
XMUT315 Control System Engineering

Introduction to Bode Plots



Topics

• Frequency response methods.

• Foundation of frequency response.

• Introduction to Bode plots.

• Bode plots and transfer functions.

• Examples of Bode plots.

• Resonance response.

• Right-hand plane roots.



Frequency Response Methods

• Frequency response methods are a set of graphical 

techniques that focus on how the gain and phase of a 

system change with frequency.

• Frequency responses can be used when we have a good 

mathematical model for a system (a transfer function).

• Frequency response methods can also be used even when 

we don’t have a good model of the system (plant) that we 

are trying to stabilise. 

• We just use experimental data in place of a model.



Frequency Response Overview

We will cover in this course, detailed construction of:

• Bode plots (plots of gain and phase vs. frequency),

• Root locus diagrams (plot of real vs imaginary parts of 

transfer function)

• Nyquist plots (plot of gain vs. phase).

• If time permits we will also look at the Nichols plot, 

which can be  considered an alternate form of the 

Nyquist plot. 



Frequency Response Overview

For each plot type, we will discuss:

• how to assess system stability,

• how to determine the closed-loop characteristics of a 

control-loop system, and

• how to design compensators (or controllers).



Foundations of Frequency Response

• Consider a system described by the transfer function: 

𝐺(𝑠) =
𝑁 𝑠

𝐷 𝑠

Where: 𝑁(𝑠) and 𝐷(𝑠) are polynomials such that 𝐺(𝑠) is proper.

• Let us apply a sinusoidal signal 𝑟(𝑡) at the input of the system and 

determine the corresponding output signal 𝑦(𝑡).

𝑟 𝑡 = 𝐴 cos 𝜔𝑡 𝑢(𝑡)

𝑅 𝑠 = 𝐴
𝑠

𝑠2 + 𝜔2

• The Laplace transform of the resulting output signal is then:

𝑌 𝑠 = 𝐺 𝑠 𝑅 𝑠 = 𝐴
𝑠

𝑠2 + 𝜔2
𝐺(𝑠)



Foundations of Frequency Response

• If we expand this using partial fractions, we obtain:

𝑌 𝑠 =
𝑐

𝑠 − 𝑗𝜔
+

𝑐∗

𝑠 + 𝑗𝜔
+

𝑉 𝑠

𝐷(𝑠)

• Where: the first two terms arise from the sinusoidal excitation 

and the last term arises from the poles of the system (as 

contained in 𝐷(𝑠)).  

• The polynomial 𝑉(𝑠) here arises from the polynomial 

simplification.

• We can use the Heaviside method to find 𝑐 and 𝑐∗.

𝑐 = ቚ𝑠 − 𝑗𝜔 𝑌(𝑠)
𝑠→𝑗𝜔

= อ𝐴
𝑠 𝑠 − 𝑗𝜔

𝑠2 + 𝜔2
𝐺(s)

𝑠→𝑗𝜔



Foundations of Frequency Response

• The equation becomes:

𝑐 = อ𝐴
𝑠 𝑠 − 𝑗𝜔

𝑠 + 𝑗𝜔 𝑠 − 𝑗𝜔
𝐺(𝑠)

𝑠−𝑗𝜔

• As a result:

𝑐 = อ𝐴
𝑠

𝑠 + 𝑗𝜔
𝐺(𝑠)

𝑠→𝑗𝜔

= 𝐴
𝑗𝜔

𝑗𝜔 + 𝑗𝜔
𝐺(𝑗𝜔)

• Thus

𝑐 =
𝐴

2
𝐺 𝑗𝜔  and 𝑐∗ =

𝐴

2
𝐺∗(𝑗𝜔)



Foundations of Frequency Response

• Substituting back into the expression for 𝑌(𝑠), we obtain:

𝑌 𝑠 =
𝐴

2

𝐺 𝑗𝜔

𝑠 − 𝑗𝜔
+

𝐴

2

𝐺∗(𝑗𝜔)

𝑠 + 𝑗𝜔
+

𝑉 𝑠

𝐷(𝑠)

• We now take the inverse Laplace transform to move back into 

the  time domain.

𝑦 𝑡 =
𝐴

2
𝐺 𝑗𝜔 𝑒𝑗𝜔𝑡 +

𝐴

2
𝐺∗ 𝑗𝜔 𝑒−𝑗𝜔𝑡 + ℒ−1

𝑉 𝑠

𝐷 𝑠

Where: the term ℒ−1 𝑉 𝑠

𝐷 𝑠
= 𝑦𝑡𝑟(𝑡) is a transient arising 

from the poles of the system. 



Foundations of Frequency Response

• If the system is stable, then the transient will (eventually) 

decay to zero and we will be left with just the first two terms.

• After the decay of the transient, we have:

 𝑦 𝑡 =
𝐴

2
𝐺 𝑗𝜔 𝑒𝑗𝜔𝑡 +

𝐴

2
𝐺∗ 𝑗𝜔 𝑒−𝑗𝜔𝑡

=
𝐴

2
𝐺 𝑗𝜔 𝑒𝑗𝜃𝑒𝑗𝜔𝑡 + 𝐺∗ 𝜔𝑡 𝑒−𝑗𝜃𝑒−𝑗𝜔𝑡

=
𝐴

2
𝐺 𝑗𝜔 𝑒𝑗 𝜔𝑡+𝜃 + 𝐺∗ 𝜔𝑡 𝑒−𝑗 𝜔𝑡+𝜃



Foundations of Frequency Response

• Applying exponential form to trigonometry identity:

𝑦(𝑡) =
𝐴

2
𝐺(𝑗𝜔) 2 cos 𝜔𝑡 + 𝜃

= 𝐴 𝐺(𝑗𝜔) cos 𝜔𝑡 + 𝜃  where:  𝜃 = ∠𝐺(𝑗𝜔)

• If we compare this with the input signal 𝑟(𝑡), we can see 

that the effect of the system is therefore to multiply the 

magnitude of the input signal by |𝐺(𝑗𝜔)| and phase shift it 

by ∠𝐺(𝑗𝜔)



Bode Plots

• A Bode plot is a pair of plots showing the variation of gain (in dB) 

and phase (normally in degrees) against the logarithm of frequency. 

• We  can use either 

angular or linear 

frequency on the 

x-axis, although 

angular frequency 

(in rad/s) is 

usually more 

convenient.



Magnitude and Phase Response

• We wish to determine the gain and phase response as a function 

of 𝜔 for a system having transfer function 𝐺(𝑠). 

• We can find this by plotting |𝐺(𝑗𝜔)| and ∠𝐺(𝑗𝜔) as we vary 𝜔.
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Bode Approximations

• If we need to plot an accurate frequency response, then 

we could solve the magnitude and phase responses at 

many points. 

• Alternatively, we could find explicit expressions for 

|𝐺(𝑗𝜔)| and ∠𝐺(𝑗𝜔).

• Tools like Matlab make plotting an accurate Bode plot 

very easy – bode(tf([num],[den])) and 

bode(zpk([z],[p],[k])) produce  Bode plots. 

• Read the Matlab help file for details and options.



Bode Approximations

• However, much of the time, we only need an approximate 

frequency response for control design. 

• In fact, in many cases, the approximations are easier to work 

with than the accurate curves would be.

• Bode developed a set of straight-line approximations to the 

real response curves. 

• Using these approximations makes it simple to plot a 

frequency response by hand.



Bode Plots - The Big Picture

• Bode plots are intended to be quick and easy to draw:

• They produce reasonably accurate gain and phase 

responses that are adequate for many purposes.

• The approximations become less accurate for systems 

containing lightly damped oscillatory modes.

• The basic idea of the Bode plot is to break a transfer 

function into smaller simple parts, each of which has a 

known Bode plot. 

• We will build the Bode plot of an arbitrarily complex 

transfer function by adding the constituent plots 

graphically.



Dividing a Transfer Function into its Parts

• For example, consider a system having transfer function:

𝐺 𝑠 =
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2

𝑠 𝑠3 + 𝑑2𝑠2 + 𝑑1𝑠 + 𝑑0
 for 𝐾 ∈ 𝑅

• We may be able to break this down into a set of simpler elemental  

transfer functions, say:

𝐺 𝑠 = 𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2

1

𝑠

1

𝑠 + 𝑝1

1

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

• Usually, a transfer function is broken down into these terms:

• Poles and zeros at dc: 𝑠𝑛  for 𝑛 ∈ 𝑍

• Simple poles and zeros: 𝑠 + 𝑎 ±1

• Complex pairs of poles and zeros: (𝑠 + 2𝜁𝜔𝑠 + 𝜔𝑛
2 )±1



Magnitude Response of an Arbitrary TF

• Let’s derive an equation for the gain and phase of an 

arbitrary transfer function 𝐺(𝑠), where:

𝐺 𝑠 =
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 … 𝑠 + 𝑧𝑘

𝑠 + 𝑝1 𝑠 + 𝑝2 … 𝑠 + 𝑝𝑛

• That is, the transfer function has 𝑘 zeros at −𝑧𝑖 ∈  𝐶 and 𝑛 

poles at 𝑠 = −𝑝𝑖 ∈  𝐶. 

• The 𝑧𝑖  and 𝑝𝑖  are not necessarily distinct.  

• The magnitude of 𝐺(𝑠) at 𝑠 = 𝑗𝜔 is:

𝐺 𝑗𝜔 =
𝐾 𝑗𝜔 + 𝑧1 𝑗𝜔 + 𝑧2 … 𝑗𝜔 + 𝑧𝑘

𝑗𝜔 + 𝑝1 𝑗𝜔 + 𝑝2 … 𝑗𝜔 + 𝑝𝑛



Magnitude Response of an Arbitrary TF

• Converting to dB, we write this as:

20 log 𝐺(𝑗𝜔) = 20 log 𝐾

 +20 log 𝑗𝜔 + 𝑧1 + ⋯ + 20 log 𝑗𝜔 + 𝑧𝑘

 −20 log 𝑗𝜔 + 𝑝1 − ⋯ − 20 log 𝑗𝜔 + 𝑝𝑛

• To find the magnitude response of our overall function in dB, we 

can find the magnitude responses arising from each pole and zero 

separately and then add them.

• This is why we use a dB scale, because otherwise we would have 

to go to the bother of multiplying the individual responses.

• We shall see shortly that adding the plots graphically is trivial.



Phase Response of an Arbitrary TF

• Recall that a complex number 𝑎 = 𝑏𝑐/𝑑𝑒 will have a phase given 

by: 

∠𝑎 = ∠𝑏 + ∠𝑐 − ∠𝑑 − ∠𝑒

• Similarly, our transfer function:

𝐺 𝑠 =
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 … 𝑠 + 𝑧𝑘

𝑠 + 𝑝1 𝑠 + 𝑝2 … 𝑠 + 𝑝𝑛

• This will have a phase response of:

∠𝐺 𝑠 = ∠𝐾

+ ∠ 𝑠 + 𝑧1 +  ∠ 𝑠 + 𝑧2 + ⋯ +  ∠ 𝑧𝑘

− ∠ 𝑠 + 𝑝1 −  ∠ 𝑠 + 𝑝2 − ⋯ −  ∠ 𝑠 + 𝑝𝑛



Phase Response of an Arbitrary TF

• Remember that 𝐾 ∈ 𝑅, so ∠𝐾 = 0 if 𝐾 > 0, or 180° if 𝐾

< 0.

• If we calculate the phase responses for our family of 

prototype pole/zero combinations, we will be able to add 

them to determine the overall phase response of an 

arbitrary transfer function.



Transfer Functions for Bode Plots

• It is easier to draw a Bode plot if each term in TF has unity gain at 

DC. Normally we write a transfer function as:

𝐺 𝑠 =
𝐾 𝑠 + 𝑧1 𝑠 + 𝑧2 … 𝑠 + 𝑧𝑘

𝑠 + 𝑝1 𝑠 + 𝑝2 … 𝑠 + 𝑝𝑛

• But we will find it easier for Bode plotting if we first place it in the 

equivalent form:

𝐺 𝑠 =
𝐾 1 +

𝑠
𝑧1

1 +
𝑠
𝑧2

… 1 +
𝑠

𝑧𝑘

1 +
𝑠

𝑝1
1 +

𝑠
𝑝2

… 1 +
𝑠

𝑝𝑛

• Converting to this form is accomplished by dividing through by the 

constant in each term and adjusting overall gain to compensate.



Example of TF Modification

Convert the transfer function given below into a suitable 

modified form for Bode plots. 

𝐺 𝑠 =
𝑠 + 10

𝑠 𝑠 + 2 𝑠2 + 3𝑠 + 9

a. Calculate the form manually. [4 marks]

b. Use simulation in MATLAB. [5 marks]



Example of TF Modification

• Manually, the modified equation is:

𝐺 𝑠 =
10𝑠 + 2

𝑠
10 + 1

𝑠 × 2
𝑠
2 + 1 × 9

𝑠2

32 +
𝑠
3 + 1

 =
5

9

𝑠
10 + 1

𝑠
𝑠
2 + 1

𝑠
3

2
+

𝑠
3 + 1

• Note the change in the constant (dc) gain term and also the 

form change for the complex pair of poles, from:

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2



Example of TF Modification

• Thus, the equation becomes:

𝑠

𝜔𝑛

2

+ 2𝜁
𝑠

𝜔𝑛
+ 1

• Matlab does not distinguish internally between the two 

forms of the transfer function that we have discussed. 

• However, you can specify which form Matlab uses to present 

the transfer function. 

• This is useful to convert between the two.



Example of TF Modification

>> G.DisplayFormat=’frequency’;G

3 (1+s/6)

- - - - - - - - - - - - - - - - - - - - - - - - - - - -

(1+s/2)(1+ 1.414(s/1.414)+(s/1.414)^2)

>> G= zpk(-6,[-1+j -1-j -2],2)

This is the default, 

with Display Format 

= ’roots’

2(s+6)

- - - - - - - - - - - - -

(s+2)(s^2 + 2s + 2)



Transfer Functions of Form 𝐾𝑠𝑛

• The magnitude of a transfer function 𝐺(𝑠) = 𝐾𝑠𝑛 is given by:

𝐺 𝑗𝜔 = 𝐾𝜔𝑛

• So, in dB:

𝐺(𝑗𝜔) = 20 log 𝐾𝜔 𝑛 = 20 log 𝐾 + 20𝑛 log 𝜔 

• Thus, the transfer magnitude response is a straight line with a slope 

of 20𝑛 dB/decade and is equal to 20 log 𝐾 at 𝜔 = 1.

𝐺 𝑗𝜔 = 𝐾 𝑗𝜔 𝑛 = 𝑗𝑛𝐾𝜔𝑛

• Thus

∠𝐺 𝑗𝜔 = ∠𝑗𝑛 = 90𝑛° if 𝐾 > 0

• The phase of 𝐺(𝑠) = 𝐾𝑠𝑛 is constant at 90𝑛 degrees.



Plot of a TF with Form 𝐾𝑠𝑛

• For example, an integrator (which has 𝐺 𝑠 = 1/𝑠 = 𝑠−1) has a 

magnitude response of 1/𝜔 and a constant phase of −90.
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Example of Gain and Pole
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• Sketch Bode plots of system with gain 100 and pole at origin:

𝐺(𝑠) = 100/𝑠



Example of Negative Gain and Pole

• The gain of the system is:

𝐺 𝑗𝜔 = 100/𝑗𝜔 = 20 log 100 − 20 log 𝜔

= 40 − 20 log 𝜔  dB/dec

• The phase shift of the system is:

∠(𝐺 𝑗𝜔 = 100/𝑗𝜔) = −90°



Example of Negative Gain and Pole

• Sketch Bode plots of system with gain -100 and pole at origin:                      

𝐺 𝑠 = −100/𝑠
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Example of Negative Gain and Pole

• Notice the difference between positive gain and negative gain 

the Bode plot.

• It is difficult to distinguish which gain is positive and which one 

is negative.

𝐺 𝑗𝜔 = −100/𝑗𝜔 = 20 log 100 − 20 log 𝜔

= 40 − 20 log 𝜔  dB/dec

• To cope with 𝐾 < 0, you just need to account for the extra 180◦ 

phase shift associated with the negative gain.

∠(𝐺 𝑗𝜔 = −100/𝑗𝜔) = +90°



Magnitude Response for a TF of Form 𝑠/𝑎 + 1 −1

• Consider a transfer function of a real pole form with 𝑎 > 0. 

𝐺 𝑠 =
1

𝑠/𝑎 + 1

• This is a  system with a single pole at 𝑠 = −𝑎  (a low pass filter).

• At low frequencies (𝜔 ≪ 𝑎), the |𝐺(𝑗𝜔)| = 1 (or 0 dB).

• At high frequencies (𝜔 ≫ 𝑎), the |𝐺(𝑗𝜔)| =
1

𝜔/𝑎
=

𝑎

𝜔

• The response in these two frequency regimes form a low 

frequency and a high frequency asymptote. 



Magnitude Response for a TF of Form 𝑠/𝑎 + 1 −1

• The low frequency asymptote is a straight line with zero slope 

and unity gain.

• On a dB scale, the high frequency asymptote is given by:

|𝐺(𝑗𝜔)| = 20 log 𝑎 − 20 log 𝜔

• This is therefore a straight line with a slope of −20 dB/decade.



Example of Pole

• Sketch Bode plots of system with pole at -100:

𝐺(𝑠) =
1

(𝑠/100) + 1
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• Notice that the high and low frequency asymptotes form a 

reasonable approximation to the real response.

• At low frequency, it has a phase of 0° in this region:

𝐺(𝑠) = 1

• At high frequency, the asymptote has a fixed value of −90°:

𝐺 𝑠 ≈
𝑎

𝑗𝜔
= −𝑗

𝑎

𝜔

• At the breakpoint (𝜔 = 𝑎) we have a phase of −45°:

𝐺 𝑠 =
1

1 + 𝑗
=

1 − 𝑗

2

Example of Pole



• The normal approximation for the phase response is to draw 

a straight line at 0° up to a frequency a factor of ten below 

the break point, 

• a straight line with phase of −90° beyond ten times the 

breakpoint and 

• then join the two asymptotes with a straight line.

Example of Pole
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Example of Pole

• Again, for the example of a system with pole:

𝐺(𝑠) =
1

(𝑠/100) + 1



Example of Pole

• Let us begin by putting the transfer function into a form 

suitable for Bode plotting.

𝐺 𝑠 =
7

𝑠 + 20
=

7

20
𝑠

20 + 1
=

7

20

1

1 +
𝑠

20

• Note that: 

20 log 7/10 = −9.1 dB ≈ −10 dB



Example of Pole
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Example of Pole

• We can check our work using MATLAB. 

• Be careful using zpk() function – check that you have the right 

dc gain and put the pole at −20 rad/s not +20 rad/s.

>> G = zpk([],[-20],7)

>> bode(G)

• You can also use tf() function instead. The following will both 

work:

>> G = tf(7,[1,20])

>> G = tf(7/20,[1/20,1])



Example of Pole

• Though MATLAB is very useful for control design, it can be error 

prone. 

• One important reason to understand how to draw a Bode plot 

by hand is that it allows you to recognize errors when using 

computer-based tools.

• Most of the errors are due to algorithm used in MATLAB and 

accuracy of the simulation results.

• It is also possible errors are due to extreme points e.g. infinite 

results obtained in the simulation.



Transfer Function of Form 𝑠/𝑎 + 1

• Now, consider the case of a single real zero at 𝑠 = −𝑎, where 

𝑎 > 0.

• The low frequency asymptote arising from a zero is the same 

as that for a pole (a straight line at 0 dB). 

• However, for a zero, the high frequency asymptote is given by:

𝐺 𝑗𝜔 = −20 log 𝑎 + 20 log 𝜔 

• The high frequency asymptote is therefore a straight line with 

slope of +20 dB/decade.



Transfer Function of Form 𝑠/𝑎 + 1

• The phase response is also the opposite of that produced by a 

pole.  

• At high frequencies, we have 𝐺(𝑗𝜔) ≈ 𝑗𝜔, leading to a phase 

shift of +90°.

• As we might expect, the phase is +45° at the breakpoint.
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• Sketch Bode plots of system with a zero at −50:

𝐺 𝑠 = 𝑠 + 50

Example of Zero



Repeated Roots

• As a transition to complex pairs of poles/zeros, consider the 

case of a  transfer function with a double pole:

𝐺 𝑠 =
1

1 +
𝑠
𝑎

2 =
1

1 +
𝑠
𝑎

1

1 +
𝑠
𝑎

 for 𝑎 > 0

• We know that the magnitude and phase responses are the sum 

of the two parts. 

• So, we will have a response that falls off at −40 dB/decade 

beyond the breakpoint and moves from 0° to −180° in phase 

(over the same frequency range that a single pole TF would 

take to move 90°).



Repeated Roots

• Notice that the presence of two poles means that the gain at 

𝑠 = 𝑎 is 6 dB down from the dc value.

• The plots for a repeated zero are opposite, with a slope of 

40 dB/decade and a phase that moves from 0° to 180°.



Example of Repeated Roots
G

ai
n

[d
B

]

-20

0

Double pole at s=-100 rad/s

0.1 1 10 100

Angular Frequency [rad/s]

1k 10kP
h

as
e

[d
eg

]

-40

-60

-80

0

-90

-180

• Sketch Bode plot of a system with a double pole at -100:

𝐺 𝑠 =
1

𝑠 + 100 2



Transfer Functions of Form 𝑠

𝜔𝑛

2

+ 2𝜁
𝑠

𝜔𝑛
+ 1

±1

• We might expect that the transfer function produced by a 

pair of complex poles would look something like that 

produced by a double  pole. 

• Away from the breakpoint this is true; the gain rolls off at −40 

dB/decade at high frequencies and the phase moves from 0°

at  low frequencies to −180° at high frequencies.

• However, when the transfer function is underdamped it leads

to some significant deviations in the region of the breakpoint.



Transfer Functions of Form 𝑠

𝜔𝑛

2

+ 2𝜁
𝑠

𝜔𝑛
+ 1

±1

• The smaller the damping the larger the effect. As damping

decreases we get:

• increasing peak in the magnitude response.

• sharper transition in the phase 

response.

• These effects are shown in the figure.
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• Frequency response plot of a pair of  complex poles. 



• We represent this family of curves with a straight-line 

approximation identical to the repeated real pole example 

above. 

• Note though that the corner point is at 𝜔𝑛  for the resonance, 

not at the real part of the pole pair.

• If the damping is very low (𝜁 < 0.01 say), you might prefer 

to approximate the phase response as a step at the natural 

frequency.

Plot of a TF of Form 𝑠

𝜔𝑛

2

+ 2𝜁
𝑠

𝜔𝑛
+ 1

−1



Corrections for Second Order Systems

• To draw an accurate frequency response for a second order 

system, it is necessary to make corrections by looking at at a 

previously plotted response. 

• If you don’t happen to have such a response handy, as a  rough 

guide, the peak (or trough for zeros) in the gain response has a 

magnitude as follows at the breakpoint:

𝑀𝑝 =
1

2𝜁 1 − 𝜁2

• For lightly damped systems, it is: 

𝑀𝑝 ≈
1

2𝜁
= 𝑄



Resonance

This should be familiar, as it is just a description of resonance:

• The gain of the system becomes large in the vicinity 

of the resonant frequency.

• Highly resonant (lightly damped) systems have a 

more pronounced gain increase at resonance.

• All systems go through a 180° phase change in the 

vicinity of a resonance.



Damping and Resonant Peak

• For lightly damped systems, we can see that the resonant peak 

occurs at approximately 𝜔𝑛. 

• However, the peak in the magnitude response shifts  downwards 

in frequency as damping increases. 
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• However, the 

passage of the 

phase response 

through −90° 

always occurs at 

𝜔𝑛, which  makes 

this a better feature 

to search for in 

experiments.



Plot of a TF with Form 
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• As you might expect, the behaviour of a system with second-order 

zeros is opposite that with second order poles.
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Building an Arbitrary Bode Plot

1. Arrange the transfer function into the convenient form.

2. Plot the straight line approximations for each term in 

the  transfer function.

3. If required, make corrections to the approximations for 

complex pairs of poles. 

4. Magnitude peaks are approximately. 

5. Add the various curves graphically and draw in the final 

response  curves.



Example of Poles
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• Sketch a Bode plot of poles at -2 and -20:
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• Sketch Bode plots of pole at -5 and zero at -100:

𝐺(𝑠) =

𝑠
100 + 1

𝑠
5

+ 1
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Example of Double Poles and Zero

• Sketch Bode of double poles at -5 and zero at -100: 

𝐺(𝑠) =

𝑠
100
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Checking the Bode Plot

• You should always make sure that your final plot makes sense 

at both low and high frequencies.

• Low frequency: 

• At low frequency, the response is determined by only the 

differentiators/integrators in the system. 

• If the overall transfer function includes a factor of 𝑠𝑛, then 

the slope of the gain curve should be 20𝑛 dB/decade and 

the phase at low frequency should be 90𝑛 degrees.



Checking the Bode Plot

• High frequency: 

• The high-frequency behaviour is determined by the 

number of poles, 𝑃 , and zeros, 𝑍. 

• At high frequency, the slope of the gain should be −20(𝑃

− 𝑍) dB/decade and the phase should be at −90(𝑃 − 𝑍) 

degrees.

Note: As we will see next, the phase checks only works 

when all the system poles and zeros are in the left half of 

the s-plane.

• The roots in the discussion have all been in the left half of 

the s-plane.



Bode Plots for Roots in the Right-Half Plane

• Let’s first consider poles in the right-half plane. Consider the 

transfer functions as follow:

𝐺1 𝑠 =
1

𝑠 − 𝑎
and 𝐺2 𝑠 =

1

𝑠 + 𝑎

• The magnitude of these systems are:

𝐺1(𝑗𝜔) =
1

𝑗𝜔 − 𝑎
=

1

𝑎2 + 𝜔2

• And

𝐺2(𝑗𝜔) =
1

𝑗𝜔 + 𝑎
=

1

𝑎2 + 𝜔2

• The two transfer functions have identical magnitudes.



Phase Plot for Roots in the Right-Half Plane Roots

• Now, consider the phase responses of the two systems.

𝐺1 𝑠 =
1

𝑠 − 𝑎
=

−𝑎 − 𝑗𝜔

𝜔2 + 𝑎2

• And

𝐺2 𝑠 =
1

𝑠 + 𝑎
=

𝑎 − 𝑗𝜔

𝜔2 + 𝑎2

• The phase shifts of these systems are:

∠𝐺1 𝑗𝜔 = tan−1
Im 𝐺1(𝑠)

Re 𝐺2(𝑠)
= tan−1

𝜔

𝑎

∠𝐺2 𝑗𝜔 = tan−1
Im 𝐺2(𝑠)

Re 𝐺2(𝑠)
= tan−1

−𝜔

𝑎
= − tan−1

𝜔

𝑎



Phase Plot for Roots in the Right-Half Plane Roots

• The phase response is opposite to that we expect for a pole in 

the left-half side of the s-plane.

∠𝐺1 𝑗𝜔 = −∠𝐺2 𝑗𝜔

• Having right-half plane poles will make the system to be 

unstable. 

• The transient response of the system with right-hand plane 

poles is an increasing amplitude function.



Example of Right-Half Plane Pole
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• Sketch Bode plots of system with right-half plane pole at 100: 

𝐺 𝑠 =
100

𝑠 − 100



Example of Right-Half Plane Pole
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• A quick examination of a Bode plot is a good check whenever you 

enter a system in Matlab, as it is easy to put a root in the right-half 

plane unintentionally (particularly with zpk).



Non-Minimum Phase Systems

• The same analysis can be performed on systems having zeros 

in the right-half plane. 

• Perhaps unsurprisingly, we find that these too have their 

magnitude response unchanged, but their phase response 

reversed from the left-half plane ones.

• Systems containing at least one right-half plane zero are called 

non-minimum phase systems.

• Non-minimum phase systems tend to be harder to control than 

minimum phase systems, but easier than open loop unstable 

systems (those with right-half plane poles).



Example of Non-Minimum Phase
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• Sketch Bode of non-minimum phase: 

𝐺 𝑠 =
𝑠 − 100

100



Response of Non-Minimum Phase Systems

• Non-minimum phase systems are causal and stable systems 

whose inverses are causal, but unstable. 

• Having a delay in a system or a zero on the right half of the 

s-plane may lead to a non-minimum phase system.

• Non-minimum phase systems are troublesome because 

their initial response is “the wrong way” when driven by an 

input.



Example Response of Non-Minimum Phase

• Compare the step responses of two systems having transfer 

functions:

𝐺1 𝑠 =
𝑠 + 1

𝑠2 + 4𝑠 + 5

And

𝐺2 𝑠 =
− 𝑠 − 1

𝑠2 + 4𝑠 + 5



Example of Response of Non-Minimum Phase
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• We can also compare their Bode plots. 

• The greater change in the phase for 𝐺2 is what leads to the 

name “non-minimum phase”.
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