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» Closed-loop stability.

 (Gain and phase margins.

» Determining gain and phase margins in Bode plots.
« Damping and phase margin.

 Transient response parameters from Bode plots.

« System types.

 Steady-state errors.

 System errors and inputs.

» Determining steady-state errors in Bode plots.



Closed-Loop Stability

* Imagine a situation where we have a system described by a
transfer function G(s). We now enclose the system in a unity
gain feedback loop.

X (s)—(x) G(#) — Y (s)

» We know that negative feedback is useful in stabilising a system.
However, instability results when the feedback is positive.

» The feedback in the system shown becomes positive when the
plant transfer function G (s) contributes 180° of phase shift to the
overall system.



Closed-Loop Stability

» System stability is one of the basic concerns when designing a
control system.

» We would like to be able to meaningfully talk about how close
a system is to instability, not just whether it is stable or not.

» For many systems, we can assess the stability by finding the
frequency at which the phase curve crosses -180° and reading
the gain at that point.

* If the gain > 1, then the system will be unstable.

 If the gain < 1 at the frequency where the phase crosses -
180°, then not enough gain to sustain the oscillations.

 This approach leads to a metric known as the gain margin.



* The gain margin is the amount by which we can increase the

gain of a stable system before it becomes unstable.
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» To determine the gain margin of a system, read the gain at the
frequency where the phase curve crosses 180°.

» The gain margin must be positive for the system to be stable!



Unity Gain

* In control applications, we often use the Unity Gain Frequency,

which is the frequency at which the system’s gain has dropped
to one (0 dB).

» We can use the Bode plot to simply read off the frequency
where the gain plot crosses the 0 dB line.

* Note that some systems have multiple unity gain frequencies
because their gain curves cross and recross the 0 dB line.

* In crude terms, the unity gain frequency of a control system is
the highest frequency at which the control is doing anything
useful.

» Beyond this point, the gain is too small to improve the system.



Phase Margin

» The phase margin is the amount by which we can decrease the
phase of a stable system before it become unstable.
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 This reveals how much extra phase lag we could tolerate before
instability sets in.



Gain and Phase Margins with MATLAB

* Themargin MATLAB command will tell you the gain and
phase margins and the frequencies at which they occur.

» If you call it
without any
return
arguments, it
will draw a
plot
displaying the
same
information

Phase (deg)

Magnitude (dB)

Gm =9.63 dB (at 10 rad/s) , Pm = 106 deg (at 0.963 rad/s)

Bode Diagram
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Phase Margin with Multiple Unity Gain Crosses

» The following Bode plot shows
a higher order system that has
multiple crossing of the 0 dB
gain curve with unity gain line.
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» There are two 180° phase crossings with corresponding gain

margins of -9.35 dB and +10.6 dB.



Phase Margin with Multiple Unity Gain Crosses

» For some systems that cross the 0 dB gain curve more than once,
in general, there will be a different phase margin associated with
each of these crossings.

* Itis possible to define the system phase margin as the worst
(smallest) of the individual phase margins.

* However, this is dangerous as there are some systems like this
appear to be stable, but they are not.

* When you see a system with multiple crossings of the 0 dB line,
you should double check the system stability with another
method, such as a root locus diagram or (more traditionally) a
Nyquist plot.



Stability Analysis with Bode Plots

For each system given below, find the gain margin and phase
margin if the value of gain K is 1, 100, 1000, and 0.1. Write a

summary on the stability of each system. [30 marks]
R £ K ) R(s) + @ K(s2 —4s + 13) C(s)
_ (s+2) J X (s+2)(s+4) =
1 W
(s+4)(s+06) %

System 1

System 2
R(s) + Kis—1) C(s)
c ; (s+1)
(s=2)
(s+2)

System 3



Stability Analysis with Bode Plots

a. System 1: Plotting for K = 1 yields the following Bode plots.
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Stability Analysis with Bode Plots

K =1:

For K = 1, when the phase response is 180° at w = 6.63 rad/s, the
gain margin is 53.6 dB. Phase margin is +oo at any frequency.

K =100:
* For K =100, gain curve is raised by 40 dB yielding -13.6 dB
at 6.63 rad/s. Thus, the gain margin is 13.6 dB.

* Phase margin: Raising the gain curve by 40 dB yields 0 dB at
2.54 rad/s, where the phase curve is 107.3°. Hence, the phase
margin is 180° - 107.3° = 72.7°.



Stability Analysis with Bode Plots

K =1000:

* For K =1000, gain curve is raised by 60 dB yielding +6.4 dB
at 6.63 rad/s. Thus, the gain margin is -6.4 dB.

» Phase margin: Raising the gain curve by 60 dB yields 0 dB at
9.07 rad/s, where the phase curve is 200.3°. Hence, the phase
margin is 180° - 200.3° = -20.3°.

K =0.1:

» For K =1, when phase response is 180° at w = 6.63 rad/s, the
gain margin is increased to 53.6 dB at this frequency.



Stability Analysis with Bode Plots

* For K =0.1, gain curve is lowered by 20 dB yielding -73.6 dB
at 6.63 rad/s. Thus, the gain margin is increased to 73.6 dB.

Stability Summary of System 1:

* When K = 1, considering positive gain margin (GM =53.6 dB
at 6.63 rad/s) and phase margin (PM = co at any frequency), the
system is found to be stable.

* Any increase of the gain might reduce the gain margin of the
system. If the increase is excessive, the system could be
unstable.

* If the gain is lowered, the system stays stable with the margins
are increased.



Stability Analysis with Bode Plots

b. System 2: Plotting for K = 1 yields the following Bode plots.
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Stability Analysis with Bode Plots

K =1:

For K = 1, when the phase response is 180° at w = 1.56 rad/s, the
gain margin is -2.85 dB and phase margin is -18.6° at 1.26 rad/s.

K =100:
* For K =100, gain curve is raised by 40 dB yielding +37.15 dB
at 1.56 rad/s. Thus, the gain margin is -37.15 dB.

* Phase margin: Raising the gain curve by 40 dB yields 0 dB at
99.8 rad/s, where the phase curve is -84.3°. Hence, the phase
margin is 180° - 84.3° = 95.7°.



Stability Analysis with Bode Plots

K =1000:

* For K =1000, gain curve is raised by 60 dB yielding
+57.15 dB at 1.56 rad/s. Thus, the gain margin is -57.15 dB.

» Phase margin: Raising the gain curve by 54 dB yields 0 dB
at 500 rad/s, where the phase curve is -91.03°. Hence, the
phase margin is 180° - 91.03° = 88.97°.

K =0.1:

* For K = 0.1, gain curve is lowered by 20 dB yielding -22.85
dB at 1.56 rad/s. Thus, the gain margin is -22.85 dB.



Stability Analysis with Bode Plots

» Phase margin: Lowering the gain curve by 20 dB yields 0 dB at
0.162 rad/s, where the phase curve is -99.8°. Hence, the phase
margin is 180° - 99.86° = 80.2°.

Stability Summary of System 2:

* Both of the gain and phase margins of the system are negative
i.e. -2.85 dB at 1.56 rad/s and -18.6° at 1.26 rad/s respectively.
The system is unstable due to these negative margins.

* Increasing the gain reduces the gain margin further making the
system to become more unstable.

 Decreasing the gain of the system might increase the margin
and might turn the system to become stable.



Stability Analysis with Bode Plots

c. System 3: Plotting for K = 1 yields the following Bode plots.
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Stability Analysis with Bode Plots

K=1:

* For K =1, when the phase response is 180° at w = 1.41 rad/s,
the gain margin is 0 dB. Phase margin is 0° at 1.41 rad/s.

K =100:

*  For K =100, gain curve is raised by 40 dB yielding 40 dB at
1.41 rad/s. Thus, the gain margin is - 40 dB.

*  Phase margin: Raising the gain curve by 40 dB yields no
frequency where the gain curve is 0 dB. Hence, the phase
margin is infinite.



Stability Analysis with Bode Plots

K =1000:

« For K = 1000, gain curve is raised by 60 dB yielding 60
dB at 1.41 rad/s. Thus, the gain margin is - 60 dB.

*  Phase margin: Raising the gain curve by 60 dB yields no
frequency where the gain curve is 0 dB. Hence, the
phase margin is infinite.

K =0.1:

 For K =0.1, gain curve is lowered by 20 dB yielding -20
dB at 1.41 rad/s. Thus, the gain margin is 20 dB.



Stability Analysis with Bode Plots

*  Phase margin: Lowering the gain curve by 20 dB yields no
frequency where the gain curve is 0 dB. Hence, the phase
margin is infinite.

Stability Summary of System 3:

 Both of the gain and phase margins are zero at 1.41 rad/s and
1.41 rad/s respectively. The system is critically stable.

* Increasing the gain might turn the system to become unstable.

* Reducing the gain increases the margins and these make the
system to become stable.



Transient Response in Bode Plots

* From the given Bode plots, we can determine a variety of
transient response parameters:

« Damping ratio.
+ Settling time.
+ Peak time.

« For transient response analysis, we should know the values of
these parameters to work out the transient response parameters:

+ Phase margin -> damping ratio

* Closed loop bandwidth (+ damping ratio) -> settling
time and peak time.



Phase Margin and Damping Ratio

* Phase margin is useful because there is a direct link between a
system’s phase margin and its damping in the closed-loop case.

» The smaller the phase margin, the badly the system will ring.

PM=180 deg PM=50 deg

Time (seconds)

Time (seconds)
PM=10 deg

PM=25 deg




Phase Margin and Damping Ratio

* It can be shown that there is a relationship between the phase
margin and the damping ratio of the closed-loop response.

R(s) + E(s) w3 C(s)

s(s + 28awy)

» For a standardised second order equation as shown in the figure
below, the open-loop transfer function of the plant is:

2

Wn
G(s) = s(s + 2¢wy)



Phase Margin and Damping Ratio

» The closed-loop transfer function of the system is:

C(s) w?
T(s) = =— L 2
R(s) s242{w,s + w?
w;-}z C{S}___
s(s + 2Lwy,) }

» To evaluate the phase margin, find the frequency for which
GGw)| = 1.

wi

1GGw)| = =1

—w? + j2{w 0




Phase Margin and Damping Ratio

* The frequency, w4, that satisfies the equation above is:

w1 = wn\/—ZZZ +4/1+ 474

* The phase angle of G (jw) at this frequency is:

. wq
L p— [e] -1
G(jw) = —90° — tan (2( n)

* Substitute the equation for w; into the equation above.

\/—2(2 +4/1+ 434
1

2G(Jw) = —90° — tan™
(jw) an 27




Phase Margin and Damping Ratio

* The difference between the angle of the equation above and -
180° is the phase margin, ¢,,.

\/—2(2 +/1+ 474
1
2¢

* The accurate relation of damping ratio with the phase margin of
the system over the full range is:

X

\/2(2 + 1+ 4¢*

¢m = 90° —tan”

¢m = tan”

* To keep the damping reasonable, we generally try to preserve a
phase margin of about 60°.



Phase Margin and Damping Ratio

* Rearrange the equation given above, the damping ratio is:

100

¢=" 2 5
(e T+ 2) -4
* The relationship
between phase
margin and damping
ratio is as shown in
the graph below.

Phase margin

oD
o

£
o

N
(=]

~

Accurate curve
777777 Linear approximation

15 2 25
Damping ratio, &

05 |

« For damping ratios less than 0.65, use the approximate relation
¢m =100¢ as shown in the graph above.



Bandwidth of Control Systems

» The magnitude or gain of the frequency response of the given
control system is:

Wi

V(w2 — 02)? + 402wk w?
+ To determine the transient response of the control system, we
need to find the closed-loop bandwidth from the Bode plots.

ITGw)| =

» For open-loop system, the bandwidth of the control systems
(wgw) is the width of frequency of gain of the system from DC
(0 rad/s) to the half-power point (i.e. -3 dB).



Bandwidth of Control Systems

 For atypical second-order system, the magnitude plot of the
equation given above is shown in the figure below.
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Closed-Loop Bandwidth

» The bandwidth of the standardised control systems (wgy,) is
determined by finding the frequency for which [T (jw)| =
1/4/2 (i.e. that is -3 dB).

wi

V(w2 — 02)? + 402w2w?

IT(w)| =

- Equate the equation above to be equal to 1/+/2 that happens

w? 1

V2

\/(a)rzl — wiy)? + 4 wiwdy,



Closed-Loop Bandwidth

* Rearranging the equation above, the bandwidth of the control
system is:

Wpw = wn\/(l - 2(2) +w/4(4 —4(2 +2

» The closed-loop bandwidth,
wgy 1S the frequency at
which the closed-loop i
magnitude response is -3 dB. Ll

Closed-loop magnitude = -3 dB

Joop magnitude (dB)
1

Open

8 L L L L L L L L L
—280 260 —240 —220 200 —180 —160 —140 —120 -100 -80
Open-loop phase (degrees)

* It equals the frequency at which the open-loop magnitude response
is between -6 and -7.5 dB (i.e. if the open-loop phase response is
between -135° and -225°).



Closed-Loop Bandwidth in Bode Plots
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Closed-Loop Bandwidth in Bode Plots

» Given the Bode plots of a control system as shown in the
figure, we can determine the phase margin and gain
margin, and bandwidth of the system.

» From the plots, phase margin, PM is 180° - 150° = 30°
» Also, we found that gain margin, GM is 10 dB at 4 rad/s.

» Considering the open-loop system and looking at the
frequency when the gain of the system is -7.5 dB, the
bandwidth, wgy, is approximately 3.5 rad/s.



Closed Loop Bandwidth in Bode Plots

We could determine the transient

response parameters of the system x|
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Settling Time in Bode Plots

» Knowing that for 2% settling time standard:
T, = th -2
S S ¥

» The bandwidth of the closed loop control system (wgy,) VS.
settling time (T5).

wpw = ”J(l —20%) + 40t — 402 + 2

Where: ¢ is the damping ratio.

* Hence, for 2% settling time standard, the settling time is:

Ts =

4
{\/(1 —202) + /474 — 472 4 2

Wpw



Peak Time in Bode Plots

+ Like the settling time, we can determine also the time-to-
peak (T,) from the Bode plots through the bandwidth of the

closed loop system (wgy, ). Since
w

T,1— {2

I
T,=—F——= thus w,=

wpy 1 — ?

» The previous equation becomes:

Wpw = L\/u —20%) +/40* — 402 + 2
Tp /1 -2
Where: ¢ is the damping ratio.

* Hence, the peak time is:

s
——— (1 -20%) + 40+ — 402 + 2
wavl—ZZ\/

T, =



Rise Time in Bode Plots

+ To relate the bandwidth to rise time (T.), knowing the desired
¢, we can calculate it from:

"9
wny/1 -2

T, =

Where:

¢=tan‘1<'1_62)
¢

* Rearranging the equation above
n—¢
T\/1— 2

Wy =



Rise Time in Bode Plots

* Then, substituting w,, into the bandwidth equation

Wpw _T@J(l_ZCZ) +40* — 402 + 2

* As a result, the rise time is:

T, = J(1 —202) 4+ /404 — 472 + 2

wpw+ 1 —



Rise Time in Bode Plots

 Alternatively, to relate the bandwidth to rise time, T, we use
the graph given below, knowing the desired ¢ and T;..
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Rise Time in Bode Plots

* For example, assume ¢ = 0.4 and T;- = 0.2 second.

* Using the graph given above, for { = 0.4, the ordinate T, w,, =
1.463, from which w,, = 1.463/T,. = 1.463/0.2 = 7.315 rad/s.

Wpw = wnJ (1-202) +/4* — 407 + 2

= 7.315\/(1 —2(0.4)2) +/4(0.4)%—4(0.4)2+2

= 10.05 rad/s

 Using the above given equation, the bandwidth wpgy, is 10.05
rad/s.



Transient Response Analysis with Bode Plots

The Bode plots for a plant, G(s), used in a unity feedback system
are shown in the figure below. Do the following:

a.  Find the gain margin, phase margin, 0 dB frequency (unity
gain), 180° frequency, and the closed-loop bandwidth.
[10 marks]
b.  Use your results in part (a) to estimate the damping ratio,
percent overshoot, settling time, and peak time.
[10 marks]



with Bode Plots
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Transient Response Analysis with Bode Plots

» From the Bode plots given below, the gain margin, phase
margin, 0 dB frequency (unity gain), 180° frequency, and the
closed-loop bandwidth are determined from the plots.
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Transient Response Analysis with Bode Plots

» The results estimated from the graphs given above:

» Gain margin = 14.96 dB.

* Phase margin = 49.57°.

» Unity (0 dB) frequency = 2.152 rad/s.
« 180° frequency = 6.325 rad/s.

* Bandwidth (@-7 dB point) = 3.8 rad/s.

4 z 4 z
(m”) —4 (m”) —4

» The damping ratio of the system, ¢ is 0.48.

= 0.48



Transient Response Analysis with Bode Plots

 Or, from the graph given below, the damping ratio of the
system, ¢ is estimated to be 0.5.
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Transient Response Analysis with Bode Plots

» From the equation given below, the percentage overshoot of
the system can be calculated from:

114 1(0.48)
%0S = eV1=¢% x 100% = eV1-(048)% % 100%

=17.93%
» The percentage overshoot of the system, %0S is 17.93%.

» From the equation given below, the settling time of the
system (2% standard) can be calculated from:

4

wpw{

T, =

\/(1 —202) + /404 — 402 + 2



Transient Response Analysis with Bode Plots

e Thus

4\/(1 — 2(0.48)2) + /4(0.48)*—4(0.48)2+2

Is= (3.8)(0.48)

= 2.84s

» The settling time of the system, T is 2.84 s.

» From the equation given below, the time-to-peak (n = 1) can be
calculated from:

T, = ———— [(1—202) +4{* — 472 + 2
» wBWﬁJ( {2) + V47t — &



Transient Response Analysis with Bode Plots

e Thus

n\/(l —2(0.48)2) + /4(0.48)* — 4(0.48)2 + 2
T. =

P (3.8)\/1 — (0.48)2

=1.22s

* The time-to-peak of the system, T, is 1.22 s.



Steady-State Characteristics in Bode Plots

* From the given Bode plots, we can determine a variety of
steady-state parameters.

+ Steady-state parameters that can be derived and approximated
from the Bode diagrams are:

»  System type.
+ Steady-state static error constants (K, K,, and K).

+ Steady-state errors.



Steady-State Characteristics in Bode Plots

» With the Bode plots, we could determine the steady-state
parameters and analyse the characteristics and behaviour of the
control system at steady-state conditions:

Type of systems.
Static error constants (K, K,,, and K,).
Steady-state errors.

Type O Type 1 Type 2
Static Static Static
Steady-state error error error
Input error formula constant Error constant Error constant Error
Step, 1 K, = 1 _ B
u(t) 1+K, Constant 1+K, Kp == 0 Ky == 0
Ramp, 1 K, = 1
tu(t) < kK, =0 * Constant X, Ky = 0
Parabola.
> 1 K, = 1
1 — - - a —_
Ezzu(t) %, Ka=0 = Ki=0 * Constant %,




System Type on a Bode Plot

» The type of a system is defined to be equal to the number of the
integrators in the open loop transfer function.

* We can find the type of a system by examining its Bode plot.

a. Atype 0 system has a slope of 0 and a phase of 0° at low
frequencies.

b. Atype 1 system has a slope of -20 dB/decade and a phase
of -90° at low frequencies.

c. Atype 2 system has a slope of -40 dB/decade and a phase
of -180° at low frequencies.

* “Low frequencies” in this context means in the frequency range
below any of the system zeros or poles.

« Examination of an experimental frequency response lets you to
determine the system type without needing a transfer function.



System Type on a Bode Plot
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System Type on a Bode Plot

» As illustrated in the diagram below, the type of the system can
be determined as follows:

 For the first system 1/(s+10) with blue line, the gain at low
frequency is 0 dB and the phase shift at low frequency is 0
degree -> type 0.

 For the second system 1/s with orange line, the gain of at
low frequency is a slope with -20 dB/decade and the phase
shift at low frequency is -90 degree -> type 1 system.

* For the second system 1/s? with yellow line, the gain at low
frequency is a -40 dB/decade slope and the phase shift at
low frequency is -180 degree -> type 2 system.



Steady-State Error from a Bode Plot

» The system type is related to the error that a closed-loop system
will exhibit when attempting to follow a reference signal.

* Reminder:

a. Atype 0 system will have an error 1/(1 + K,,) for a step
input and infinite error for ramp and paraboloid.

b. Atype 1 system will have zero error for a step, an error of
1/K,, for a ramp and an infinite error for an input
paraboloid.

c. Atype 2 system will have zero error when tracking input
steps or ramps, but an error 1/K, when tracking a
command paraboloid.



Steady-State Error with a Step Input

The error to a steady-state unity magnitude step is given by:

Where: K, is position-error constant.
For a type 0 system, K, is equal to the value of the open loop
gain of the system.

Thus, if the Bode plot indicates a type 0 system (zero slope at
low frequency), we can directly read off the K, value.

For systems of higher type, the DC gain of the system is
infinite, so the value of K, is also infinite.

This corresponds to zero static error to a step function for
systems including one or more integrators in the forward path.



Steady-State Error with a Step Input

» This is actually the same as the value of the low-frequency gain of

the system for type O system.

20logK, = |G(s)|  thus K, =log™'(20/20) = 10
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Steady-State Error with a Step Input

* Or, for a given type 0 system, the

20 log M
transfer function of the system is: "

n ) 20 log K,
i—1(s + z;
G(s) = K== 12
iz1(s +p)
» The initial value of the magnitude
plot of the frequency response is: " ®
0
n
i=1%i
20log|G(s)| = 20logK
i= 1pl
» The value of position-error constant is:
ti(s+z) r 1z

Kp = Iy GOHE) = I K o 2 = ¥ T,



Steady-State Error with a Ramp Input

* The steady-state error in the presence of a unit ramp input is
specified as:

e(») =K,
Where: K,, is velocity error constant.
* Recall that K, = EL{} sG(s).
» For a type 1 system, the multiplication by s would result in a
level gain curve at low frequencies.

* If we were to plot a magnitude plot of sG(s), then K,, would be
the low frequency gain.

 Rather than plot this explicitly, we examine the gain that the 1/s
part of the transfer function has at 1 rad/s.



Steady-State Error with a Ramp Input

 Similarly, the velocity error constant is found by determining the
gain of the 1/s part of the transfer function if extended to w = 1.

» \elocity constant error is:

20log K, = |G(s)| thus

K, = log=1(20/20) = 10
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Steady-State Error with a Ramp Input

* Or, for a given type 1 system, the 201og M

n L

transfer function of the system is: I

20 log K ;’ _|-20 dB/dec
n Wy IT p;
G(s) = K i=1(s +2z;) =1
(S) - s m

i:l(s + pl) \\\\
« The initial value of the magnitude S
plot of the frequency response is: oo o
2010g|G (s)| = 20 log K —L=1%_
oglG(s)| = og
Wy Hl 1 Pi

» With a type 1 system, the -20 dB/decade slope of the frequency
response can be considered as originated from a function:

=17
G'(s) = K—r—
(s) ST 7,



Steady-State Error with a Ramp Input

* G'(s) intersects the frequency axis when the frequency of the
frequency response is:

n
i=17%i
m
i=1 Di

» Thus, the velocity-error constant of the system is:

w=K

K 1 G( ) (K ?=1Zi ) K ?=1Zi
=1ms S)=S =
v s—0 S ;11 Pi ;11 pi

* Hence
K,=w
* This is the same as the frequency-axis intercept.

» Extending the initial -20 dB/decade slope to the frequency axis
will give you the velocity-error constant.



Steady-State Error with a Parabolic Input

» The error in the presence of a unit parabolic input is specified
as:
e(oo) = Kq
Where: K, is parabolic error constant.
* Recall that K, = lim s2G(s).
i
« For atype 2 system, the multiplication by s would result in a
level gain curve at low frequencies.

« If we were to plot a magnitude plot of s2G(s), then K, would
be the low frequency gain.

 Rather than plot this explicitly, we can instead examine the gain
that the 1/s2 part of the transfer function has at 1 rad/s.



Steady-State Error with a Parabolic Input

» Thus, the acceleration error constant by determining the gain of
the 1/s2 part of the transfer function if extended to w = 1.

« So,20logK, = |G(s)| thus K, =log=1(45/20) = 177
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Steady-State Error with a Parabolic Input

* Or, for a type 2 system, the transfer2o o

function of the system is: -
20 log K 2r‘l=”1 _| 40 dB/dec
T (s+z “)0,‘5 Pi ‘—/—\
G(s) =K -1 + ) IS
S L:l(s + pl) \\
+ The initial value of the magnitude \\ "
plot of the frequency response is: ~ “° K,
n
Z;
201og|G(s)| = 20log K —r— i, 2
Wy Hl 1 pi

* With a type 1 system, the -20 dB/decade slope of the frequency
response can be considered as originated from a function:

n
Z.
G'(s) = —‘“p
=11



Steady-State Error with a Parabolic Input

G'(s) has an intersection with the frequency axis when the
frequency of the frequency response is:

n

i=17Zi
w= |K=i=tt

i=1 Pi

But, since the acceleration-error constant of the system is:

n
K, = lims?G(s) = s? KLl = K%
5-0 i 1pl i=1 pl

Hence

=K,

Extending the initial -40 dB/decade slope to the frequency
axis will give you the velocity-error constant at /K.



Steady-State Analysis with Bode Plots

The open-loop frequency response shown in the figure below was
experimentally obtained from a unity feedback system. Estimate:
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a. The percent
overshoot of the
closed-loop
system.

[20 marks]

a. The steady-state

error of the
closed-loop
system.

[20 marks]
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Steady-State Analysis with Bode Plots

a. The phase margin of the closed-loop system is determined
from following frequency response diagram.
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From the given Bode
plots, the phase
margin of the given
system is 20° and the
gain margin is 5 dB.



Steady-State Analysis with Bode Plots

» Rearrange the equation given above, the damping ratio is:

. 1
¢ = 2 >
1
='l— —— =0.176
(tan2 20 + 2) —4

* Or, using the phase margin vs. damping ration graph, the
damping ratio can be estimated from the system’s phase margin.



Steady-State Analysis with Bode Plots

« In graph given below, the damping ratio, ¢ is approx. about 0.18.
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Steady-State Analysis with Bode Plots

» The percentage overshoot of the system is calculated from
the following equation:
g
%0S = eV1=¢% x 100%

1(0.176)
= eV1-(0176)? % 100% = 57%

» The equation given above yields 57% overshoot.

b. The system is Type 1 since the initial slope is - 20 dB/dec and
extending this slope intersection with the gain at 1 rad/s is 12 dB.

Continuing the low frequency slope down to the frequency axis
(i.e. 0 dB line) yields 4 rad/s.



Steady-State Analysis with Bode Plots

Knowing that we found

40—

the intersection of low
frequency slope with 1~ 7 %
rad/s is 12 dB. o
Thus, the velocity error

constant of the system is:
K, =log™1(12/20) = 4
Or, from the intersection
with the frequency axis: = =

K, =4

280
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12 dB|
MR

(I8}

10

100



Steady-State Analysis with Bode Plots

As a result, for K,, = 4 and given relevant inputs, the steady-
state errors of the system are:

» For a unit step input, it is zero.

» For aunit ramp input, it is a finite value:

1
e(oo)ramp = K. = 0.25
v

» For a parabolic input, it is infinite (o).
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