

# **Introduction to Bode Plots**

XMUT315 Control System Engineering

### **Topics**

- Frequency response methods.
- Foundation of frequency response.
- Introduction to Bode plots.
- Bode plots and transfer functions.
- Examples of Bode plots.
- Resonance response.
- Right-hand plane roots.

# Frequency Response Methods

- Frequency response methods are a set of graphical techniques that focus on how the gain and phase of a system change with frequency.
- Frequency responses can be used when we have a good mathematical model for a system (a transfer function).
- Frequency response methods can also be used even when we don't have a good model of the system (plant) that we are trying to stabilise.
- We just use experimental data in place of a model.

## Frequency Response Overview

We will cover in this course, detailed construction of:

- · Bode plots (plots of gain and phase vs. frequency),
- Root locus diagrams (plot of real vs imaginary parts of transfer function)
- Nyquist plots (plot of gain vs. phase).
- If time permits we will also look at the Nichols plot, which can be considered an alternate form of the Nyquist plot.

### Frequency Response Overview

#### For each plot type, we will discuss:

- · how to assess system stability,
- how to determine the closed-loop characteristics of a control-loop system, and
- how to design compensators (or controllers).

Consider a system described by the transfer function:

$$G(s) = \frac{N(s)}{D(s)}$$

Where: N(s) and D(s) are polynomials such that G(s) is proper.

• Let us apply a sinusoidal signal r(t) at the input of the system and determine the corresponding output signal y(t).

$$r(t) = A\cos(\omega t)u(t)$$

$$R(s) = A\left(\frac{s}{s^2 + \omega^2}\right)$$

• The Laplace transform of the resulting output signal is then:

$$Y(s) = G(s)R(s) = A\left(\frac{s}{s^2 + \omega^2}\right)G(s)$$

• If we expand this using partial fractions, we obtain:

$$Y(s) = \frac{c}{s - j\omega} + \frac{c^*}{s + j\omega} + \frac{V(s)}{D(s)}$$

- Where: the first two terms arise from the sinusoidal excitation and the last term arises from the poles of the system (as contained in D(s)).
- The polynomial V(s) here arises from the polynomial simplification.
- We can use the Heaviside method to find c and  $c^*$ .

$$c = (s - j\omega)Y(s)\Big|_{s \to j\omega} = A\left[\frac{s(s - j\omega)}{s^2 + \omega^2}\right]G(s)\Big|_{s \to j\omega}$$

• The equation becomes:

$$c = A \left[ \frac{s(s - j\omega)}{(s + j\omega)(s - j\omega)} \right] G(s) \bigg|_{s = i\omega}$$

As a result:

$$c = A\left(\frac{s}{s+j\omega}\right)G(s)\bigg|_{s\to i\omega} = A\left(\frac{j\omega}{j\omega+j\omega}\right)G(j\omega)$$

Thus

$$c = \left(\frac{A}{2}\right)G(j\omega)$$
 and  $c^* = \left(\frac{A}{2}\right)G^*(j\omega)$ 

• Substituting back into the expression for Y(s), we obtain:

$$Y(s) = \left(\frac{A}{2}\right) \left(\frac{G(j\omega)}{s - j\omega}\right) + \left(\frac{A}{2}\right) \left(\frac{G^*(j\omega)}{s + j\omega}\right) + \frac{V(s)}{D(s)}$$

 We now take the inverse Laplace transform to move back into the time domain.

$$y(t) = \left(\frac{A}{2}\right)G(j\omega)e^{j\omega t} + \left(\frac{A}{2}\right)G^*(j\omega)e^{-j\omega t} + \mathcal{L}^{-1}\left(\frac{V(s)}{D(s)}\right)$$

Where: the term  $\mathcal{L}^{-1}\left(\frac{V(s)}{D(s)}\right)=y_{tr}(t)$  is a transient arising from the poles of the system.

- If the system is stable, then the transient will (eventually) decay to zero and we will be left with just the first two terms.
- After the decay of the transient, we have:

$$y(t) = \left(\frac{A}{2}\right) G(j\omega) e^{j\omega t} + \left(\frac{A}{2}\right) G^*(j\omega) e^{-j\omega t}$$

$$= \left(\frac{A}{2}\right) \left(|G(j\omega)| e^{j\theta} e^{j\omega t} + |G^*(\omega t)| e^{-j\theta} e^{-j\omega t}\right)$$

$$= \left(\frac{A}{2}\right) \left(|G(j\omega)| e^{j(\omega t + \theta)} + |G^*(\omega t)| e^{-j(\omega t + \theta)}\right)$$

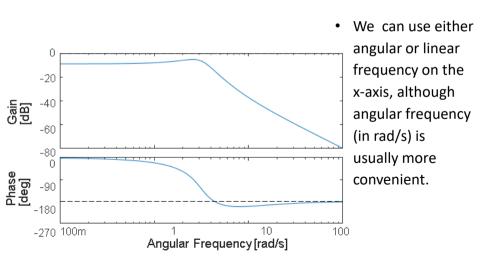
Applying exponential form to trigonometry identity:

$$y(t) = \left(\frac{A}{2}\right) |G(j\omega)| 2\cos(\omega t + \theta)$$
$$= A|G(j\omega)|\cos(\omega t + \theta) \quad \text{where: } \theta = \angle G(j\omega)$$

• If we compare this with the input signal r(t), we can see that the effect of the system is therefore to multiply the magnitude of the input signal by  $|G(j\omega)|$  and phase shift it by  $\angle G(j\omega)$ 

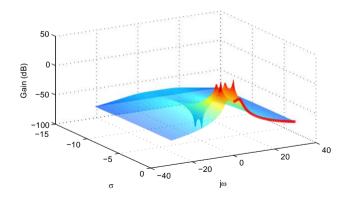
#### **Bode Plots**

 A Bode plot is a pair of plots showing the variation of gain (in dB) and phase (normally in degrees) against the logarithm of frequency.



#### Magnitude and Phase Response

- We wish to determine the gain and phase response as a function of  $\omega$  for a system having transfer function G(s).
- We can find this by plotting  $|G(j\omega)|$  and  $\angle G(j\omega)$  as we vary  $\omega$ .



#### **Bode Approximations**

- If we need to plot an accurate frequency response, then we could solve the magnitude and phase responses at many points.
- Alternatively, we could find explicit expressions for  $|G(j\omega)|$  and  $\angle G(j\omega)$ .
- Tools like Matlab make plotting an accurate Bode plot very easy – bode(tf([num],[den])) and bode(zpk([z],[p],[k])) produce Bode plots.
- Read the Matlab help file for details and options.

### **Bode Approximations**

- However, much of the time, we only need an approximate frequency response for control design.
- In fact, in many cases, the approximations are easier to work with than the accurate curves would be.
- Bode developed a set of straight-line approximations to the real response curves.
- Using these approximations makes it simple to plot a frequency response by hand.

#### Bode Plots - The Big Picture

- Bode plots are intended to be quick and easy to draw:
  - They produce reasonably accurate gain and phase responses that are adequate for many purposes.
  - The approximations become less accurate for systems containing lightly damped oscillatory modes.
- The basic idea of the Bode plot is to break a transfer function into smaller simple parts, each of which has a known Bode plot.
- We will build the Bode plot of an arbitrarily complex transfer function by adding the constituent plots graphically.

#### Dividing a Transfer Function into its Parts

• For example, consider a system having transfer function:

$$G(s) = \frac{K(s+z_1)(s+z_2)}{s(s^3+d_2s^2+d_1s+d_0)} \quad \text{for} \quad K \in \mathbb{R}$$

 We may be able to break this down into a set of simpler elemental transfer functions, say:

$$G(s) = K(s+z_1)(s+z_2) \left(\frac{1}{s}\right) \left(\frac{1}{s+p_1}\right) \left(\frac{1}{s^2+2\zeta\omega_n s+\omega_n^2}\right)$$

- Usually, a transfer function is broken down into these terms:
- Poles and zeros at dc:  $s^n$  for  $n \in \mathbb{Z}$ 
  - Simple poles and zeros:  $(s+a)^{\pm 1}$
  - Complex pairs of poles and zeros:  $(s + 2\zeta \omega s + \omega_n^2)^{\pm 1}$

# Magnitude Response of an Arbitrary TF

• Let's derive an equation for the gain and phase of an arbitrary transfer function G(s), where:

$$G(s) = \frac{K(s+z_1)(s+z_2) \dots (s+z_k)}{(s+p_1)(s+p_2) \dots (s+p_n)}$$

- That is, the transfer function has k zeros at  $-z_i \in C$  and n poles at  $s = -p_i \in C$ .
- The  $z_i$  and  $p_i$  are not necessarily distinct.
- The magnitude of G(s) at  $s = j\omega$  is:

$$|G(j\omega)| = \frac{|K||j\omega + z_1||j\omega + z_2| \dots |j\omega + z_k|}{|j\omega + p_1||j\omega + p_2| \dots |j\omega + p_n|}$$

### Magnitude Response of an Arbitrary TF

Converting to dB, we write this as:

$$\begin{split} 20\log|G(j\omega)| &= 20\log|K| \\ &+ 20\log|j\omega + z_1| + \dots + 20\log|j\omega + z_k| \\ &- 20\log|j\omega + p_1| - \dots - 20\log|j\omega + p_n| \end{split}$$

- To find the magnitude response of our overall function in dB, we can find the magnitude responses arising from each pole and zero separately and then add them.
- This is why we use a dB scale, because otherwise we would have to go to the bother of multiplying the individual responses.
- We shall see shortly that adding the plots graphically is trivial.

### Phase Response of an Arbitrary TF

• Recall that a complex number a=bc/de will have a phase given by:

$$\angle a = \angle b + \angle c - \angle d - \angle e$$

Similarly, our transfer function:

$$G(s) = \frac{K(s+z_1)(s+z_2) \dots (s+z_k)}{(s+p_1)(s+p_2) \dots (s+p_n)}$$

This will have a phase response of:

$$\angle G(s) = \angle K$$

$$+ \angle (s + z_1) + \angle (s + z_2) + \dots + \angle (z_k)$$

$$- \angle (s + p_1) - \angle (s + p_2) - \dots - \angle (s + p_n)$$

#### Phase Response of an Arbitrary TF

- Remember that  $K \in R$ , so  $\angle K = 0$  if K > 0, or  $180^\circ$  if K < 0.
- If we calculate the phase responses for our family of prototype pole/zero combinations, we will be able to add them to determine the overall phase response of an arbitrary transfer function.

#### **Transfer Functions for Bode Plots**

 It is easier to draw a Bode plot if each term in TF has unity gain at DC. Normally we write a transfer function as:

$$G(s) = \frac{K(s+z_1)(s+z_2) \dots (s+z_k)}{(s+p_1)(s+p_2) \dots (s+p_n)}$$

• But we will find it easier for Bode plotting if we first place it in the equivalent form:

$$G(s) = \frac{K\left(1 + \frac{s}{z_1}\right)\left(1 + \frac{s}{z_2}\right)...\left(1 + \frac{s}{z_k}\right)}{\left(1 + \frac{s}{p_1}\right)\left(1 + \frac{s}{p_2}\right)...\left(1 + \frac{s}{p_n}\right)}$$

 Converting to this form is accomplished by dividing through by the constant in each term and adjusting overall gain to compensate.

Convert the transfer function given below into a suitable modified form for Bode plots.

$$G(s) = \frac{s+10}{s(s+2)(s^2+3s+9)}$$

- a. Calculate the form manually. [4 marks]
- b. Use simulation in MATLAB. [5 marks]

Manually, the modified equation is:

$$G(s) = \frac{10s + 2\left(\frac{s}{10} + 1\right)}{s \times 2\left(\frac{s}{2} + 1\right) \times 9\left(\frac{s^2}{3^2} + \frac{s}{3} + 1\right)}$$
$$= \frac{5}{9} \left[ \frac{\left(\frac{s}{10} + 1\right)}{s\left(\frac{s}{2} + 1\right)\left(\left(\frac{s}{3}\right)^2 + \frac{s}{3} + 1\right)} \right]$$

 Note the change in the constant (dc) gain term and also the form change for the complex pair of poles, from:

$$s^2 + 2\zeta\omega_n s + \omega_n^2$$

Thus, the equation becomes:

$$\left(\frac{s}{\omega_n}\right)^2 + 2\zeta \left(\frac{s}{\omega_n}\right) + 1$$

- Matlab does not distinguish internally between the two forms of the transfer function that we have discussed.
- However, you can specify which form Matlab uses to present the transfer function.
- This is useful to convert between the two.

#### Transfer Functions of Form Ks<sup>n</sup>

• The magnitude of a transfer function  $G(s) = Ks^n$  is given by:

$$|G(j\omega)| = K\omega^n$$

• So, in dB:

$$|G(j\omega)| = 20 \log(K\omega)^n = 20 \log K + 20n \log \omega$$

• Thus, the transfer magnitude response is a straight line with a slope of 20n dB/decade and is equal to  $20\log K$  at  $\omega=1$ .

$$G(j\omega) = K(j\omega)^n = j^n K\omega^n$$

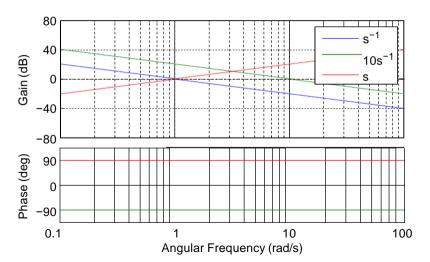
Thus

$$\angle G(j\omega) = \angle j^n = 90n^\circ$$
 if  $K > 0$ 

• The phase of  $G(s) = Ks^n$  is constant at 90n degrees.

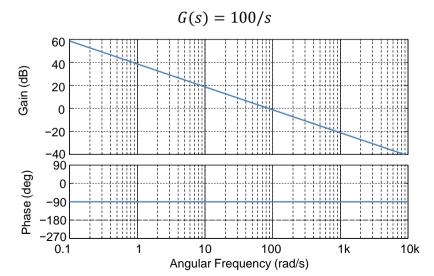
#### Plot of a TF with Form $Ks^n$

• For example, an integrator (which has  $G(s) = 1/s = s^{-1}$ ) has a magnitude response of  $1/\omega$  and a constant phase of  $-90^\circ$ .



#### Example of Gain and Pole

Sketch Bode plots of system with gain 100 and pole at origin:



#### Example of Negative Gain and Pole

The gain of the system is:

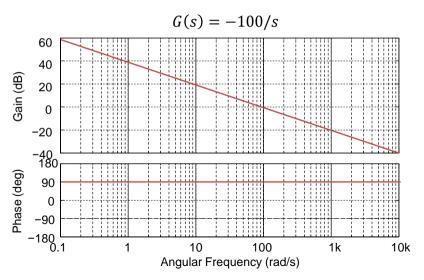
$$|G(j\omega)| = 100/j\omega| = 20\log(100) - 20\log(\omega)$$
  
=  $40 - 20\log(\omega)$  dB/dec

• The phase shift of the system is:

$$\angle(G(j\omega) = 100/j\omega) = -90^{\circ}$$

### Example of Negative Gain and Pole

Sketch Bode plots of system with gain -100 and pole at origin:



#### Example of Negative Gain and Pole

- Notice the difference between positive gain and negative gain the Bode plot.
- It is difficult to distinguish which gain is positive and which one is negative.

$$|G(j\omega)| = -100/j\omega| = 20 \log(100) - 20 \log(\omega)$$
  
=  $40 - 20 \log(\omega)$  dB/dec

 To cope with K < 0, you just need to account for the extra 180° phase shift associated with the negative gain.

$$\angle (G(j\omega) = -100/j\omega) = +90^{\circ}$$

# Magnitude Response for a TF of Form $(s/a + 1)^{-1}$

• Consider a transfer function of a real pole form with a > 0.

$$G(s) = \frac{1}{(s/a) + 1}$$

- This is a system with a single pole at s=-a (a low pass filter).
  - At low frequencies ( $\omega \ll a$ ), the  $|G(j\omega)| = 1$  (or 0 dB).
  - At high frequencies ( $\omega \gg a$ ), the  $|G(j\omega)| = \frac{1}{(\omega/a)} = \frac{a}{\omega}$
- The response in these two frequency regimes form a low frequency and a high frequency asymptote.

# Magnitude Response for a TF of Form $(s/a + 1)^{-1}$

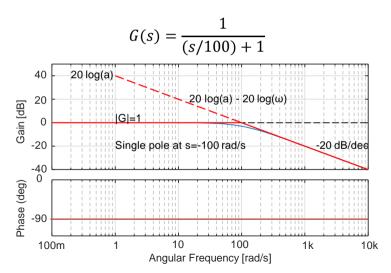
- The low frequency asymptote is a straight line with zero slope and unity gain.
- On a dB scale, the high frequency asymptote is given by:

$$|G(j\omega)| = 20\log a - 20\log \omega$$

This is therefore a straight line with a slope of −20 dB/decade.

#### Example of Pole

Sketch Bode plots of system with pole at -100:



#### Example of Pole

- Notice that the high and low frequency asymptotes form a reasonable approximation to the real response.
- At low frequency, it has a phase of 0° in this region:

$$G(s) = 1$$

At high frequency, the asymptote has a fixed value of −90°:

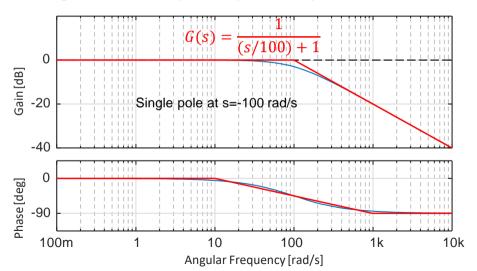
$$G(s) \approx \frac{a}{j\omega} = -j\left(\frac{a}{\omega}\right)$$

• At the breakpoint ( $\omega = a$ ) we have a phase of -45°:

$$G(s) = \frac{1}{1+j} = \frac{1-j}{2}$$

- The normal approximation for the phase response is to draw a straight line at 0° up to a frequency a factor of ten below the break point,
- a straight line with phase of -90° beyond ten times the breakpoint and
- then join the two asymptotes with a straight line.

Again, for the example of a system with pole:

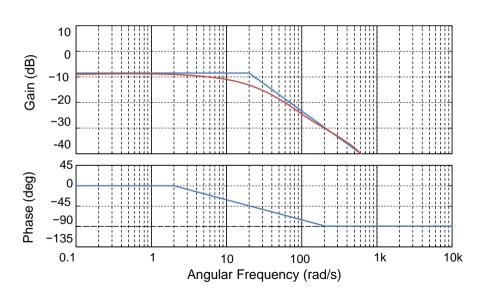


 Let us begin by putting the transfer function into a form suitable for Bode plotting.

$$G(s) = \frac{7}{s+20} = \frac{7}{20\left(\frac{s}{20}+1\right)} = \frac{7}{20}\left(\frac{1}{1+\frac{s}{20}}\right)$$

· Note that:

$$20 \log (7/10) = -9.1 \, dB \approx -10 \, dB$$



- We can check our work using MATLAB.
- Be careful using zpk() function check that you have the right dc gain and put the pole at –20 rad/s not +20 rad/s.

```
>> G = zpk([],[-20],7)
>> bode(G)
```

 You can also use tf() function instead. The following will both work:

```
>> G = tf(7,[1,20])
>> G = tf(7/20,[1/20,1])
```

- Though MATLAB is very useful for control design, it can be error prone.
- One important reason to understand how to draw a Bode plot by hand is that it allows you to recognize errors when using computer-based tools.
- Most of the errors are due to algorithm used in MATLAB and accuracy of the simulation results.
- It is also possible errors are due to extreme points e.g. infinite results obtained in the simulation.

# Transfer Function of Form (s/a + 1)

- Now, consider the case of a single real zero at s=-a, where a>0.
- The low frequency asymptote arising from a zero is the same as that for a pole (a straight line at 0 dB).
- However, for a zero, the high frequency asymptote is given by:

$$|G(j\omega)| = -20 \log a + 20 \log \omega$$

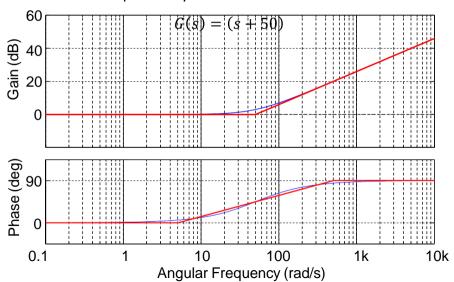
 The high frequency asymptote is therefore a straight line with slope of +20 dB/decade.

# Transfer Function of Form (s/a + 1)

- The phase response is also the opposite of that produced by a pole.
- At high frequencies, we have  $G(j\omega) \approx j\omega$ , leading to a phase shift of +90°.
- As we might expect, the phase is +45° at the breakpoint.

#### Example of Zero

Sketch Bode plots of system with a zero at -50:



#### Repeated Roots

 As a transition to complex pairs of poles/zeros, consider the case of a transfer function with a double pole:

$$G(s) = \frac{1}{\left(1 + \frac{s}{a}\right)^2} = \left(\frac{1}{1 + \frac{s}{a}}\right) \left(\frac{1}{1 + \frac{s}{a}}\right) \quad \text{for} \quad a > 0$$

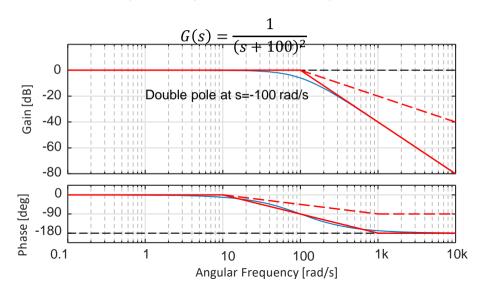
- We know that the magnitude and phase responses are the sum of the two parts.
- So, we will have a response that falls off at -40 dB/decade beyond the breakpoint and moves from 0° to -180° in phase (over the same frequency range that a single pole TF would take to move 90°).

#### **Repeated Roots**

- Notice that the presence of two poles means that the gain at s=a is 6 dB down from the dc value.
- The plots for a repeated zero are opposite, with a slope of 40 dB/decade and a phase that moves from 0° to 180°.

#### Example of Repeated Roots

Sketch Bode plot of a system with a double pole at -100:



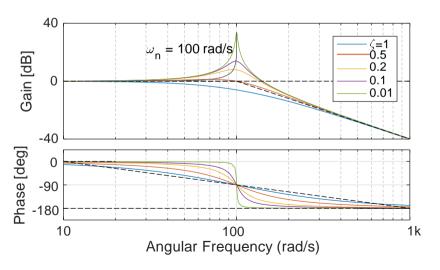
Transfer Functions of Form 
$$\left[ \left( \frac{s}{\omega_n} \right)^2 + 2\zeta \left( \frac{s}{\omega_n} \right) + 1 \right]^{\pm 1}$$

- We might expect that the transfer function produced by a pair of complex poles would look something like that produced by a double pole.
- Away from the breakpoint this is true; the gain rolls off at -40 dB/decade at high frequencies and the phase moves from 0° at low frequencies to -180° at high frequencies.
- However, when the transfer function is underdamped it leads to some significant deviations in the region of the breakpoint.

- The smaller the damping the larger the effect. As damping decreases we get:
  - increasing peak in the magnitude response.
  - sharper transition in the phase response.
- These effects are shown in the figure.

# Plot of a TF of Form $\left[ \left( \frac{s}{\omega_n} \right)^2 + 2\zeta \left( \frac{s}{\omega_n} \right) + 1 \right]^{-1}$

• Frequency response plot of a pair of complex poles.



Plot of a TF of Form 
$$\left[ \left( \frac{s}{\omega_n} \right)^2 + 2\zeta \left( \frac{s}{\omega_n} \right) + 1 \right]^{-1}$$

- We represent this family of curves with a straight-line approximation identical to the repeated real pole example above.
- Note though that the corner point is at  $\omega_n$  for the resonance, not at the real part of the pole pair.
- If the damping is very low ( $\zeta < 0.01$  say), you might prefer to approximate the phase response as a step at the natural frequency.

# Corrections for Second Order Systems

- To draw an accurate frequency response for a second order system, it is necessary to make corrections by looking at at a previously plotted response.
- If you don't happen to have such a response handy, as a rough guide, the peak (or trough for zeros) in the gain response has a magnitude as follows at the breakpoint:

$$M_p = \frac{\sqrt{1}}{2\zeta\sqrt{1-\zeta^2}}$$

For lightly damped systems, it is:

$$M_p \approx \frac{1}{2\zeta} = Q$$

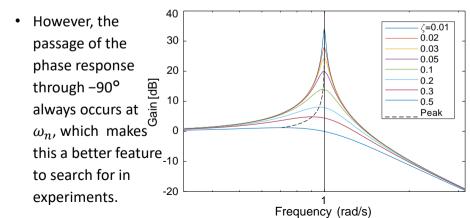
#### Resonance

This should be familiar, as it is just a description of resonance:

- The gain of the system becomes large in the vicinity of the resonant frequency.
- Highly resonant (lightly damped) systems have a more pronounced gain increase at resonance.
- All systems go through a 180° phase change in the vicinity of a resonance.

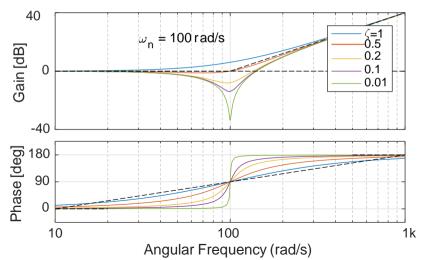
#### Damping and Resonant Peak

- For lightly damped systems, we can see that the resonant peak occurs at approximately  $\omega_n$ .
- However, the peak in the magnitude response shifts downwards in frequency as damping increases.



# Plot of a TF with Form $\left(\frac{s}{\omega_n}\right)^2 + 2\zeta \left(\frac{s}{\omega_n}\right) + 1$

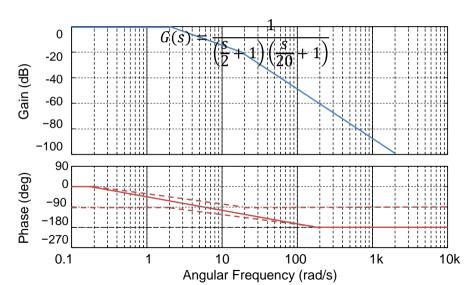
 As you might expect, the behaviour of a system with second-order zeros is opposite that with second order poles.



# Building an Arbitrary Bode Plot

- 1. Arrange the transfer function into the convenient form.
- Plot the straight line approximations for each term in the transfer function.
- If required, make corrections to the approximations for complex pairs of poles.
- Magnitude peaks are approximately.
- 5. Add the various curves graphically and draw in the final response curves.

Sketch a Bode plot of poles at -2 and -20:



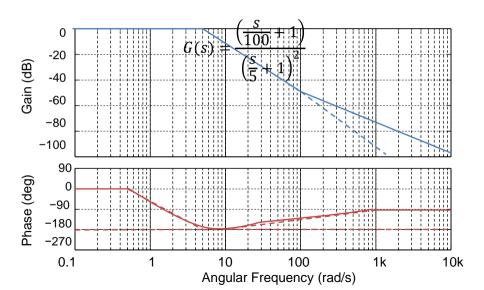
#### Example of Pole and Zero

• Sketch Bode plots of pole at -5 and zero at -100:



#### Example of Double Poles and Zero

Sketch Bode of double poles at -5 and zero at -100:



# Checking the Bode Plot

- You should always make sure that your final plot makes sense at both low and high frequencies.
- · Low frequency:
  - At low frequency, the response is determined by only the differentiators/integrators in the system.
  - If the overall transfer function includes a factor of  $s^n$ , then the slope of the gain curve should be 20n dB/decade and the phase at low frequency should be 90n degrees.

### Checking the Bode Plot

- High frequency:
  - The high-frequency behaviour is determined by the number of poles, P, and zeros, Z.
  - At high frequency, the slope of the gain should be -20(P-Z) dB/decade and the phase should be at -90(P-Z)

degrees.

Note: As we will see next, the phase checks only works when all the system poles and zeros are in the left half of the s-plane.

 The roots in the discussion have all been in the left half of the s-plane.

#### Bode Plots for Roots in the Right-Half Plane

• Let's first consider poles in the right-half plane. Consider the transfer functions as follow:

$$G_1(s) = \frac{1}{s-a}$$
 and  $G_2(s) = \frac{1}{s+a}$ 

The magnitude of these systems are:

$$|G_1(j\omega)| = \frac{1}{j\omega - a} = \frac{1}{\sqrt{a^2 + \omega^2}}$$

And

$$|G_2(j\omega)| = \frac{1}{j\omega + a} = \frac{1}{\sqrt{a^2 + \omega^2}}$$

The two transfer functions have identical magnitudes.

# Phase Plot for Roots in the Right-Half Plane Roots

• Now, consider the phase responses of the two systems.

$$G_1(s) = \frac{1}{s - a} = \frac{-a - j\omega}{\omega^2 + a^2}$$

And

$$G_2(s) = \frac{1}{s+a} = \frac{a-j\omega}{\omega^2 + a^2}$$

• The phase shifts of these systems are:

$$\angle G_1(j\omega) = \tan^{-1}\left(\frac{\operatorname{Im}\{G_1(s)\}}{\operatorname{Re}\{G_2(s)\}}\right) = \tan^{-1}\left(\frac{\omega}{a}\right)$$

$$\angle G_2(j\omega) = \tan^{-1}\left(\frac{\operatorname{Im}\{G_2(s)\}}{\operatorname{Re}\{G_2(s)\}}\right) = \tan^{-1}\left(\frac{-\omega}{a}\right) = -\tan^{-1}\left(\frac{\omega}{a}\right)$$

#### Phase Plot for Roots in the Right-Half Plane Roots

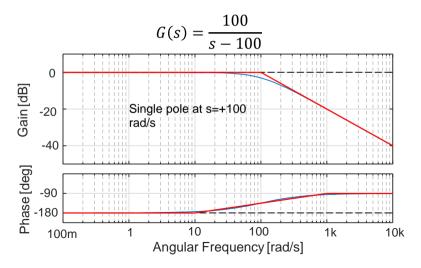
 The phase response is opposite to that we expect for a pole in the left-half side of the s-plane.

$$\angle G_1(j\omega) = -\angle G_2(j\omega)$$

- Having right-half plane poles will make the system to be unstable.
- The transient response of the system with right-hand plane poles is an increasing amplitude function.

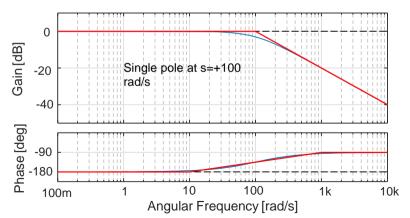
#### Example of Right-Half Plane Pole

Sketch Bode plots of system with right-half plane pole at 100:



#### Example of Right-Half Plane Pole

A quick examination of a Bode plot is a good check whenever you
enter a system in Matlab, as it is easy to put a root in the right-half
plane unintentionally (particularly with zpk).

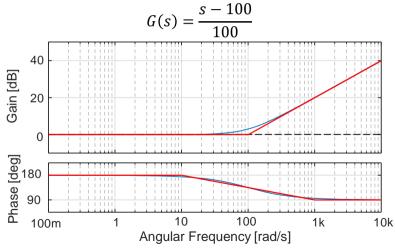


#### Non-Minimum Phase Systems

- The same analysis can be performed on systems having zeros in the right-half plane.
- Perhaps unsurprisingly, we find that these too have their magnitude response unchanged, but their phase response reversed from the left-half plane ones.
- Systems containing at least one right-half plane zero are called non-minimum phase systems.
- Non-minimum phase systems tend to be harder to control than minimum phase systems, but easier than open loop unstable systems (those with right-half plane poles).

#### **Example of Non-Minimum Phase**

Sketch Bode of non-minimum phase:



#### Response of Non-Minimum Phase Systems

- Non-minimum phase systems are causal and stable systems whose inverses are causal, but unstable.
- Having a delay in a system or a zero on the right half of the s-plane may lead to a non-minimum phase system.
- Non-minimum phase systems are troublesome because their initial response is "the wrong way" when driven by an input.

#### Example Response of Non-Minimum Phase

 Compare the step responses of two systems having transfer functions:

$$G_1(s) = \frac{s+1}{s^2+4s+5}$$

And

$$G_2(s) = \frac{-(s-1)}{s^2 + 4s + 5}$$

# Example of Response of Non-Minimum Phase

- We can also compare their Bode plots.
- The greater change in the phase for  $G_2$  is what leads to the name "non-minimum phase".



