
XMUT315 Control System Engineering

Analysis with Bode Plots



Topics

• Closed-loop stability.

• Gain and phase margins.

• Determining gain and phase margins in Bode plots.

• Damping and phase margin.

• Transient response parameters from Bode plots.

• System types.

• Steady-state errors.

• System errors and inputs.

• Determining steady-state errors in Bode plots.



Closed-Loop Stability

• Imagine a situation where we have a system described by a 

transfer function 𝐺(𝑠). We now enclose the system in a unity 

gain feedback loop.

Y ( s )

• We know that negative feedback is useful in stabilising a system. 

However, instability results when the feedback is positive.

• The feedback in the system shown becomes positive when the 

plant transfer function 𝐺(𝑠) contributes 180° of phase shift to the 

overall system.



Closed-Loop Stability

• System stability is one of the basic concerns when designing a 

control system. 

• We would like to be able to meaningfully talk about how close 

a system is to instability, not just whether it is stable or not.

• For many systems, we can assess the stability by finding the 

frequency at which the phase curve crosses -180° and reading 

the gain at that point. 

• If the gain > 1, then the system will be unstable.

• If the gain < 1 at the frequency where the phase crosses -

180°, then not enough gain to sustain the oscillations.

• This approach leads to a metric known as the gain margin.



Gain Margin

• The gain margin is the amount by which we can increase the 

gain of a stable system before it becomes unstable.
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• To determine the gain margin of a system, read the gain at the 

frequency where the phase curve crosses 180°. 

• The gain margin must be positive for the system to be stable!



Unity Gain

• In control applications, we often use the Unity Gain Frequency, 

which is the frequency at which the system’s gain has dropped 

to one (0 dB).

• We can use the Bode plot to simply read off the frequency 

where the gain plot crosses the 0 dB line.

• Note that some systems have multiple unity gain frequencies 

because their gain curves cross and recross the 0 dB line.

• In crude terms, the unity gain frequency of a control system is 

the highest frequency at which the control is doing anything 

useful. 

• Beyond this point, the gain is too small to improve the system.



Phase Margin

• The phase margin is the amount by which we can decrease the 

phase of a stable system before it become unstable.

• To determine the 

phase margin of a 

system, find the 

unity gain 

frequency and 

read the system 

phase at that 

point. 

• This reveals how much extra phase lag we could tolerate before 

instability sets in.



Gain and Phase Margins with MATLAB

• The margin MATLAB command will tell you the gain and 

phase margins and the frequencies at which they occur. 

Frequency (rad/s)

Bode Diagram
Gm = 9.63 dB (at 10 rad/s) , Pm = 106 deg (at 0.963 rad/s)• If you call it 

without any 

return 

arguments, it 

will draw a 

plot 

displaying the 

same 

information



Phase Margin with Multiple Unity Gain Crosses

• The following Bode plot shows 

a higher order system that has 

multiple crossing of the 0 dB 

gain curve with unity gain line. 

• There are two 180 phase crossings with corresponding gain 

margins of -9.35 dB and +10.6 dB.



Phase Margin with Multiple Unity Gain Crosses

• For some systems that cross the 0 dB gain curve more than once, 

in general, there will be a different phase margin associated with 

each of these crossings. 

• It is possible to define the system phase margin as the worst 

(smallest) of the individual phase margins.

• However, this is dangerous as there are some systems like this 

appear to be stable, but they are not. 

• When you see a system with multiple crossings of the 0 dB line, 

you should double check the system stability with another 

method, such as a root locus diagram or (more traditionally) a 

Nyquist plot.



Stability Analysis with Bode Plots

For each system given below, find the gain margin and phase 

margin if the value of gain 𝐾 is 1, 100, 1000, and 0.1. Write a 

summary on the stability of each system.              [30 marks]



Stability Analysis with Bode Plots

a. System 1: Plotting for 𝐾 = 1 yields the following Bode plots.



Stability Analysis with Bode Plots

𝐾 = 1:

For 𝐾 = 1, when the phase response is 180 at 𝜔 = 6.63 rad/s, the 

gain margin is 53.6 dB. Phase margin is +∞ at any frequency.

𝐾 = 100:

• For 𝐾 = 100, gain curve is raised by 40 dB yielding -13.6 dB 

at 6.63 rad/s. Thus, the gain margin is 13.6 dB.

• Phase margin: Raising the gain curve by 40 dB yields 0 dB at 

2.54 rad/s, where the phase curve is 107.3. Hence, the phase 

margin is 180 - 107.3 = 72.7.



Stability Analysis with Bode Plots

𝐾 = 1000:

• For 𝐾 = 1000, gain curve is raised by 60 dB yielding +6.4 dB 

at 6.63 rad/s. Thus, the gain margin is -6.4 dB.

• Phase margin: Raising the gain curve by 60 dB yields 0 dB at 

9.07 rad/s, where the phase curve is 200.3. Hence, the phase 

margin is 180 - 200.3 = -20.3.

𝐾 = 0.1:

• For 𝐾 = 1, when phase response is 180 at 𝜔 = 6.63 rad/s, the 

gain margin is increased to 53.6 dB at this frequency.



Stability Analysis with Bode Plots

• For 𝐾 = 0.1, gain curve is lowered by 20 dB yielding -73.6 dB 

at 6.63 rad/s. Thus, the gain margin is increased to 73.6 dB.

Stability Summary of System 1:

• When 𝐾 = 1, considering positive gain margin (GM = 53.6 dB 

at 6.63 rad/s) and phase margin (PM = ∞ at any frequency), the 

system is found to be stable.

• Any increase of the gain might reduce the gain margin of the 

system. If the increase is excessive, the system could be 

unstable.

• If the gain is lowered, the system stays stable with the margins 

are increased.



Stability Analysis with Bode Plots

b. System 2: Plotting for 𝐾 = 1 yields the following Bode plots.



Stability Analysis with Bode Plots

𝐾 = 1:

For 𝐾 = 1, when the phase response is 180 at 𝜔 = 1.56 rad/s, the 

gain margin is -2.85 dB and phase margin is -18.6 at 1.26 rad/s.

𝐾 = 100:

• For 𝐾 = 100, gain curve is raised by 40 dB yielding +37.15 dB 

at 1.56 rad/s. Thus, the gain margin is -37.15 dB.

• Phase margin: Raising the gain curve by 40 dB yields 0 dB at 

99.8 rad/s, where the phase curve is -84.3. Hence, the phase 

margin is 180 - 84.3 = 95.7.



Stability Analysis with Bode Plots

𝐾 = 1000:

• For 𝐾 = 1000, gain curve is raised by 60 dB yielding 

+57.15 dB at 1.56 rad/s. Thus, the gain margin is -57.15 dB.

• Phase margin: Raising the gain curve by 54 dB yields 0 dB 

at 500 rad/s, where the phase curve is -91.03. Hence, the 

phase margin is 180 - 91.03 = 88.97.

𝐾 = 0.1:

• For 𝐾 = 0.1, gain curve is lowered by 20 dB yielding -22.85 

dB at 1.56 rad/s. Thus, the gain margin is -22.85 dB.



Stability Analysis with Bode Plots

• Phase margin: Lowering the gain curve by 20 dB yields 0 dB at 

0.162 rad/s, where the phase curve is -99.8. Hence, the phase 

margin is 180 - 99.86 = 80.2.

Stability Summary of System 2:

• Both of the gain and phase margins of the system are negative 

i.e. -2.85 dB at 1.56 rad/s and -18.6 at 1.26 rad/s respectively. 

The system is unstable due to these negative margins.

• Increasing the gain reduces the gain margin further making the 

system to become more unstable.

• Decreasing the gain of the system might increase the margin 

and might turn the system to become stable.



Stability Analysis with Bode Plots

c. System 3: Plotting for 𝐾 = 1 yields the following Bode plots.



Stability Analysis with Bode Plots

𝐾 = 1:

• For 𝐾 = 1, when the phase response is 180 at 𝜔 = 1.41 rad/s, 

the gain margin is 0 dB. Phase margin is 0 at 1.41 rad/s.

𝐾 = 100:

• For 𝐾 = 100, gain curve is raised by 40 dB yielding 40 dB at 

1.41 rad/s. Thus, the gain margin is - 40 dB.

• Phase margin: Raising the gain curve by 40 dB yields no 

frequency where the gain curve is 0 dB. Hence, the phase 

margin is infinite.



Stability Analysis with Bode Plots

𝐾 = 1000:

• For 𝐾 = 1000, gain curve is raised by 60 dB yielding 60 

dB at 1.41 rad/s. Thus, the gain margin is - 60 dB.

• Phase margin: Raising the gain curve by 60 dB yields no 

frequency where the gain curve is 0 dB. Hence, the 

phase margin is infinite.

𝐾 = 0.1:

• For 𝐾 = 0.1, gain curve is lowered by 20 dB yielding -20 

dB at 1.41 rad/s. Thus, the gain margin is 20 dB.



Stability Analysis with Bode Plots

• Phase margin: Lowering the gain curve by 20 dB yields no 

frequency where the gain curve is 0 dB. Hence, the phase 

margin is infinite.

Stability Summary of System 3:

• Both of the gain and phase margins are zero at 1.41 rad/s and  

1.41 rad/s respectively. The system is critically stable.

• Increasing the gain might turn the system to become unstable.

• Reducing the gain increases the margins and these make the 

system to become stable.



Transient Response in Bode Plots

• From the given Bode plots, we can determine a variety of 

transient response parameters:

• Damping ratio.

• Settling time.

• Peak time.

• For transient response analysis, we should know the values of 

these parameters to work out the transient response parameters:

• Phase margin -> damping ratio

• Closed loop bandwidth (+ damping ratio) -> settling 

time and peak time. 



Phase Margin and Damping Ratio

• Phase margin is useful because there is a direct link between a 

system’s phase margin and its damping in the closed-loop case. 

• The smaller the phase margin, the badly the system will ring.
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Phase Margin and Damping Ratio

• It can be shown that there is a relationship between the phase 

margin and the damping ratio of the closed-loop response. 

• For a standardised second order equation as shown in the figure 

below, the open-loop transfer function of the plant is:

𝐺 𝑠 =
𝜔𝑛

2

𝑠 𝑠 + 2𝜁𝜔𝑛



Phase Margin and Damping Ratio

• The closed-loop transfer function of the system is:

𝑇 𝑠 =
𝐶 𝑠

𝑅 𝑠
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

• To evaluate the phase margin, find the frequency for which 

𝐺 𝑗𝜔 = 1.

𝐺 𝑗𝜔 =
𝜔𝑛

2

−𝜔2 + 𝑗2𝜁𝜔𝑛𝜔
= 1



Phase Margin and Damping Ratio

• The frequency, 𝜔1, that satisfies the equation above is: 

𝜔1 = 𝜔𝑛 −2𝜁2 + 1 + 4𝜁4

• The phase angle of 𝐺 𝑗𝜔  at this frequency is:

∠𝐺 𝑗𝜔 = −90° − tan−1
𝜔1

2𝜁𝜔𝑛

• Substitute the equation for 𝜔1 into the equation above.

∠𝐺 𝑗𝜔 = −90° − tan−1
−2𝜁2 + 1 + 4𝜁4

2𝜁



Phase Margin and Damping Ratio

• The difference between the angle of the equation above and -

180° is the phase margin, 𝜙𝑚. 

𝜙𝑚 = 90° − tan−1
−2𝜁2 + 1 + 4𝜁4

2𝜁

• The accurate relation of damping ratio with the phase margin of 

the system over the full range is:

𝜙𝑚 = tan−1
2𝜁

2𝜁2 + 1 + 4𝜁4

• To keep the damping reasonable, we generally try to preserve a 

phase margin of about 60°.



Phase Margin and Damping Ratio

• Rearrange the equation given above, the damping ratio is:

𝜁 = 4
1

4
tan2 𝜙𝑚

+ 2
2

− 4

• The relationship 

between phase 

margin and damping 

ratio is as shown in 

the graph below.

• For damping ratios less than 0.65, use the approximate relation 

𝜙𝑚 = 100𝜁 as shown in the graph above.



Bandwidth of Control Systems

• The magnitude or gain of the frequency response of the given 

control system is:

𝑇(𝑗𝜔) =
𝜔𝑛

2

𝜔𝑛
2 − 𝜔2 2 + 4𝜁2𝜔𝑛

2𝜔2

• To determine the transient response of the control system, we 

need to find the closed-loop bandwidth from the Bode plots. 

• For open-loop system, the bandwidth of the control systems 

(𝜔𝐵𝑊) is the width of frequency of gain of the system from DC 

(0 rad/s) to the half-power point (i.e. -3 dB).



Bandwidth of Control Systems

• For a typical second-order system, the magnitude plot of the 

equation given above is shown in the figure below.

• The bandwidth is 

located at 𝜔𝐵𝑊, 

or in log 

frequency scale, 

it is log 𝜔𝐵𝑊.



Closed-Loop Bandwidth

• The bandwidth of the standardised control systems (𝜔𝐵𝑊) is 

determined by finding the frequency for which 𝑇(𝑗𝜔) =

1/ 2 (i.e. that is -3 dB).

|𝑇 𝑗𝜔 | =
𝜔𝑛

2

𝜔𝑛
2 − 𝜔2 2 + 4𝜁2𝜔𝑛

2𝜔2

• Equate the equation above to be equal to 1/ 2 that happens 

when 𝜔 = 𝜔𝐵𝑊:

𝜔𝑛
2

𝜔𝑛
2 − 𝜔𝐵𝑊

2 2 + 4𝜁2𝜔𝑛
2𝜔𝐵𝑊

2

=
1

2



Closed-Loop Bandwidth

• Rearranging the equation above, the bandwidth of the control 

system is: 

𝜔𝐵𝑊 = 𝜔𝑛 1 − 2𝜁2 + 4𝜁4 −4𝜁2 +2

• The closed-loop bandwidth, 

𝜔𝐵𝑊 is the frequency at 

which the closed-loop 

magnitude response is -3 dB.

• It equals the frequency at which the open-loop magnitude response 

is between -6 and  -7.5 dB (i.e. if the open-loop phase response is 

between -135° and  -225°).



Closed-Loop Bandwidth in Bode Plots



Closed-Loop Bandwidth in Bode Plots

• Given the Bode plots of a control system as shown in the 

figure, we can determine the phase margin and gain 

margin, and bandwidth of the system. 

• From the plots, phase margin, PM is 180° - 150° = 30° 

• Also, we found that gain margin, GM is 10 dB at 4 rad/s.

• Considering the open-loop system and looking at the 

frequency when the gain of the system is -7.5 dB, the 

bandwidth, 𝜔𝐵𝑊 is approximately 3.5 rad/s.



Closed Loop Bandwidth in Bode Plots

We could determine the transient 

response parameters of the system 

from the graphs for:

a. Settling time.

b. Peak time.

c. Rise time.



Settling Time in Bode Plots

• Knowing that for 2% settling time standard:

𝑇𝑠 =
4

𝜔𝑛𝜁
 thus 𝜔𝑛 =

4

𝑇𝑠𝜁

• The bandwidth of the closed loop control system (𝜔𝐵𝑊) vs. 

settling time (𝑇𝑠).

𝜔𝐵𝑊 =
4

𝑇𝑠𝜁
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2

Where: 𝜁 is the damping ratio.

• Hence, for 2% settling time standard, the settling time is:

𝑇𝑠 =
4

𝜔𝐵𝑊𝜁
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2



Peak Time in Bode Plots

• Like the settling time, we can determine also the time-to-
peak (𝑇𝑝) from the Bode plots through the bandwidth of the 

closed loop system (𝜔𝐵𝑊). Since 

𝑇𝑝 =
𝜋

𝜔𝑛 1 − 𝜁2
 thus 𝜔𝑛 =

𝜋

𝑇𝑝 1 − 𝜁2

• The previous equation becomes:

𝜔𝐵𝑊 =
𝜋

𝑇𝑝 1 − 𝜁2
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2

Where: 𝜁 is the damping ratio.

• Hence, the peak time is:

𝑇𝑝 =
𝜋

𝜔𝐵𝑊 1 − 𝜁2
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2



• To relate the bandwidth to rise time (𝑇𝑟), knowing the desired 

𝜁, we can calculate it from:

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑛 1 − 𝜁2

Where: 

𝜙 = tan−1
1 − 𝜁2

𝜁

• Rearranging the equation above

𝜔𝑛 =
𝜋 − 𝜙

𝑇𝑟 1 − 𝜁2

Rise Time in Bode Plots



• Then, substituting 𝜔𝑛 into the bandwidth equation

𝜔𝐵𝑊 =
𝜋 − 𝜙

𝑇𝑟 1 − 𝜁2
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2

• As a result, the rise time is:

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝐵𝑊 1 − 𝜁2
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2

Rise Time in Bode Plots



Rise Time in Bode Plots

• Alternatively, to relate the bandwidth to rise time, 𝑇𝑟, we use 

the graph given below, knowing the desired 𝜁 and 𝑇𝑟.



Rise Time in Bode Plots

• For example, assume 𝜁 = 0.4 and 𝑇𝑟 = 0.2 second. 

• Using the graph given above, for 𝜁 = 0.4, the ordinate 𝑇𝑟𝜔𝑛 = 

1.463, from which 𝜔𝑛 = 1.463/𝑇𝑟 = 1.463/0.2 = 7.315 rad/s. 

𝜔𝐵𝑊 = 𝜔𝑛 1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2

 = 7.315 1 − 2(0.4)2 + 4(0.4)4−4(0.4)2+2

         = 10.05 rad/s

• Using the above given equation, the bandwidth 𝜔𝐵𝑊 is 10.05 

rad/s.



Transient Response Analysis with Bode Plots

The Bode plots for a plant, 𝐺(𝑠), used in a unity feedback system 

are shown in the figure below. Do the following:

a. Find the gain margin, phase margin, 0 dB frequency (unity 

gain), 180 frequency, and the closed-loop bandwidth. 

   [10 marks]

b. Use your results in part (a) to estimate the damping ratio, 

percent overshoot, settling time, and peak time. 

   [10 marks]



Transient Response Analysis with Bode Plots



Transient Response Analysis with Bode Plots

• From the Bode plots given below, the gain margin, phase 

margin, 0 dB frequency (unity gain), 180 frequency, and the 

closed-loop bandwidth are determined from the plots. 



Transient Response Analysis with Bode Plots

• The results estimated from the graphs given above:

• Gain margin = 14.96 dB. 

• Phase margin = 49.57. 

• Unity (0 dB) frequency = 2.152 rad/s.

• 180 frequency = 6.325 rad/s.

• Bandwidth (@-7 dB point) = 3.8 rad/s. 

𝜁 = 4
1

4
tan2 𝜙𝑚

+ 2
2

− 4

= 4
1

4
tan2 49.57

+ 2
2

− 4

= 0.48

• The damping ratio of the system, 𝜁 is 0.48.



Transient Response Analysis with Bode Plots

• Or, from the graph given below, the damping ratio of the 

system, 𝜁 is estimated to be 0.5.



Transient Response Analysis with Bode Plots

• From the equation given below, the percentage overshoot of 

the system can be calculated from: 

%𝑂𝑆 = 𝑒

𝜋𝜁

1−𝜁2
× 100% = 𝑒

𝜋 0.48

1− 0.48 2
× 100%

 = 17.93%

• The percentage overshoot of the system, %𝑂𝑆 is 17.93%.

• From the equation given below, the settling time of the 

system (2% standard) can be calculated from:

𝑇𝑠 =
4

𝜔𝐵𝑊𝜁
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2



Transient Response Analysis with Bode Plots

• Thus

𝑇𝑠 =
4 1 − 2(0.48)2 + 4(0.48)4−4(0.48)2+2

3.8 0.48
= 2.84 s

• The settling time of the system, 𝑇𝑠 is 2.84 s.

• From the equation given below, the time-to-peak (𝑛 = 1) can be 

calculated from: 

𝑇𝑝 =
𝜋

𝜔𝐵𝑊 1 − 𝜁2
1 − 2𝜁2 + 4𝜁4 − 4𝜁2 + 2



Transient Response Analysis with Bode Plots

• Thus

𝑇𝑝 =
𝜋 1 − 2 0.48 2 + 4 0.48 4 − 4 0.48 2 + 2

3.8 1 − 0.48 2

 = 1.22 s

• The time-to-peak of the system, 𝑇𝑝 is 1.22 s.



Steady-State Characteristics in Bode Plots

• From the given Bode plots, we can determine a variety of 

steady-state parameters.

• Steady-state parameters that can be derived and approximated 

from the Bode diagrams are:

• System type.

• Steady-state static error constants (𝐾𝑝, 𝐾𝑣, and 𝐾𝑎). 

• Steady-state errors.



Steady-State Characteristics in Bode Plots

• With the Bode plots, we could determine the steady-state 

parameters and analyse the characteristics and behaviour of the 

control system at steady-state conditions:

• Type of systems.

• Static error constants (𝐾𝑝, 𝐾𝑣, and 𝐾𝑎).

• Steady-state errors.



System Type on a Bode Plot

• The type of a system is defined to be equal to the number of the 

integrators in the open loop transfer function. 

• We can find the type of a system by examining its Bode plot.

a. A type 0 system has a slope of 0 and a phase of 0° at low 

frequencies.

b. A type 1 system has a slope of -20 dB/decade and a phase 

of -90° at low frequencies.

c. A type 2 system has a slope of -40 dB/decade and a phase 

of -180° at low frequencies.

• “Low frequencies” in this context means in the frequency range 

below any of the system zeros or poles.

• Examination of an experimental frequency response lets you to 

determine the system type without needing a transfer function.



System Type on a Bode Plot



System Type on a Bode Plot

• As illustrated in the diagram below, the type of the system can 

be determined as follows:

• For the first system 1/(s+10) with blue line, the gain at low 

frequency is 0 dB and the phase shift at low frequency is 0 

degree -> type 0.

• For the second system 1/s with orange line, the gain of at 

low frequency is a slope with -20 dB/decade and the phase 

shift at low frequency is -90 degree -> type 1 system.

• For the second system 1/s2 with yellow line, the gain at low 

frequency is a -40 dB/decade slope and the phase shift at 

low frequency is -180 degree -> type 2 system.



Steady-State Error from a Bode Plot

• The system type is related to the error that a closed-loop system 

will exhibit when attempting to follow a reference signal.

• Reminder:

a. A type 0 system will have an error 1/(1 + 𝐾𝑝) for a step 

input and infinite error for ramp and paraboloid.

b. A type 1 system will have zero error for a step, an error of 

1/𝐾𝑣 for a ramp and an infinite error for an input 

paraboloid.

c. A type 2 system will have zero error when tracking input 

steps or ramps, but an error 1/𝐾𝑎 when tracking a 

command paraboloid.



Steady-State Error with a Step Input

• The error to a steady-state unity magnitude step is given by:

𝑒 ∞ =
1

1 + 𝐾𝑝

Where: 𝐾𝑝 is position-error constant. 

• Thus, if the Bode plot indicates a type 0 system (zero slope at 
low frequency), we can directly read off the 𝐾𝑝 value.

• For systems of higher type, the DC gain of the system is 
infinite, so the value of 𝐾𝑝 is also infinite. 

• This corresponds to zero static error to a step function for 

systems including one or more integrators in the forward path.

• For a type 0 system, 𝐾𝑝 is equal to the value of the open loop 

gain of the system.



Steady-State Error with a Step Input

• This is actually the same as the value of the low-frequency gain of 

the system for type 0 system.

20 log 𝐾𝑝 = 𝐺 𝑠  thus 𝐾𝑝 = log−1 20/20 = 10



Steady-State Error with a Step Input

20 log 𝐺(𝑠) = 20 log 𝐾
ς𝑖=1

𝑛 𝑧𝑖

ς𝑖=1
𝑚 𝑝𝑖

• The value of position-error constant is:

𝐾𝑝 = lim
𝑠→0

𝐺 𝑠 𝐻(𝑠) = lim
𝑠→0

𝐾
ς𝑖=1

𝑛 𝑠 + 𝑧𝑖

ς𝑖=1
𝑚 𝑠 + 𝑝𝑖

= 𝐾
ς𝑖=1

𝑛 𝑧𝑖

ς𝑖=1
𝑚 𝑝𝑖

• Or, for a given type 0 system, the 

transfer function of the system is:

𝐺 𝑠 = 𝐾
ς𝑖=1

𝑛 𝑠 + 𝑧𝑖

ς𝑖=1
𝑚 𝑠 + 𝑝𝑖

• The initial value of the magnitude 

plot of the frequency response is:



Steady-State Error with a Ramp Input

𝑒 ∞ = 𝐾𝑣

Where: 𝐾𝑣 is velocity error constant. 

• Recall that 𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠).

• For a type 1 system, the multiplication by 𝑠 would result in a 

level gain curve at low frequencies. 

• If we were to plot a magnitude plot of 𝑠𝐺(𝑠), then 𝐾𝑣 would be 

the low frequency gain.

• Rather than plot this explicitly, we examine the gain that the 1/s 

part of the transfer function has at 1 rad/s.

• The steady-state error in the presence of a unit ramp input is 

specified as: 



Steady-State Error with a Ramp Input

• Similarly, the velocity error constant is found by determining the 

gain of the 1/𝑠 part of the transfer function if extended to 𝜔 = 1. 

• Velocity constant error is:

20 log 𝐾𝑣 = 𝐺 𝑠  thus 𝐾𝑣 = log−1 20/20 = 10

P
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Steady-State Error with a Ramp Input

20 log 𝐺(𝑠) = 20 log 𝐾
ς𝑖=1

𝑛 𝑧𝑖

𝜔0 ς𝑖=1
𝑚 𝑝𝑖

• With a type 1 system, the -20 dB/decade slope of the frequency 

response can be considered as originated from a function:

𝐺′(𝑠) = 𝐾
ς𝑖=1

𝑛 𝑧𝑖

𝑠 ς𝑖=1
𝑚 𝑝𝑖

• Or, for a given type 1 system, the 

transfer function of the system is:

𝐺 𝑠 = 𝐾
ς𝑖=1

𝑛 𝑠 + 𝑧𝑖

𝑠 ς𝑖=1
𝑚 𝑠 + 𝑝𝑖

• The initial value of the magnitude 

plot of the frequency response is:



Steady-State Error with a Ramp Input

• 𝐺′(𝑠) intersects the frequency axis when the frequency of the 

frequency response is:

𝜔 = 𝐾
ς𝑖=1

𝑛 𝑧𝑖

ς𝑖=1
𝑚 𝑝𝑖

• Thus, the velocity-error constant of the system is: 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺 𝑠 = 𝑠 𝐾
ς𝑖=1

𝑛 𝑧𝑖

𝑠 ς𝑖=1
𝑚 𝑝𝑖

= 𝐾
ς𝑖=1

𝑛 𝑧𝑖

ς𝑖=1
𝑚 𝑝𝑖

• Hence

𝐾𝑣 = 𝜔

• This is the same as the frequency-axis intercept. 

• Extending the initial -20 dB/decade slope to the frequency axis 

will give you the velocity-error constant.



Steady-State Error with a Parabolic Input

𝑒 ∞ = 𝐾𝑎

Where: 𝐾𝑎 is parabolic error constant. 

• Recall that 𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠).

• For a type 2 system, the multiplication by 𝑠2 would result in a 

level gain curve at low frequencies. 

• If we were to plot a magnitude plot of 𝑠2𝐺(𝑠), then 𝐾𝑎 would 

be the low frequency gain.

• Rather than plot this explicitly, we can instead examine the gain 

that the 1/𝑠2 part of the transfer function has at 1 rad/s.

• The error in the presence of a unit parabolic input is specified 

as: 



Steady-State Error with a Parabolic Input

• Thus, the acceleration error constant by determining the gain of 

the 1/𝑠2 part of the transfer function if extended to 𝜔 = 1.

• So, 20 log 𝐾𝑎 = 𝐺 𝑠  thus 𝐾𝑎 = log−1 45/20 = 177

10m                  100m                    1                        10                     100

Angular Frequency (rad/s)



Steady-State Error with a Parabolic Input

20 log 𝐺(𝑠) = 20 log 𝐾
ς𝑖=1

𝑛 𝑧𝑖

𝜔0
2 ς𝑖=1

𝑚 𝑝𝑖

• With a type 1 system, the -20 dB/decade slope of the frequency 

response can be considered as originated from a function:

𝐺′(𝑠) = 𝐾
ς𝑖=1

𝑛 𝑧𝑖

𝑠2 ς𝑖=1
𝑚 𝑝𝑖

• Or, for a type 2 system, the transfer 

function of the system is:

𝐺 𝑠 = 𝐾
ς𝑖=1

𝑛 𝑠 + 𝑧𝑖

𝑠2 ς𝑖=1
𝑚 𝑠 + 𝑝𝑖

• The initial value of the magnitude 

plot of the frequency response is:



Steady-State Error with a Parabolic Input

• 𝐺′(𝑠) has an intersection with the frequency axis when the 

frequency of the frequency response is:

𝜔 = 𝐾
ς𝑖=1

𝑛 𝑧𝑖

ς𝑖=1
𝑚 𝑝𝑖

• But, since the acceleration-error constant of the system is: 

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺 𝑠 = 𝑠2 𝐾
ς𝑖=1

𝑛 𝑧𝑖

𝑠2 ς𝑖=1
𝑚 𝑝𝑖

= 𝐾
ς𝑖=1

𝑛 𝑧𝑖

ς𝑖=1
𝑚 𝑝𝑖

• Hence

𝜔 = 𝐾𝑎

• Extending the initial -40 dB/decade slope to the frequency 

axis will give you the velocity-error constant at 𝐾𝑎.



Steady-State Analysis with Bode Plots

The open-loop frequency response shown in the figure below was 

experimentally obtained from a unity feedback system. Estimate:

a. The percent 

overshoot of the 

closed-loop 

system. 

[20 marks]

a. The steady-state 

error of the 

closed-loop 

system.

[20 marks]



Steady-State Analysis with Bode Plots

a. The phase margin of the closed-loop system is determined 

from following frequency response diagram.

From the given Bode 

plots, the phase 

margin of the given 

system is 20 and the 

gain margin is 5 dB.



Steady-State Analysis with Bode Plots

• Rearrange the equation given above, the damping ratio is:

𝜁 = 4
1

4
tan2 𝜙𝑚

+ 2
2

− 4

 = 4
1

4
tan2 20

+ 2
2

− 4

= 0.176

• Or, using the phase margin vs. damping ration graph, the 

damping ratio can be estimated from the system’s phase margin.



Steady-State Analysis with Bode Plots

• In graph given below, the damping ratio, 𝜁 is approx. about 0.18. 



Steady-State Analysis with Bode Plots

• The percentage overshoot of the system is calculated from 

the following equation:

%𝑂𝑆 = 𝑒

𝜋𝜁

1−𝜁2
× 100%

 = 𝑒

𝜋(0.176)

1−(0.176)2
× 100% = 57%

• The equation given above yields 57% overshoot. 

b. The system is Type 1 since the initial slope is - 20 dB/dec and 

extending this slope intersection with the gain at 1 rad/s is 12 dB. 

Continuing the low frequency slope down to the frequency axis 

(i.e. 0 dB line) yields 4 rad/s. 



Steady-State Analysis with Bode Plots

Knowing that we found 

the intersection of low 

frequency slope with 1 

rad/s is 12 dB. 

Thus, the velocity error 

constant of the system is:

𝐾𝑣 = log−1 12/20 = 4

Or, from the intersection 

with the frequency axis:

𝐾𝑣 = 4



Steady-State Analysis with Bode Plots

As a result, for 𝐾𝑣 = 4 and given relevant inputs, the steady-

state errors of the system are:

• For a unit step input, it is zero. 

• For a unit ramp input, it is a finite value: 

𝑒 ∞ ramp =
1

𝐾𝑣
=  0.25

• For a parabolic input, it is infinite (∞).
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