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* Frequency response methods.

* Foundation of frequency response.
* Introduction to Bode plots.

* Bode plots and transfer functions.
* Examples of Bode plots.

* Resonance response.

* Right-hand plane roots.



Frequency Response Methods

* Frequency response methods are a set of graphical
techniques that focus on how the gain and phase of a
system change with frequency.

* Frequency responses can be used when we have a good
mathematical model for a system (a transfer function).

* Frequency response methods can also be used even when
we don’t have a good model of the system (plant) that we
are trying to stabilise.

* We just use experimental data in place of a model.



Frequency Response Overview

We will cover in this course, detailed construction of:
* Bode plots (plots of gain and phase vs. frequency),

* Root locus diagrams (plot of real vs imaginary parts of
transfer function)

* Nyquist plots (plot of gain vs. phase).

* If time permits we will also look at the Nichols plot,
which can be considered an alternate form of the
Nyquist plot.



Frequency Response Overview

For each plot type, we will discuss:
* how to assess system stability,

* how to determine the closed-loop characteristics of a
control-loop system, and

* how to desigh compensators (or controllers).



Foundations of Frequency Response

* Consider a system described by the transfer function:

N(s)
D(s)

Where: N(s) and D(s) are polynomials such that G(s) is proper.

G(s) =

* Let us apply a sinusoidal signal r(t) at the input of the system and
determine the corresponding output signal y(t).

r(t) = Acos(wt)u(t)
R(s) = 4 (L)

s2 + w?

* The Laplace transform of the resulting output signal is then:

Y(s) = G(s)R(s) = 4 (m;wz) G(s)



Foundations of Frequency Response

* |f we expand this using partial fractions, we obtain:

c c* V(s)

Y(s) =
() s—ja)+s+ja) D(s)

* Where: the first two terms arise from the sinusoidal excitation
and the last term arises from the poles of the system (as
contained in D(s)).

* The polynomial V(s) here arises from the polynomial
simplification.

* We can use the Heaviside method to find ¢ and c”.

s(s — jw)
s2 + w?

G(s)

c=(s —ja))Y(s)L_)jw =A l

s=jw



Foundations of Frequency Response

* The equation becomes:

C:AI s(s — jw) G()

(s +jw)(s —Jw)l

—jw

e Asaresult:

=A > G
€= <S+jw> ()




Foundations of Frequency Response

* Substituting back into the expression for Y (s), we obtain:

(A [(G(w) A\ (G*(w)\ V(s)
V)= <5> (s —jw) ¥ <5> (s +J'w) o)

* We now take the inverse Laplace transform to move back into

the time domain.

y() = <§> G(jw)el®t + (;) G*(jw)e Jot 4+ £-1 (g%g)

46
D(s)
from the poles of the system.

Where: the term L1 ( ) = y¢(t) is a transient arising



Foundations of Frequency Response

* If the system is stable, then the transient will (eventually)
decay to zero and we will be left with just the first two terms.

* After the decay of the transient, we have:
A ) . A ] .
y(t) = 5 G(jw)el*t + ) G*(jw)e /@t
A ; i jwt * -j6 ,—jwt
=13 (IG(/w)IeJ e/t + |G*(wt)|e /e )

A . .
= (5) (16 () /@0 + |G* (wt)|e I @E+0))



Foundations of Frequency Response

* Applying exponential form to trigonometry identity:

y(t) = (%) |G(jw)|2 cos(wt + )

= A|G(jw)| cos(wt + 8) where: 8 = £G(jw)

* If we compare this with the input signal r(t), we can see
that the effect of the system is therefore to multiply the
magnitude of the input signal by |G (jw)| and phase shift it
by 2G(jw)



Bode Plots

* A Bode plotis a pair of plots showing the variation of gain (in dB)
and phase (normally in degrees) against the logarithm of frequency.

* We can use either
angular or linear
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Magnitude and Phase Response

* We wish to determine the gain and phase response as a function
of w for a system having transfer function G(s).

* We can find this by plotting |G (jw)| and 2G (jw) as we vary w.

Gain (dB)




Bode Approximations

* If we need to plot an accurate frequency response, then
we could solve the magnitude and phase responses at
many points.

* Alternatively, we could find explicit expressions for
|G(w)| and 2G(jw).

* Tools like Matlab make plotting an accurate Bode plot
very easy — bode(tf([num],[den])) and
bode(zpk([z],[p],[k])) produce Bode plots.

* Read the Matlab help file for details and options.



Bode Approximations

* However, much of the time, we only need an approximate
frequency response for control design.

* Infact, in many cases, the approximations are easier to work
with than the accurate curves would be.

* Bode developed a set of straight-line approximations to the
real response curves.

* Using these approximations makes it simple to plot a
frequency response by hand.



Bode Plots - The Big Picture

* Bode plots are intended to be quick and easy to draw:

- They produce reasonably accurate gain and phase
responses that are adequate for many purposes.

- The approximations become less accurate for systems
containing lightly damped oscillatory modes.

* The basic idea of the Bode plot is to break a transfer
function into smaller simple parts, each of which has a
known Bode plot.

* We will build the Bode plot of an arbitrarily complex
transfer function by adding the constituent plots
graphically.



Dividing a Transfer Function into its Parts

* For example, consider a system having transfer function:

K(s+z)(s+ z,)

f K€EeR
s(s3+dys? +dys+dy) o

G(s) =

* We may be able to break this down into a set of simpler elemental

transfer functions, say:

1 1 1
G(s) =K(s+2)(s + 2,) <;> (s + 'p1> (52 + 2{w,s + a)2>

* Usually, a transfer function is broken down into these terms:

- Poles and zeros at dc: s forn € Z

- Simple poles and zeros: (s + a)?!

- Complex pairs of poles and zeros: (s + 2{ws + w? )*!



Magnitude Response of an Arbitrary TF

Let’s derive an equation for the gain and phase of an
arbitrary transfer function G (s), where:

_K(s+2z)(s+7)...(s+7)
T s+ p)+p) . (s+pn)

That is, the transfer function has k zeros at —z; € C and n
polesats = —p; € C.

G(s)

The z; and p; are not necessarily distinct.
The magnitude of G(s) ats = jw is:

IK|ljw + z1||jw + z3] ... |jow + z|
ljw + pilljw + pal ... ljw + ppl

1G(w)| =



Magnitude Response of an Arbitrary TF

* Converting to dB, we write this as:
201log|G(jw)| = 201log|K]|
+20logljw + z¢| + - + 20 log|jw + z|
—20logljw + p1| — -+ — 20log|jw + py|

* To find the magnitude response of our overall function in dB, we
can find the magnitude responses arising from each pole and zero
separately and then add them.

* This is why we use a dB scale, because otherwise we would have
to go to the bother of multiplying the individual responses.

* We shall see shortly that adding the plots graphically is trivial.



Phase Response of an Arbitrary TF

* Recall that a complex number a = bc/de will have a phase given
by:
Za=1¢b + £c —4d — e

* Similarly, our transfer function:

_K(s+2z)(s+25) .. (s +7)
T s+ p)+p) . (s+pn)

* This will have a phase response of:

G(s)

2G(s) = 2K
+2(s+z)+ 2(s+2z)+ -+ 2(z)
—2(s+p1)— £(s+pz) = — £(s+pp)



Phase Response of an Arbitrary TF

* Rememberthat K € R,so 2K = 0if K > 0, or 180°if K
< 0.

* If we calculate the phase responses for our family of
prototype pole/zero combinations, we will be able to add
them to determine the overall phase response of an
arbitrary transfer function.



Transfer Functions for Bode Plots

It is easier to draw a Bode plot if each term in TF has unity gain at
DC. Normally we write a transfer function as:

B K(s+z)(s+z3) ...(s + z)
~ (s+p)(s+p2) . (s+pp)

But we will find it easier for Bode plotting if we first place it in the

K(1+;—1)(1+ZS—2> (1+Zs—k)
(1+%><1+;—2) ...<1+pin)

Converting to this form is accomplished by dividing through by the
constant in each term and adjusting overall gain to compensate.

G(s)

equivalent form:

G(s) =




Example of TF Modification

Convert the transfer function given below into a suitable
modified form for Bode plots.

s+10
G(s) =
s(s+2)(s?+3s+9)
a. Calculate the form manually. [4 marks]

b. Use simulation in MATLAB. [5 marks]



Example of TF Modification

* Manually, the modified equation is:

105+2( +1)

10

sx2(%+1)x9<32+3+1)

(5+1)
s(G+0(@)+5+1)

* Note the change in the constant (dc) gain term and also the
form change for the complex pair of poles, from:

G(s) =

QO vt

s+ 2¢wps + w?



Example of TF Modification

* Thus, the equation becomes:

s\’ s
(_) 42 (_) 1
Wn Wn
* Matlab does not distinguish internally between the two

forms of the transfer function that we have discussed.

* However, you can specify which form Matlab uses to present
the transfer function.

* This is useful to convert between the two.



Example of TF Modification

>> G= zpk (-6, [-1+5 -1-3 -21,2)

2(s+06) This is the default,
————————————— with Display Format
(s+2) (s"™2 + 2s + 2) = "roots’

(1+s/2) (1+ 1.414(s/1.414)+(s/1.414)"2)



Transfer Functions of Form Ks™

* The magnitude of a transfer function G(s) = Ks™ is given by:
G(w)| = Ko™
* So, in dB:
|G(jw)| = 20log(Kw)™ = 201log K + 20nlog w

* Thus, the transfer magnitude response is a straight line with a slope
of 20n dB/decade and is equal to 20log K at w = 1.

G(jw) =K(w)™ = j"Kw™
* Thus
£G(jw) = £j*=90n° if K>0

* The phase of G(s) = Ks™ is constant at 90n degrees.



Plot of a TF with Form Ks"

* For example, an integrator (which has G(s) = 1/s = s™!) has a
magnitude response of 1/w and a constant phase of -90°.
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Example of Gain and Pole

* Sketch Bode plots of system with gain 100 and pole at origin:
G(s) =100/s

Gain (dB)
N
o
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Example of Negative Gain and Pole

* The gain of the system is:
|G(jw) = 100/jw| = 2010g(100) — 20 log(w)
= 40 — 20log(w) dB/dec
* The phase shift of the system is:
2(G(jw) =100/jw) = —90°



Example of Negative Gain and Pole

* Sketch Bode plots of system with gain -100 and pole at origin:
G(s) = —-100/s
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Example of Negative Gain and Pole

* Notice the difference between positive gain and negative gain
the Bode plot.

* |tis difficult to distinguish which gain is positive and which one
is negative.

|G(jw) = —100/jw| = 2010g(100) — 20 log(w)
=40 — 20log(w) dB/dec

* To cope with K < 0, you just need to account for the extra 180°
phase shift associated with the negative gain.

2(G(jw) = —100/jw) = +90°



Magnitude Response for a TF of Form (s/a + 1)1

* Consider a transfer function of a real pole form with a > 0.

* Thisis a system with a single pole at s = —a (a low pass filter).

* At low frequencies (w < a), the |G(jw)| = 1 (or 0 dB).

1 a

(w/a) = w

* At high frequencies (w > a), the |G(jw)| =

* The response in these two frequency regimes form a low
frequency and a high frequency asymptote.



Magnitude Response for a TF of Form (s/a + 1)1

* The low frequency asymptote is a straight line with zero slope
and unity gain.

* On adB scale, the high frequency asymptote is given by:
|G(jw)| = 20 loga — 20 log w

* This is therefore a straight line with a slope of -20 dB/decade.



Example of Pole

* Sketch Bode plots of system with pole at -100:

G(s) = ——
Q (s/100) + 1
40+ 20lo al I I
9( )\\\\
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Example of Pole

* Notice that the high and low frequency asymptotes form a
reasonable approximation to the real response.

» At low frequency, it has a phase of 0°in this region:
G(s)=1
* At high frequency, the asymptote has a fixed value of -90°:
a [/a
6() ~--=—j(=)
jw W

* At the breakpoint (w = a) we have a phase of -45°:

1
G = —_—
(s) 1+; 2



Example of Pole

* The normal approximation for the phase response is to draw
a straight line at 0° up to a frequency a factor of ten below
the break point,

* astraight line with phase of -90° beyond ten times the
breakpoint and

* then join the two asymptotes with a straight line.



Example of Pole

* Again, for the example of a system with pole:

G(s) =700y + 1

Gain[dB]

-20 Single pole at s=-100 rad/s 4

o
I
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©
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Example of Pole

* Let us begin by putting the transfer function into a form
suitable for Bode plotting.

o) =" 7 7/ 1
S) = = ey
s+20 20(55+1) 20\1+45

* Note that:
20log (7/10) = —9.1dB = —10dB



Example of Pole
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Example of Pole

* We can check our work using MATLAB.

* Be careful using zpk () function —check that you have the right
dc gain and put the pole at -20 rad/s not +20 rad/s.

>> G = zpk([],[-20],7)
>> bode (G)

* Youcanalso use t £ () function instead. The following will both
work:

>> G = tf(7,[1,20])

>> G tf(7/20,[1/20,11)



Example of Pole

* Though MATLAB is very useful for control design, it can be error
prone.

* One important reason to understand how to draw a Bode plot
by hand is that it allows you to recognize errors when using
computer-based tools.

* Most of the errors are due to algorithm used in MATLAB and
accuracy of the simulation results.

* |tis also possible errors are due to extreme points e.g. infinite
results obtained in the simulation.



Transfer Function of Form (s/a + 1)

Now, consider the case of a single real zero at s = —a, where
a>0.

The low frequency asymptote arising from a zero is the same
as that for a pole (a straight line at 0 dB).

However, for a zero, the high frequency asymptote is given by:
|G(jw)| = —20loga + 20logw

The high frequency asymptote is therefore a straight line with
slope of +20 dB/decade.



Transfer Function of Form (s/a + 1)

* The phase response is also the opposite of that produced by a
pole.

* At high frequencies, we have G(jw) = jw, leading to a phase
shift of +90°.

* As we might expect, the phase is +45° at the breakpoint.



Example of Zero

» Sketch Bode plots of system with a zero at -50:
°0 BLE
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Repeated Roots

* As a transition to complex pairs of poles/zeros, consider the
case of a transfer function with a double pole:

o 1 ( : )( : ) f 7
% S S
(1+E) 1+ /\1+¢

* We know that the magnitude and phase responses are the sum
of the two parts.

* So, we will have a response that falls off at -40 dB/decade
beyond the breakpoint and moves from 0° to -180° in phase
(over the same frequency range that a single pole TF would
take to move 90°).



Repeated Roots

* Notice that the presence of two poles means that the gain at
s = ais 6 dB down from the dc value.

* The plots for a repeated zero are opposite, with a slope of
40 dB/decade and a phase that moves from 0° to 180°.



Example of Repeated Roots

» Sketch Bode plot of a system with a double pole at -100:
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+1

Transfer Functions of Form [(win)z +2¢ (win) + 1]

*  We might expect that the transfer function produced by a
pair of complex poles would look something like that
produced by a double pole.

* Away from the breakpoint this is true; the gain rolls off at -40
dB/decade at high frequencies and the phase moves from 0°
at low frequencies to -180° at high frequencies.

* However, when the transfer function is underdamped it leads
to some significant deviations in the region of the breakpoint.



Transfer Functions of Form [(win)z +2¢ (win) + 1r1

* The smaller the damping the larger the effect. As damping
decreases we get:

* increasing peak in the magnitude response.

*  sharper transition in the phase
response.

*  These effects are shown in the figure.
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Plot of a TF of Form [(f)z +2¢ (win> + 1l_1

* We represent this family of curves with a straight-line

approximation identical to the repeated real pole example
above.

* Note though that the corner point is at w,, for the resonance,
not at the real part of the pole pair.

* If the dampingis very low ({ < 0.01 say), you might prefer
to approximate the phase response as a step at the natural
frequency.



Corrections for Second Order Systems

* To draw an accurate frequency response for a second order

system, it is necessary to make corrections by looking at at a
previously plotted response.

If you don’t happen to have such a response handy, as a rough
guide, the peak (or trough for zeros) in the gain response has a
magnitude as follows at the breakpoint:

" - Vi1
Poai-¢
For lightly damped systems, it is:

M 1—
P~2{_Q



Resonance

This should be familiar, as it is just a description of resonance:

- The gain of the system becomes large in the vicinity
of the resonant frequency.

- Highly resonant (lightly damped) systems have a
more pronounced gain increase at resonance.

- All systems go through a 180° phase change in the
vicinity of a resonance.



Damping and Resonant Peak

* For lightly damped systems, we can see that the resonant peak
occurs at approximately w,,.

* However, the peak in the magnitude response shifts downwards
in frequency as damping increases.
40

* However, the
passage of the 30
phase response 20|
through -90°

10}
always occurs at
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* As you might expect, the behaviour of a system with second-order
zeros is opposite that with second order poles.
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Building an Arbitrary Bode Plot

1. Arrange the transfer function into the convenient form.

2. Plot the straight line approximations for each term in
the transfer function.

3. Ifrequired, make corrections to the approximations for
complex pairs of poles.

4. Magnitude peaks are approximately.

5. Add the various curves graphically and draw in the final
response curves.



Example of Poles

* Sketch a Bode plot of poles at -2 and -20:
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Example of Pole and Zero

* Sketch Bode plots of pole at -5 and zero at -100:

\

'—A

40 Vol IR (
L ey

u-cho S

MO0
(

Gain (dB)
o

g 4sf..| L
n 1 1 [
P o L

2 45| i
N 1 '

o -90_ ¢ Lt

0.1 1 10 100 1k 10k
Angular Frequency (rad/s)



Example of Double Poles and Zero

» Sketch Bode of double poles at -5 and zero at -100:
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Checking the Bode Plot

* You should always make sure that your final plot makes sense
at both low and high frequencies.

* Low frequency:

- At low frequency, the response is determined by only the
differentiators/integrators in the system.

- If the overall transfer function includes a factor of s™, then
the slope of the gain curve should be 20n dB/decade and
the phase at low frequency should be 90n degrees.



Checking the Bode Plot

» High frequency:

- The high-frequency behaviour is determined by the
number of poles, P, and zeros, Z.

- At high frequency, the slope of the gain should be —20(P
— Z) dB/decade and the phase should be at —90(P — Z)

degrees.
Note: As we will see next, the phase checks only works
when all the system poles and zeros are in the left half of
the s-plane.

* The roots in the discussion have all been in the left half of
the s-plane.



Bode Plots for Roots in the Right-Half Plane

Let’s first consider poles in the right-half plane. Consider the
transfer functions as follow:

1 1
Gl(S) = E and GZ(S) = s-l-_a

The magnitude of these systems are:

1

1
Gi(jw)| = =
6100 = 7o =

And
11
jo+a  [q2i 2

The two transfer functions have identical magnitudes.

|G, (jw)| =



Phase Plot for Roots in the Right-Half Plane Roots

* Now, consider the phase responses of the two systems.

Gi(s) = 1 —a—-jow
1S_s—a_w2+a2
* And
G, (s) = 1  a—-jw
2S_s+a_a)2+a2

* The phase shifts of these systems are:

g (Im{Gi()} | (w
£G;(jw) = tan™?! (W) = tan 1(

Im{G -
£Gy(jw) = tan™! (—Q?Giggb = tan~! (Tw) = —tan~! (%)

Q|
———



Phase Plot for Roots in the Right-Half Plane Roots

* The phase response is opposite to that we expect for a pole in
the left-half side of the s-plane.

2Gi(jw) = —2G,(jw)

* Having right-half plane poles will make the system to be
unstable.

* The transient response of the system with right-hand plane
poles is an increasing amplitude function.



Example of Right-Half Plane Pole

* Sketch Bode plots of system with right-half plane pole at 100:
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Example of Right-Half Plane Pole

* A quick examination of a Bode plot is a good check whenever you
enter a system in Matlab, as it is easy to put a root in the right-half
plane unintentionally (particularly with zpk).

O _____________
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=, .
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O
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= : : : :
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3 /_
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Non-Minimum Phase Systems

* The same analysis can be performed on systems having zeros
in the right-half plane.

* Perhaps unsurprisingly, we find that these too have their
magnitude response unchanged, but their phase response
reversed from the left-half plane ones.

» Systems containing at least one right-half plane zero are called
non-minimum phase systems.

* Non-minimum phase systems tend to be harder to control than
minimum phase systems, but easier than open loop unstable
systems (those with right-half plane poles).



Example of Non-Minimum Phase

» Sketch Bode of non-minimum phase:
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Response of Non-Minimum Phase Systems

* Non-minimum phase systems are causal and stable systems
whose inverses are causal, but unstable.

* Having a delay in a system or a zero on the right half of the
s-plane may lead to a non-minimum phase system.

* Non-minimum phase systems are troublesome because
their initial response is “the wrong way” when driven by an

input.



Example Response of Non-Minimum Phase

* Compare the step responses of two systems having transfer

functions:
s+1
Gi(s) = s2+4+4s+5
And
—(s—-1
Go(s) =

s2+4s+5



Example of Response of Non-Minimum Phase

* We can also compare their Bode plots.

* The greater change in the phase for G, is what leads to the
name “non-minimum phase”.
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