

https://github.com/torvalds/linux/blob/v3.13/arch/x86/syscalls/syscall_64.tbl

NWEN 241: 10

Directly Invoking System calls

« To make a direct system call we need low-level programming,

generally in assembler. User need to know target architecture,
cannot create CPU independent code.

.global _start

Tedious and machine
text
start: dependent
write(1, message, 13)
mov $1, %rax # system call 1 is to write
mov $1, %rdi # file handle 1 is stdout
mov $message, %rsi # address of string to output
mov $13, %rdx # number of bytes
syscall # invoke operating system to do the write
.data
message:

.ascii "Hello, world\n"

NWEN 241: 11

Invoking System calls through library routines

User Space Kernel Space

sys_write()
main() {

{
}

write(1,"Hello World",strlen("Hello World"));

unistd.h
string.h

NWEN 241: 12

Categories of System calls

NWEN 241: 13

Categories and examEIes of system calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit()
wait ()

open()
read()
write()
close()

ioctl()
read()

write()

getpid()

alarm()
sleep()

pipe()

shmget ()

mmap ()

chmod ()
umask ()
chown()

 Unix and Linux both conform to
POSIX standard (GNU C Library -
glibc)

« POSIX: Portable Operating System
Interface

NWEN 241: 14

Categories of System Calls

 File manipulation — (create, delete, open, close)

Process Control — (create, terminate)

Device Management — (request, release)

Information Maintenance — (time, date, get / set system date)

« Communications - (create , delete connection, receive, send message)

Protection — (create , delete connection, receive, send message)

14

NWEN 241: 15

Recap: Process Vs Program

* Program is static, with the potential for execution

* Process is a program in execution and have a state

« One program can be executed several times and thus has several

Processes

NWEN 241: 16

Process in memory

Code Segment e Text / Code Segment
(Text Segment) — Contains program’s machine code
Data Segment ° Segments for Data
spread over.
Heap Segment — Data Segment - Fixed space for global
variables and constants
| — Stack Segment - For temporary data,
free e.g.,

1t local variables in a function; expands /

Stack Segment shrinks as program runs
— Heap Segment - For dynamically allocated

memory; expands / shrinks as program
runs

NWEN 241: 17

Recap: Process lifecycle

admitted Scheduler dispatch

1/O or
event completion I/O or
event wait

exit

NWEN 241: 18

Process control block

* Information associated with each process
— Process state pointer
— Program counter
— CPU registers

process
state

process number

— CPU scheduling information program counter
— Memory-management information
— Accounting information registers
— 1/0 status information

* A process is named using its memory limits
process ID (PID) or process # list of open files

« Data is stored in a process control
block (PCB)

NWEN 241: 19

Process reEresentation In Linux

* Represented by structure task_struct
» See https://github.com/torvalds/linux/blob/master/include/linux/sched.h for more information

 Some of the structure members

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

Process regresentation In Linux

* Represented by structure task_struct
« See https://github.com/torvalds/linux/blob/master/include/linux/sched.h for more information

struct task_struct
Process

information

struct task_struct

/

Process
information

Current u u

(currently executing processes)

struct task_struct

Process
information

NWEN 241: 20

https://github.com/torvalds/linux/blob/master/include/linux/sched.h

NWEN 241: 21

Process switching

process P, operating system process P,

interrupt or system call

executing ‘1 / l
T save state into PCB,
. > idle
L]
reload state from PCB;, 1
>idle interrupt or system call executing
l \ & R
save state into PCB;
: > idle
) reload state from PCB,)
executing | _\
v

NWEN 241: 22

Process scheduling

* Process scheduler selects among ready processes for next
execution on CPU

* Maintains scheduling queues of processes
» Job queue - set of all processes in the system

* Ready queue - set of all processes residing in main memory, ready
and waiting to execute

* Device queues — set of processes waiting for an I/O device
* Processes migrate among the various queues

NWEN 241: 23

Readx queue and various I/O device queues

queue header PCB, PCB,
ready head) i
queue tail registers registers
PCB; PCB,, PCB;s
/ B -
disk head 4
unit O tail \
PCBs
terminal head T—> —=
unit 0 "]

NWEN 241: 24

Process Initialization on Linux

* The init process (Init is the parent of all processes, executed by the kernel during
the booting of a system).

* A process is created by another process, which, in turn create other processes

—> process tree

. Eve
Linux | prog)e/ss
E)rocess has a

ree process ID

bash khelper pdflush sshd (PI D)

pid = 8416 pid = 6 pid = 200 pid = 3610
3 = T
pid = 9298 pid = 9204 pid =

NWEN 241: 25

Linux ps command

« Used to obtain information
about processes that are

running in the current shell $ ps
PID TTY TIME CMD

31843 pts/35 00:00:00 bash
31850 pts/35 00:00:00 ps

Process ID
Every process is assigned a PID by the kernel

NWEN 241: 26

Linux ps command

$ ps -f

uiD PID PPID C STIME TTY TIME CMD
sahnijy 31843 31835 0 12:37 pts/35 00:00:00 -bash
sahnijy 32100 31843 0 12:43 pts/35 00:00:00 ps -f

Parent Process ID
PID of the process that started the process

NWEN 241: 27

Parent and child

When liux starts it runs a single
program, init with process id 1

init

pid = 1 Parent of processes 6 and 200,
Child of process 1

sshd
pid = 3028

pdflush sshd
pid = 200 pid = 3610

kthreadd
pid = 2

login
pid = 8415
bash
pid = 8416
Bs smacs idtc—sct::)os
pid = 9298 pid = 9204 pid =

Children of process 2

NWEN 241: 28

Next lecture

« System calls for Process Management

