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XMUT315 Control Systems Engineering 

Demo 1a: Simulations in MATLAB/Simulink 

 

A. Simulation of Control Systems with MATLAB 

MATLAB is a software tool that enables modelling, analysis, and design of physical systems. Any 

systems, as long as their detailed descriptions and hence their equations that represents their 

behaviours and characteristics are available, can be modelled in MATLAB.  

Experiment 1 (Simulation of Electrical Systems) 

You are given the following electronic circuit that consists of series connected LRC circuit and RC 

circuit. 

 

1. The following transfer function models for the LRC circuit and the RC circuit when the circuit 

considered separately as subsystems. Here we introduce an intermediate 

variable 𝑒′ representing the voltage drop across the capacitor of the LRC circuit. 

𝐺𝐿𝑅𝐶(𝑠) =
𝐸′(𝑠)

𝐸𝑖(𝑠)
=

1

𝐿𝐶1𝑠
2 + (𝑅1 + 𝑅𝑒𝑞)𝐶1𝑠 + 1

 

𝐺𝑅𝐶(𝑠) =
𝐸𝑜(𝑠)

𝐸′(𝑠)
=

1

𝑅2𝐶2𝑠 + 1
 

2. When modelled as transfer functions, one generally combines systems in series by multiplying 

their transfer functions. 
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3. Throughout the experiment the values of components in the LRC circuit are: 𝑅1 = 10 Ω, 𝐿 = 1 

H, 𝐸𝑒𝑞 = 40 Ω, 𝐶1 = 510 µF. For the RC circuit, we have the following component values: 𝑅2 = 

10k Ω and 𝐶2 = 100 µF.  

 

4. Use the MATLAB command step that occurs at time 𝑡 = 0 seconds (also for step appears to 

occur at time equal to 1.67 seconds). The following graph shows the result of circuit simulation. 

 

MATLAB code for the given electrical system: 

s = tf('s'); 

R1 = 10;         % resistance of resistor in LRC circuit 

R2 = 10000;           % resistance of resistor in RC circuit 

Req = 40;        % inductor equivalent series resistance (ESR) 

L = 1;          % inductance of inductor  

C1 = 510*10^-6;      % capacitance of capacitor in LRC circuit 

C2 = 100*10^-6;        % capacitance of capacitor in RC circuit 

ei = 1.53;           % input voltage 

tstep = 1.67;       % time step occurred 

         

G1 = 1/(C1*L*s^2 + C1*(R1+Req)*s + 1);  % LRC transfer function 

G2 = 1/(C2*R2*s+1);    % RC transfer function 

G = G1*G2;     % series transfer function 

          

[y,t] = step(G*ei,6);  % model step response 

          

plot(t,y)          

  

xlabel('time (sec)') 

ylabel('output voltage (Volts)') 

title('Series Circuit Step Response (R2 = 10 kOhm, C2 = 100 uF)') 
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Experiment 2 (Simulation of Mechanical Systems) 

For the mass-spring-damper system shown, determine the expression for the motion, 𝑥(𝑡) and plot 

it in MATLAB.  

Given that 𝐾 = 12 N/m, 𝑀 = 4 kg, 𝐹 = 36 N and the three examples of damping constant of 24.33 

Ns/m, 13.8565 Ns/m, and 8 Ns/m.  

Assume zero initial conditions e.g. 𝑥(0) = 0 and 𝑥̇(0) = 0. 

 

1. Assuming the equilibrium equations and apply Newton law into the mechanical system: 

𝐹 = 𝑀𝑥̈ + 𝐾𝑥 + 𝐵𝑥̇ 

2. Rearranging the equation to become a proper equation: 

𝑥̈ +
𝐵

𝑀
𝑥̇ +

𝐾

𝑀
𝑥 = 𝐹/𝑀 (1) 

 

3. The homogenous (natural) solution: 

𝑥̈ +
𝐵

𝑀
𝑥̇ +

𝐾

𝑀
𝑥 = 0 

4. The characteristic equation of the system by taking the Laplace transform of the above 

differential equation: 

𝑠2𝑋(𝑠) +
𝐵

𝑀
𝑠𝑋(𝑠) +

𝐾

𝑀
= 0 

5. For the above equation, obtain the roots of the equation from: 

𝑠1,2 =
𝐵

2𝑀
±
1

2
√
𝐵2

𝑀2
−
4𝐾

𝑀
 

 

(2) 

Case 1: 𝐵 = 24.33 Ns/m (overdamped case) 

6. Entering the values 𝐵 = 24.33 Ns/m, 𝐾 = 12 N/m, 𝑀 = 4 kg, 𝐹 = 36 N into the equation (2) as 

above: 

𝑠1 = −5.54  and  𝑠2 = −0.54 

7. Substituting into equation (1) as a result: 
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𝑥(𝑡) = 𝐶  and  𝐶 = 3 

8. Applying inverse Laplace transform: 

𝑥(𝑡) = 𝐴1𝑒
−5.54𝑡 + 𝐴2𝑒

−0.54𝑡 + 3𝑢(𝑡) 

9. With 𝑥(0) = 0 and 𝑥̇(0) = 0, the two simultaneous equations are: 

𝐴1 + 𝐴2 = −3 

−5.54𝐴1 − 0.54𝐴2 = 0 

10. Solving for 𝐴1 and 𝐴2 yields 

𝐴1 = 0.324   and   𝐴2 = −3.324 

11. Therefore, this is true for 𝑡 ≥ 0: 

𝑥(𝑡) = 0.324𝑒−5.54𝑡 − 3.324𝑒−0.54𝑡 + 3 

 

Case 2: 𝐵 = 13.8565 Ns/m (critical damped case) 

12. For value of 𝐵 = 13.8565 Ns/m and other values as per above into the equation (2) as before. 

𝑠1 = 𝑠2 = −1.7321 

13. As the same initial condition as per above still apply then the result of inverse Laplace transform 

is (for 𝑡 ≥ 0): 

𝑥(𝑡) = −𝑒−1.732𝑡(3 + 5.1963𝑡) + 3 

Case 3: 𝐵 = 8 Ns/m (underdamped case) 

14. For value of 𝐵 = 13.8565 Ns/m and other values as per above into the equation (2) as before. 

𝑠1.2 = −1 ± 𝑗√2 

15. And the solution is 

𝑥(𝑡) = 𝑒−𝑡(𝐴1 cos(1.414𝑡) + 𝐴2 sin(1.414𝑡)) + 3𝑢(𝑡) 

16. This leave the result of the inverse Laplace transform of: 

𝑥(𝑡) = −3𝑒−𝑡(cos√2𝑡 + sin√2𝑡) + 3 

17. Putting the three responses together is shown below along with the MATLAB code. 
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MATLAB code for the given mechanical system: 

clear all  

 

F = 36; % Newton (Applied force)  

K = 12; % N/m (Spring Constant)  

m = 4; % Kg (Mass)   

 

% All cases, B is a vector:  

 

% empty vectors for all cases of x(t)  

% X1: case 1, X2: case -2, X3: case -3;  

 

X1=[]; X2=[]; X3=[];  

T=[];  

 

for t = 0:0.01:10;  

x1 = 0.3240*exp(-5.54*t)-3.3240*exp(-0.54*t)+3;  

x2=-(3+5.1963*t)*exp(-1.7321*t)+3;  

x3=-3*exp(-t)*(cos(sqrt(2)*t)+1/sqrt(2)*sin(sqrt(2)*t))+3;  

 

X1=[X1 x1];  

X2=[X2 x2];  

X3=[X3 x3];  

T=[T t];  

end  

 

plot(T,X1,'r',T,X2,'g',T,X3,'b')  

 

xlabel('Time (sec.)')  

ylabel('Displacement (meters)')  

title('Mass-Spring-Damper System')  

 

grid 
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B. Simulation of Control Systems with Simulink 

Simulink® is a block diagram environment for multi-domain simulation and Model-Based Design. It 

supports system-level design, simulation, automatic code generation, and continuous test and 

verification of embedded systems. Simulink provides a graphical editor, customizable block libraries, 

and solvers for modelling and simulating dynamic systems. It is integrated with MATLAB®, enabling 

you to incorporate MATLAB algorithms into models and export simulation results to MATLAB for 

further analysis.  

Experiment 1 (Simulation of Mechanical System with Differential Equation in Time Domain) 

This experiment is a basic guide to show some of the functions Simulink offers. You are encouraged 

to have play around with the model until you feel comfortable with adding blocks, searching the 

library, creating a subsystem with a mask and running a model to obtain an output. 

This experiment will create a model of a damper-spring mechanical system below in the time 

domain in Simulink.  

 

Providing that spring constant 𝐾 = 2 N/m (force in the spring, 𝑓(𝑡) = 𝐾𝑥(𝑡) ), damper constant 𝑓𝑣 = 

1 Ns/m (force in the damper, 𝑓(𝑡) = 𝑓𝑣𝑥̇(𝑡)), and assuming frictionless floor, the above system is 

represented as the following differential equation:  

𝑥̇(𝑡) = 2𝑥(𝑡) + 𝑢(𝑡) 

Where 𝑢(𝑡) is a square wave input with amplitude of 1 N and a frequency of 1 rad/sec  

1. Open MATLAB and select Simulink from the home tab of the Toolstrip or alternatively you can 

type “simulink” into the command window and hit enter. This will open the “Simulink start 

page”. 

 

2. In the “Simulink start page” select “blank model” and save the blank model with an appropriate 

name. 
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3. In the Toolstrip of the Simulink model there is a shortcut to “Simulink library browser” where 

you will find all the blocks used to create a model. The blocks are organised into sub- libraries 

based on the block’s functionality and/or affiliations. For this introduction, everything you need 

is in the “Simulink – commonly used blocks”, “Simulink - sources” and “Simulink – signal routing” 

sub-libraries. 

 

4. In the Library Browser, select an Integrator block e.g. the Integrator block integrates its input 

𝑥̇(𝑡) to produce 𝑥(𝑡) and other blocks needed in this model i.e. a Gain block and a Sum block.  

 

5. Gather the blocks together.  

 

6. To rotate the Gain block use Ctrl R (r for rotate) or to flip it horizontally, use Ctrl I (i for invert).  
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7. Link all of the blocks with each other as shown below. 

 

An important concept in this model is the loop that includes the Sum block, the Integrator block, and 

the Gain block. In this equation, 𝑥(𝑡) is the output of the Integrator block. It is also the input to the 

blocks that compute 𝑥̇(𝑡), on which it is based. This relationship is implemented using a loop. 

8. Define the gain of the system in the Gain block by double clicking it and assign value of -2. 

 

9. To generate a square wave, use a Signal Generator block, and select the Square Wave form and 

change the default units to radians/sec.  

 

10. Simulate the model by clicking the “run” button (green arrow at the top). 

 

11. View the output of the model by double clicking on the Scope block. The Scope displays 𝑥(𝑡) at 

each time step. For a simulation lasting 10 seconds, the output shows as follows: 

 

Experiment 2 (Simulation of Mechanical System with Transfer Function) 

This experiment creates a model the differential equation in the frequency domain through use of 

transfer function.  For the same system as described in the first experiment. 

𝑥̇(𝑡) = 2𝑥(𝑡) + 𝑢(𝑡) 
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The equation you modelled previously in the first experiment can also be expressed as a transfer 

function. The model uses the Transfer 𝐹𝑐𝑛 block, which accepts 𝑢 as input and outputs 𝑥(𝑡). So, the 

block implements 𝑋(𝑠)/𝑈(𝑠). If you substitute 𝑠𝑋(𝑠) for 𝑥̇(𝑡)in the above equation, you get: 

𝑠𝑋(𝑠) = −2𝑋(𝑠) + 𝑈(𝑠) 

Solving for 𝑋(𝑠) this gives:  

𝑋(𝑠) =
𝑈(𝑠)

𝑠+2
   or  

𝑋(𝑠)

𝑈(𝑠)
=

1

𝑠+2
 

1. In the Library Browser icon, select signal generator, scope and Transfer Fcn blocks. 

 

2. Link the blocks with each other.  

 

3. The block diagram of the system will look like given below. 

 

4. The Transfer 𝐹𝑐𝑛 block uses parameters to specify the numerator and denominator coefficients. 

In this case, the numerator is 1 and the denominator is 𝑠 + 2. Specify both terms as vectors of 

coefficients of successively decreasing powers of 𝑠. Double click on Transfer Fcn block, in this 

case assign its numerator to be [1] (or just 1) and the denominator is [1 2]. 

 

5. Run the model simulation by clicking the “Run” button (green arrow at the top).  
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6. Double click on the scope and the output is shown as given below (e.g. a graph of displacement 

vs. time). 

 

Experiment 3 (Simulation of Electromechanical System) 

This experiment will create a model of electromechanical system e.g. a brushless DC motor and its 

subsystems as given below. The shown motor drives a mechanical load connected to a damper 

system. 

 

Note: these are the parameters of the motor: armature inductance (𝐿𝑎) = 1 H, armature resistance 

(𝑅𝑎) = 1 Ohm, torque constant (𝐾𝑡) = 1 N-m/A, motor inertia (𝐽𝑚) = 1, damping coefficient of motor 

(𝐷𝑚) = 1, and back EMF constant (𝐾𝑏) = 1 V-s/rad. 

The equations for modelling the electric motor as shown above are as listed below:  

Electrical subsystem: 

𝑅𝑠𝐼𝑠(𝑡) + 𝐿𝑎𝐼𝑎(𝑡) + 𝑉𝑏(𝑡) = 𝐸𝑎(𝑡) 

Mechanical subsystem: 

𝑇𝑚(𝑡) = 𝐽𝑚
𝑑2𝜃𝑚(𝑡)

𝑑𝑡2
+ 𝐷𝑚

𝑑𝜃𝑚(𝑡)

𝑑𝑡
 



XMUT315-Demo 1a: Simulations in MATLAB/Simulink  
 

11 

Back EMF coupling: 

𝑉𝑏 = 𝐾𝑏
𝑑𝜃𝑚(𝑡)

𝑑𝑡
 

Torque coupling: 

𝑇𝑚(𝑡) = 𝐾𝑡𝐼𝑎(t) 

 

1. We will be adding components to the model from the Simulink system library browser (mainly 

the “Commonly Used Blocks”, “Math Operations”, “Continuous”, “Sink” and “Source”).  

 

2. Click on the Library Browser icon. We will begin by adding a “Sum” block, 2 “Transfer Fcn” 

blocks, 2 “Gain” blocks and an “Integrator” block. 

 

3. Arrange and name these blocks as shown in the figure below. To rotate a block use Ctrl R (r for 

rotate) or to flip it horizontally, use Ctrl I (i for invert).  

 

4. Link the blocks with each other. To link, just click and drag the arrow from one point to another.  

5. To add departure point i.e. from the output of mechanical subsystem to the back EMF coupling 

gain block, click from the block to the line (it would not work if the other way around). 

 

6. To edit the variables in a block, double click on it. So we can easily change the variables of the 

system, we will add placeholder names rather than values. The variables we will use are 𝐿𝑎, 𝑅𝑎, 

𝐾𝑡, 𝐽𝑚, 𝐷𝑚, and 𝐾𝑏. The figure below shows how these variables arranged. 

 

7. To enable a negative feedback in the Sum block, double click it and change its default values 

from ++ to +-.  
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8. Now we will create a “subsystem” for the block diagram you have created. Subsystems help to 

keep the model tidy and allow a large number of variables edited at once. Select all the blocks in 

your diagram.  

 

9. Right click and select “Create Subsystem from Selection”. Now you will have one “Subsystem” 

block.  

 

10. By double clicking on the block, you can enter the subsystem containing your block diagram.  

 

11. You can traverse tabs with the selector at the top of the working window. Name your new 

subsystem “Motor Subsystem”. 

 

12. Now we will create a “mask” for our motor subsystem allowing us to store values in the 

variables we have inserted. Right click on the motor subsystem go to the “Mask” drop down and 

click “Create Mask”.  

 

13. A new window will pop up, and we want to work in the “Parameters & Dialog” tab from the top.  

 

14. To add a parameter, select the “edit” button on the left hand side of the screen (you will need 

one for each variable).  

 

15. You can make the “prompt” something more meaningful than 𝐿𝑎, 𝑅𝑎, etc., if you like, but the 

write the “name” as exactly as it is in the subsystem’s blocks. The figure below shows the mask 

editor. 
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16. You will now notice an arrow on your subsystem, this will be used to enter into the subsystem as 

double clicking will now bring up you parameters screen.  

 

17. Fill in the parameters of the given motor with the typical (measured) variables e.g. 𝐿𝑎 = 1 H, 𝑅𝑎 = 

1 Ω, 𝐾𝑡 = 1 N-m/A, 𝐽𝑚 = 1, 𝐷𝑚 = 1, and 𝐾𝑏 = 1 V-s/rad. 

 

18. Add an Input block in the subsystem and link this with +pin of the Sum block. On the other hand, 

add an Output block and connect it with the output side of Integrator block. 

 

19. As we are interested in the step response of 𝜔Ω, we will need to add a second Output block to 

the motor subsystem. To do so, enter the subsystem, hold Ctrl, and click on the existing Output 

block and drag it. This should create a second output, which you can attach to Ω. You can also 

give these output blocks meaningful names if you wish. 

 

20. Now attach a “scope” block to the Ω output.  

 

21. Double click on the scope to open it, you can use the “cog” to get “Configuration Properties” 

where you can change the number of inputs to the scope and give it a title. 

 

22. Add a constant or step block to the input of the motor subsystem, change the simulation time 

from 10 to 2 seconds.  

 

23. Click “Run” button (green arrow at the top) to simulate the model.  

 

24. You can also use the “To workspace” block to add the results to the workspace for use in a 

script.  

 

25. Your simulation should look like the figure below. 
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26. You can also perform linear analysis on your subsystem. Right click on the line between your 

constant block and the motor subsystem.  

 

27. Go to “Linear analysis points” and select “Open- loop input”.  

 

28. On the line between motor subsystem and the scope.  

 

29. Again, go to “Linear analysis points” and select “Open-loop output”.  

 

30. Now from the top menu, go to “Analysis”, “Control design” and “Linear analysis”. 

 

31. From here there are a number of plots you can create including, Bode, pole/zero etc. The 

diagram below shows a graph of angular speed vs. time. 

 

 

 


