
Demo 6: Root Locus Analysis

XMUT315 Control Systems Engineering



Topics

1. Poles location of system.

2. Poles location of feedback system.

3. Root locus plot of second order system.

4. Root locus plot of complex system.

5. Root locus of feedback system.

6. Root locus plot for stability analysis.



Exercise 1 (Poles Location of System)

Determine the pole locations for the system shown below using MATLAB.

𝐶 𝑠

𝑅 𝑠
=

𝑠3 − 6𝑠2 + 7𝑠 + 15

𝑠5 + 𝑠4 − 5𝑠3 − 9𝑠2 + 11𝑠 − 12



Solution

The following MATLAB code determine the pole locations of the system 

given above.

MATLAB code:

den=[1 1 –5 –9 11 –12];

A=roots(den)

The outcome of the simulation is given below.



Exercise 2 (Poles Location of Feedback System)

Determine the pole locations for the unity feedback system shown below 

using MATLAB.

𝐺 𝑠 =
150

𝑠 + 5 𝑠 + 7 𝑠 + 9 𝑠 + 11



Solution

The following MATLAB code determines the pole locations of the feedback 

system given above.

MATLAB code:

numg=150

deng=poly([–5 –7 –9 –11]);

‘G(s)’

G=tf(numg,deng)

‘Poles of G(s)’ 

pole(G) 

‘T(s)’

T=feedback(G,1) 

pole(T) 

The outcome of the simulation is 
given below.





Exercise 3 (Root Locus Plot of Second Order System)

A plant to be controlled is described by a transfer function

𝐺 𝑠 =
𝑠 + 5

𝑠2 + 7𝑠 + 25

Obtain the root locus plot using MATLAB. 

Solution

The following MATLAB code the root locus diagram of the system given 

above is obtained.

clf

num=[1 5];

den=[1 7 25];

rlocus(num,den);



Computer response of the simulation is shown in the figure below.

The root locus diagram shows the complex pole on the top is settling to 
the zero and the complex pole pair on the bottom is to −∞.



Exercise 4 (Root Locus Plot of Complex System)

Plot the root-locus diagram using MATLAB for a system whose open-loop 

transfer function 𝐺(𝑠)𝐻(𝑠) is given by:

𝐺 𝑠 𝐻 𝑠 =
𝐾(𝑠 + 3)

𝑠2 + 3𝑠 + 4 𝑠2 + 2𝑠 + 7

Solution

The transfer function of the given system becomes:

𝐺 𝑠 𝐻 𝑠 =
𝐾(𝑠 + 3)

𝑠2 + 3𝑠 + 4 𝑠2 + 2𝑠 + 7

=
𝐾 𝑠 + 3

𝑠4 + 5𝑠3 + 17𝑠2 + 29𝑠 + 28



MATLAB code:

num=[0 0 0 1 3];

den=[1 5 17 29 28];

K1=0:0.1:2;

K2=2:0.02:2.5;

K3=2.5:0.5:10;

K4=10:1:50;

K5=50:5:800;

K=[K1 K2 K3 K4 K5];

r=rlocus(num,den,K);

plot(r,‘o’)

v=[–10 5 –8 8]; axis(v)

grid

title(‘Root–locus plot of 

G(s)H(s)’)

xlabel(‘Real axis’)

ylabel(‘Imaginary axis’)



The result of the root locus simulation of the system is given below.

The root locus shows various range of gain of the systems and their 

relevant locus in the diagram.



Exercise 5 (Root Locus of Feedback System)

A unity-feedback control system is defined by the following feedforward 

transfer function:

𝐺 𝑠 =
𝐾

𝑠 𝑠2 + 5𝑠 + 9

a. Determine the location of the closed-loop poles, if the value of gain is 

equal to 3.

b.  Plot the root loci for the system using MATLAB.



Solution

a. The following MATLAB code simulate the root locus diagram of the 

system given above.

MATLAB code:

p=[1 5 9 3];

r=roots(p)

% Plot the root-loci

num=[0 0 0 1];

den=[1 5 9 0];

rlocus(num,den);

axis(‘square’)

grid

title(‘Root-locus plot of G(s)’)



The results of the finding roots of the equation.

b. The root locus plot simulation 

is given below.

The root locus diagram of the 

system shows that the system 

is conditionally stable with 

value of gain, K, determine the 

stability of the system (e.g. 

crossing points when the locus 

pass the imaginary axis).



Exercise 6 (Root Locus Plot for Stability Analysis 1)

For the closed-loop control system shown in the figure below, obtain the 

range of gain 𝐾 for stability and plot a root-locus diagram for the system.



Solution

The range of gain 𝐾 for stability is obtained by first plotting the root loci and then 

finding critical points (for stability) on the root loci. The open-loop transfer function 

G(s) is:

𝐺 𝑠 =
𝐾 𝑠2 + 2𝑠 + 5

𝑠 𝑠 + 3 𝑠 + 5 𝑠2 + 1.5𝑠 + 1
=

𝐾 𝑠2 + 2𝑠 + 5

𝑠5 +9.5𝑠4 +28𝑠3 + 20𝑠2 + 15𝑠

A MATLAB program to generate a plot of the root loci for the system is given below.

MATLAB code:

num=[0 0 0 1 2 5];

den=[1 9.5 28 20 15 0];

rlocus(num,den) 

v=[–8 2 –5 5]; 

axis(v); 

axis(‘square’)

grid

title(‘Root-Locus Plot’)



The result of the plotting root locus diagram simulation is given below.

From the figure given above, we notice that the system is conditionally 
stable. All critical points for stability lie on the 𝑗𝜔 axis.



To obtain the crossing points of the root loci with the 𝑗𝜔 axis, we substitute 𝑠 = 𝑗𝜔 

into the characteristic equation.

𝑠5 + 9.5𝑠4 + 28𝑠3 + 20𝑠2 + 15𝑠 + 𝐾 𝑠2 + 2𝑠 + 5 = 0

Or

𝑗𝜔 5 + 9.5 𝑗𝜔 4 + 28 𝑗𝜔 3 + 20 + 𝐾 𝑗𝜔 2 + 15 + 2𝐾 𝑗𝜔 + 5𝐾 = 0

Or

9.5𝜔4 − 20 + 𝐾 𝜔2 + 5𝐾 + 𝑗 𝜔5 − 28𝜔3 + (15 + 2𝐾)𝜔 = 0

Equating the real part and imaginary part equal to zero, respectively, we get (Eq.1):

9.5𝜔4 − 20 + 𝐾 𝜔2 + 5𝐾 = 0

And (Eq. 2)

𝜔5 − 28𝜔3 + 15 + 2𝐾 𝜔 = 0

Eq. (2) can be written as:

𝜔 = 0



Or (Eq. 3)

𝜔4 − 28𝜔2 + 15 + 2𝐾 = 0

And we can find values of 𝐾 from (Eq. 4):

𝐾 =
−𝜔4 + 28𝜔2 − 15

2

Substituting Eq. 4 into Eq. 1, we obtain:

9.5𝜔4 − 20 +
−𝜔4 + 28𝜔2 − 15

2
𝜔2 + 5

−𝜔4 + 28𝜔2 − 15

2

Or
0.5𝜔6 − 2𝜔4 + 57.5𝜔2 − 37.5



The roots of the above equation can be obtained by MATLAB program given 

below.

MATLAB code:

% demo76b.m

% Determining roots of equation

a=[0.5 0 –2 0 57.5 0 -37.5];

r=roots(a)

Output of the simulation is given below:



The root-locus branch in the upper half plane that goes to infinity crosses the jω 

axis at 𝜔 = 0.8155. 

Applying this value to Eq. 4, the gain values at these crossing points are given by:

𝐾 =
− 0.8155 4 + 28 × 0.8155 2 − 15

2
= 1.5894 𝑓𝑜𝑟 𝜔 = 0.8155

For this 𝐾 value, we obtain the range of gain 𝐾 for stability as: 1.5894 > 𝐾 > 0



Exercise 7 (Root Locus for Stability Analysis 2)

For the control system shown in the figure below:

a. Plot the root loci for the system.

b. Find the range of gain 𝐾 for stability.



Solution

a. The open-loop transfer function G(s) is given by:

𝐺 𝑠 = 𝐾
𝑠 + 3

𝑠 + 5

3

𝑠2(𝑠 + 3)
=

3𝐾(𝑠 + 3)

𝑠4 + 8𝑠3 + 15𝑠2

A  MATLAB program to generate the root-locus plot is given below.

MATLAB code:

num=[0 0 0 1 3];

den=[1 8 15 0 0];

rlocus(num,den)

v=[-6 4 -5 5];

axis(v);

axis(‘square)

grid

title(‘Root-Locus Plot’)



The resulting root locus plot of the system is shown in the figure below.

The system is found to be conditionally stable (e.g. depending on the value 
of the gain of the system, 𝐾, it could become unstable).



b. From the figure given above, we notice that the critical value of gain 𝐾 for 

stability corresponds to the crossing point of the root locus branch that 

goes to infinity and the imaginary axis. 

Therefore, we first find the crossing frequency and then find the 

corresponding gain value. The characteristic equation is:

𝑠4 + 8𝑠3 + 15𝑠2 + 3𝐾𝑠 + 9𝐾 = 0

Substituting 𝑠 = 𝑗𝜔 into the characteristic equation, we get:

(𝑗𝜔)4+8(𝑗𝜔)3+15(𝑗𝜔)2+3𝐾(𝑗𝜔) + 9𝐾 = 0

Or

𝜔4 − 15𝜔2 + 9𝐾 + 𝑗𝜔 −8𝜔2 + 3𝐾 = 0

Equating the real part and imaginary part of the above equation to zero, 

respectively, we obtain (Eq. 1):

𝜔4 − 15𝜔2 + 9𝐾 = 0

And (Eq. 2)

𝜔 −8𝜔2 + 3𝐾 = 0



Eq. 2 can be rewritten as:

𝜔 = 0

Or (Eq. 3)

−8𝜔2 + 3𝐾 = 0

Substituting the value of 𝐾 in Eq. 1, we get:

𝜔4 − 15𝜔2 + 9
8

3
𝜔2 = 0 or 𝜔4 + 9𝜔2 = 0

Which gives
𝜔 = 0 and 𝜔 = ±𝑗3

Since 𝜔 = 𝑗3 is the crossing frequency with the 𝑗𝜔 axis, by substituting 
𝜔 = 3 into Eq. 3 we obtain the critical value of gain 𝐾 for stability as:

𝐾 =
8

3
𝜔2 =

8

3
3 2 = 24

Therefore, the stability range for 𝐾 is: 0 < 𝐾 < 24
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