Family Name:	Other Names:
Student ID:	Signature

NWEN 241: Final Exam

2019, Dec 24 ** WITH SOLUTIONS **

Instructions

- Time allowed: 180 minutes
- Only silent non-programmable calculators or silent programmable calculators with their memories cleared are permitted in this examination.
- Write your answers in this exam paper and hand in all sheets.
- If you think some question is unclear, ask for clarification.
- You may use dictionaries.
- You may write notes and working on this paper, but make sure your answers are clear.

Q۱	aestions	Marks	
1.	C Fundamentals.	[10]	
2.	User-Defined Types	[14]	
3.	Arrays and Pointers	[21]	
4.	Dynamic Memory Allocation	[10]	
5.	Data Structures	[16]	
6.	File I/O	[7]	
7.	Low-Level and Socket Programming	[12]	
8.	Process Management	[10]	
		TOTAL:	

Student	ID.									
Student	ID.	 	 							

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

Question 1. C Fundamentals

[10 marks]

(a) [2 marks] What will be the output of the following code? Briefly explain how you arrived at your answer.

```
#include <stdio.h>
void main()
{
    int a = 012, b = 12;
    printf ("%d %d", a, b);
}
```

```
10 12 (1 mark)
012 is an octal number equivalent to 10 as an integer and b = 12 is
(1 mark)
```

(b) [2 marks] Define a constant PI with value 3.14 using an appropriate preprocessor directive.

```
#define PI 3.14
```

(c) [2 marks] What is the output of the following program? A float is 4 bytes.

```
#include <stdio.h>
int main()
    float a [15];
    printf ("%d", sizeof (a));
    return 0:
}
```

```
Output: 60 (1 mark)
```

Student 1	m·										
otuaent	ID.			 _	 					_	

(Question 1 continued)

(d) [2 marks] What is the difference between a character array and a string? Show how the word Nihao is stored as a character array and as a string.

```
A string is an array of characters with the null character /0 after the last character. (1 mark) char array: |N|i|h|a|o| | (1/2 mark) char array: |N|i|h|a|o|/0| | (1/2 mark)
```

(e) [2 marks] What is the output of the following C program?

```
#include <stdio.h>

int macro_be(int a, int b)
{
    return a*++b;
}

int main(void)
{
    int i = 7; int j = macro_be(1+2, i);
    printf("%d, %d", i, j);
    return 0;
}
```

```
7, 24 (2 marks)
```

Student ID:								

Question 2. User-defined Data Types

[14 marks]

(a) [3 marks] What is the data type of a? Please explain your answer.

```
typedef int numbers; numbers a = 1;
```

```
a is of type int
numbers is defined to be equivalent to int by the first line
Alternatively
a is of type numbers, which defined to be equivalent to int
```

(b) [3 marks] Define an enumeration type with identifiers March, April, and May having values of 3, 4, and 5, respectively. Use month as name of the enumeration type.

```
enum month { March = 3, April, May };
```

(c) [3 marks] Consider the following user defined data type:

```
struct student
{
    int id_number;
    char name[20];
    int age;
    char college_name [40];
    int std;
    chr div;
}
```

Write a statement that declares three variables S1, S2, and S3 to be of the student data type.

```
struct student S1, S2, S3 (3 marks)
```

Student	ID.										
Student	117:		 _		_	 		 	_	_	

(Question 2 continued)

(d) [5 marks] Based on the data type declaration made above (part c), write code to initialize the S1 variable to contain the following values:

```
id_number - 1712409137
name - "Liu Zhi Yu"
age - 19
college_name - "International Education"
std - 10
div - 'A'
```

```
S1.id_number = 1712409137;

strycpy(S1.name, "Liu Zhi Yu")

S1.age= 19

strycpy(S1.college_name, "International Education")

S1.std= 10

S1.div= 'A'
```

Question 3. Arrays and Pointers

[21 marks]

(a) [3 marks] Three array declarations shown below have errors. Write the correct declaration statements.

```
# define N 5 int a[N] = \{0, 2, 2, 3, 4, 5\}; int b[N-6]; int c [3.0];
```

```
int a[N] = \{0, 2, 2, 3, 4\};
The initializer has 6 elements but the array has 5 spaces only (1 mark)
int b[N-6];
The array size is negative (ie N-6 = 5-6 = -1) (1 mark)
int c[3.0]
The array size is of data type float but it must be an integer according
to the int declaration (1 mark)
```

(b) [3 marks] What is the value of myArray[myArray[1]] based on the following array declaration?

```
int myArray[] = \{0, 2, 4, 6, 8, 10\};
```

```
Answer: 4
myArray[myArray[1]] -> myArray[2] -> 4
```

Stu
ıd
er
٦ŧ
IT
):

(Question 3 continued)

(c) [3 marks] Give a declaration for the variable r in each of the following cases.

r is a pointer to a char.

```
char *r; (1 mark)
```

r is an array of 5 pointers to char.

```
char *r[5]; (1 mark)
```

r is a pointer to a function that takes no arguments and returns an int.

```
int (*r)(void); (1 mark)
```

(d) [7 marks] Given the following array and pointer declarations:

i. [2 marks] Write C language statements showing two different ways to access the value stored in the first element of the array ia

```
ia[0] (1 mark each)
*ia or *iap
```

ii. [2 marks] If the base address of the array ia is at (decimal) 1000, what is the value of iap+2? Assume that an int occupies 4 bytes.

```
1000 + 2*4 = 1000 + 8 = 1008
```

iii. [3 marks] Write a for-loop to iterate through the array outputting each element of ia using array indexes?

```
for (int i = 0; i < 9; i++) (2 marks)
printf("%d ", ia[i]); (1 mark)</pre>
```

(e) **[5 marks]** Complete the function below so that takes in an integer array and its length, returns 1 if the array stores **only** negative numbers, and returns 0 if the array stores at least one number that is not negative. (**Note**: 0 is **NOT** a negative number.)

```
int allNeg(int array[], int length) {
    for(int i=0; i < length; i++)
    {
        if (array[i]>0)){
            return 0;
        }
        return 1;
}
```

Question 4. Dynamic Memory Allocations

[10 marks]

(a) [6 marks] What is the output of the following C program? Assume that the malloc is successful.

```
#include <stdio.h>
#include <string.h>
int main()
{
    char *mem_allocation;
    mem_allocation = (char *) malloc( 20 * sizeof(char) );
    if ( mem_allocation== NULL )
        {
            printf("Couldn't to allocate requested memory\n");
        }
        else
        {
                strcpy( mem_allocation, "https://www.wgtn.ac.nz/");
        }
        printf("Dynamically allocated memory content : %s\n", mem_allocation);
        free (mem_allocation);
}
```

```
Dynamically allocated memory content : https://www.wgtn.ac
```

(b) [4 marks] What is the problem with following code?

```
#include<stdio.h>
#include <string.h>
int main()
{
    char *p = (char *) calloc (20, sizeof (char));
    if ( p== NULL )
    {
        printf ("Couldn't allocate requested memory\n");
        return 0;
    }
    strcpy (p, "Hello World!");
    while(*p!= '\0')
        printf ("%c",p++);
    free (p);
    return 0;
}
```

```
Memory Leak
The problem is memory leak, p is not pointing to the begining of the allocated block. free(p) cannot free the allocated memory
```

Question 5. Data Structures

[16 marks]

(a) [4 marks] What is the output of the following C program?

```
#include<stdio.h>
#include <string.h>

struct employee
{
    int id;
    char name[50];
};

struct employee e1;

int main()
{
    e1.id=101;
    strcpy(e1.name, "Wei Zi Yi");
    printf( "Employee 1 ID : %d\n", e1.id);
    printf( "Employee 1 Name : %s\n", e1.name);
    return 0;
}
```

```
Employee 1 ID : 101 (2 marks)
Employee 1 Name : Wei Zi Yi (2 marks)
```

(b) [2 marks] In C, a node in a linked list is implemented using a structure. Declare a C structure with tag node that defines a node of a *doubly* linked list. For simplicity, declare the data field to be of type int with identifier data.

```
struct node{
  int data;
  struct node *next; // pointer to next element
  struct node *prev; // pointer to previous element};
};
```

(Question 5 continued)

- (c) [10 marks] Given the following struct declaration for a student, complete the Grades function which
 - calculates each student's grade as 'P' or 'F' depending on whether the score is higher than or equal to 75, and
 - returns the average class score;

The input parameter of Grades function is an array of students, each of which have an id and score, but do **not** yet have a grade.

```
#define SIZE 64
struct Student {
  unsigned int id;
  unsigned float score;
  unsigned char grade; // Must be 'P' or 'F'
};
typedef struct Student STyp;
float Grades(STyp class[SIZE]){
        int i;
        float sum=0;
        for(i=0; i<SIZE; i++){
          sum = sum + class[i].score;
           if (class [i]. score  >= 75 )
              class[i].grade = 'P';
           } else{
              class[i].grade = 'F';
       return sum/SIZE;
```

Question 6. File Input/output

[7 marks]

(a) [3 marks] Write a C statement that will open a text file output.txt for output, appending to existing contents (if any).

```
FILE *fp = fopen("output.txt", "a");
```

(b) [4 marks] Consider the following C code:

```
#include <stdio.h>

int main()
{
    char c;
    FILE *infp = fopen("infile.txt", "r");
    FILE *outfp = fopen("outfile.txt", "w");
    while( (c=getc(infp)) != EOF ) {
        putc(c-1, outfp);
    }
    fclose (infp );
    fclose (outfp);
    return 0;
}
```

If the contents of infile.txt is

gdkkn

What would be the contents of outfile.txt?

Hint: see the list of ASCII codes.

```
fcjjm
```

Student ID	١.									
stuaent II.) :			 						

Question 7. Low-level Socket Programming

[12 marks]

(a) [2 marks] The C source file hello.c contains the following:

```
#include <stdio.h>

int main(void)
{
    #ifdef Task1
        printf("Hello World!");
    #else
        printf("C programming!");
    #endif
    return 0;
}
```

If the source file is compiled with the command

```
gcc hello.c -o hello
```

What is the output when hello is run?

```
C programming!
```

(b) [2 marks] What are the two types of sockets supported by the socket system call?

```
Stream (TCP) and datagram (UDP)
```

(c) **[5 marks]** Briefly explain the steps of creating a socket in a **server** process. Please name the system call for each the step (if any).

```
Create a socket with the socket() system call.

Bind the socket to an address using the bind() system call.

Listen for connections with the listen() system call

Accept a connection with the accept() system call

Send and receive data
```

Question 8. Process Management

[10 marks]

(a) [2 marks] Briefly explain the difference between a program and a process.

```
Program is static, with the potential for execution)
while Process is a program in execution and have a state
One program can be executed several times and thus has several
processes
```

(b) [8 marks] You are given the following C program:

```
#include <stdio.h>
2
    #include <stdlib.h>
3
    #include <unistd.h>
4
    #include <sys/wait.h>
5
6
    int gvar = 2;
7
8
    int main(void)
9
10
        int lvar = 4;
11
        pid_t pid;
12
13
        if ((pid = fork()) < 0) {
14
            printf("fork error\n");
15
16
        if (pid == 0) {
17
            gvar++;
18
            lvar++;
19
        } else {
20
            wait(NULL);
21
            gvar++;
22
        }
23
24
        printf ("%ld %d %d\n", (long)getpid(), gvar, lvar );
25
        exit (0);
26 }
```

i. [2 marks] Which line(s) are run only in the parent process?

```
Lines 20 and 21
```

ii. **[6 marks]** Assume that the fork is successful. The parent process ID is 23476 and the child process ID is 23477. What is the output of the program?

```
23477 3 5
23476 3 4
```

Student ID:

Student ID:																							
-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked. Specify the question number for work that you do want marked.

Reference Information

Some of this information might be useful while answering questions on the exam. Feel free to remove this page for reference while you work. **Please do not write on this page - anything written here will not be graded.**

ASCI	I Hex	Symbol	ASCI	I Hex	Symbol	ASCII	Hex	Symbol	ASCII	Hex S	Symbol
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	0 1 2 3 4 5 6 7 8 9 A B C D E	NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E	DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E	(space) ! # \$ % & ' () * + , .	48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E	0 1 2 3 4 5 6 7 8 9 :; <
ASCII	F I Hex	SI Symbol	ASCI	1F I Hex	US Symbol	47 ASCII	2F I Hex	/ Symbol	63 ASCII	3F Hex S	? Symbol
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F	@ A B C D E F G H I J K L M N O	80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E	P Q R S T U V W X Y Z [\	96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E	a b c d e f g h i j k l m n	112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F	p q r s t u v w x y z {