

XMUT315 Control Systems Engineering

Assignment 4: Analysis with Root Locus and Nyquist Diagram

Due Date: Friday, 6th June 2025 (online submission to XMUT315 wiki website at VUW)

A. Root Locus Analysis

1. Sketch root locus diagram of the following open-loop control system given below. [10 marks]

$$G(s) = \frac{(s+5)}{(s-0.2)(s^2+2s+32)(s^2-125)}$$

- 2. Consider the following control systems having the transfer functions:
 - i. System 1:

$$G_1(s) = \frac{s^2 + 4s + 5}{(s+2)(s+3)(s+4)}$$

ii. System 2:

$$G_2(s) = \frac{100(s+6)}{s(s+1)(s+2)(s+3)(s+4)}$$

iii. System 3:

$$G_3(s) = \frac{(s+1)^2}{(s+1)(s+6)}$$

iv. System 4:

$$G_4(s) = \frac{(s+1)^2}{(s-1)(s+6)}$$

v. System 5:

$$G_5(s) = \frac{(s+3)}{(s+1)(s-1)(s+4)}$$

vi. System 6:

$$G_6(s) = \frac{(s+4)}{(s+1)(s-1)(s+3)}$$

- a. Sketch the root locus diagram for each of the systems. You need not calculate break in/out points, crossing points of the imaginary axis or angle of departure/arrival. However, you should indicate the real axis intercept of any asymptotes and their angles. [30 marks]
- b. With the aid of appropriate sketches, describe the closed loop step response of each system (but skip $G_2(s)$ for now) as well as its behaviour for very large K. [25 marks]
- c. For the system described by $G_2(s)$, describe how the behaviour of the system changes as the compensator gain is varied over the complete range from zero to infinity. [10 marks]

B. Nyquist Diagram Analysis

3. For the following control system given by the following transfer function

$$G(s) = \frac{20}{s^3 + 5s^2 + 6s}$$

a. Sketch the Nyquist diagram of the system above.

[15 marks]

b. Referring to the Nyquist diagram, describe the stability of the system.

[5 marks]

c. Perform Nichols chart simulation of the system in MATLAB. Does the simulation result confirm the outcome of part (b)? [5 marks]

Marking Schedule

Student ID	:
Student Name	:

No	Description	Mark	Your Mark	Remarks
Α	Root Locus Analysis			
1	Sketch of the root locus diagram of the system.	10		
2a	Sketch of root locus diagrams of the systems.	30		
2b	Description of closed-loop step response of the systems and its behaviour for very large K .	25		
2c	Description of behaviour of the system as the compensator gain is varied from zero to infinity.	10		
В	Nyquist Diagram Analysis			
3a	Sketch of Nyquist diagram of the system.	15		
3b	Description of stability of the system.	5		
3c	Result of Nichols chart simulation of the system in MATLAB and its comparison with the result of part (b).	5		
	Total	100		

Comment: