

Bode Plots Straight-Line Approximation (Case Study Revision)

XMUT315 Control System Engineering

Topics

- Pole or zero at origin.
- Simple pole or zero.
- Simple poles or simple zeros.
- Simple double pole(s) and simple zero(s).
- · Complex zeros.
- Simple zero and complex poles.

For a system with the following transfer function equation:

$$G_1(s) = s$$

• DC gain of 0 dB at $\omega = 0$ rad/s.

$$|G_1(s)|_{\omega = 0} = 0 = 0 = 0 dB$$

- Zero at origin (ω = 0 rad/s):
 - Gain slope of +20 dB/decade.
 - Gain 0 (20 log (1) = 0 dB) at ω = 1 rad/s.
 - Phase shift at +90°.

For a system with the following transfer function equation:

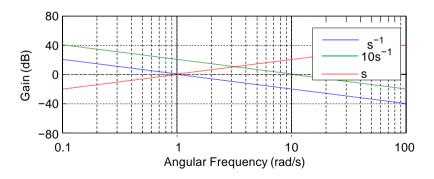
$$G_2(s) = \frac{1}{s}$$

• DC gain at $\omega = 0$ rad/s:

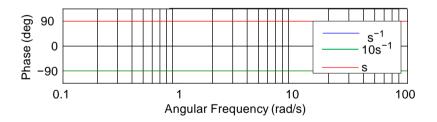
$$|G_2(s)|_{\omega = 0} = \frac{1}{0} = \infty = \infty \, dB$$

- Pole at origin (ω = 0 rad/s):
 - Gain slope of -20 dB/decade.
 - Gain 0 (20 log (1) = 0 dB) at ω = 1 rad/s.
 - Phase shift at -90°.

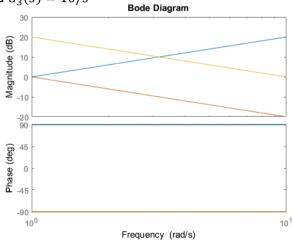
For a system with the following transfer function equation:


$$G_3(s) = \frac{10}{s}$$

• DC gain at $\omega = 0$ rad/s:


$$|G_3(s)|_{\omega = 0} = \frac{10}{0} = \infty = \infty \, dB$$

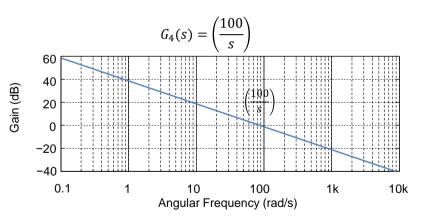
- Pole at origin (ω = 0 rad/s):
 - Gain slope of -20 dB/decade.
 - Gain 10 (20 log (10) = 20 dB) at ω = 1 rad/s.
 - Phase shift at -90°.


• Gain sketches of the systems: $G_1(s) = s$, $G_2(s) = 1/s$, and $G_3(s) = 10/s$.

• Phase sketches of the systems: $G_1(s) = s$, $G_2(s) = 1/s$, and $G_3(s) = 10/s$.

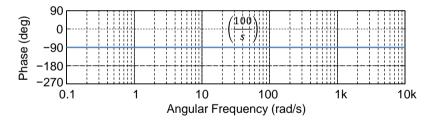
• Matlab simulation of the systems: $G_1(s) = s$, $G_2(s) = 1/s$, and $G_3(s) = 10/s$

For a system with the following transfer function equation:

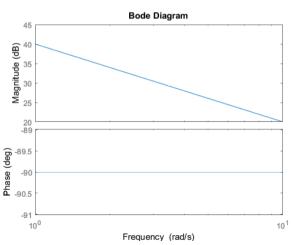

$$G_4(s) = \frac{100}{s}$$

DC gain at ω = 0 rad/s:

$$|G_4(s)|_{\omega = 0} = \frac{100}{0} = \infty = \infty \, dB$$


- Pole at origin (ω = 0 rad/s):
 - Gain slope of -20 dB/decade.
 - Gain of 100 (20 log (100) = 40 dB) at ω = 1 rad/s.
 - Phase shift of -90°.

· Gain sketch of the system:


Phase sketch of the system:

$$G_4(s) = \left(\frac{100}{s}\right)$$

Matlab simulation of the system:

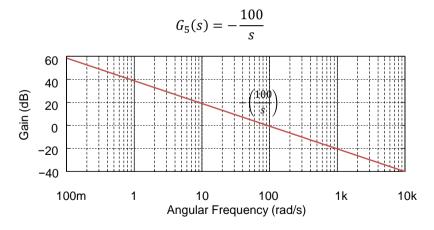
$$G_4(s) = \frac{100}{s}$$

Exercise 3: Pole at origin with negative gain

For a system with the following transfer function equation:

$$G_5(s) = -\frac{100}{s}$$

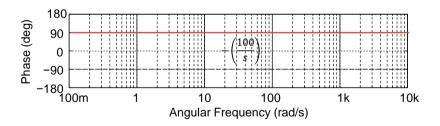
• DC gain at $\omega = 0$ rad/s:


$$|G_5(s)|_{\omega = 0} = \frac{100}{0} = \infty = \infty \, dB$$

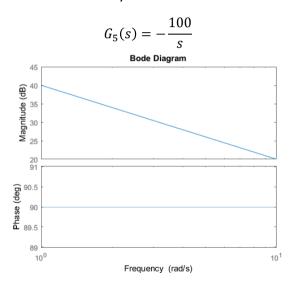
- Pole at origin ($\omega = 0 \text{ rad/s}$):
 - Gain slope of -20 dB/decade.
 - Gain of 100 (20 log (100) = 40 dB) at ω = 1 rad/s.
 - Phase shift of +90° ($\theta = 180^{\circ} 90^{\circ}$).

Note: to cope with negative gain (<0), you just need to account for the extra 180° phase shift associated with negative gain.

Exercise 3: Real pole at origin with negative gain


Gain sketch of the system:

Exercise 3: Real pole at origin with negative gain


Phase sketch of the system:

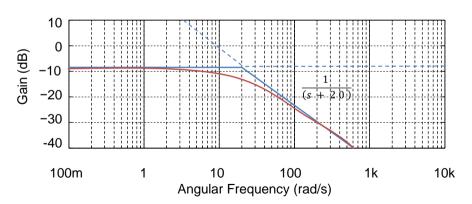
$$G_5(s) = -\left(\frac{100}{s}\right)$$

Exercise 3: Real pole at origin with negative gain

Matlab simulation of the system:

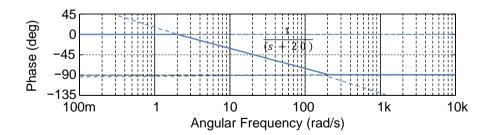
For a system with the following transfer function equation:

$$G_6(s) = \frac{7}{s+20}$$


• DC gain at $\omega = 0$ rad/s:

$$|G_6(s)|_{\omega = 0} = \frac{7}{20} = 0.35 = -9 \text{ dB}$$

- Real pole at ω = 20 rad/s:
 - Gain slope of -20 dB/decade after $\omega = 20$ rad/s.
 - Phase shift of 0° at $\omega = 2$ rad/s.
 - Phase shift of 45° at $\omega = 20$ rad/s.
 - Phase shift of -90° at ω = 200 rad/s.


· Gain sketch of the system:

$$G_6(s) = \frac{7}{s+20}$$

Phase sketch of the system:

$$G_6(s) = \frac{7}{(s+20)}$$

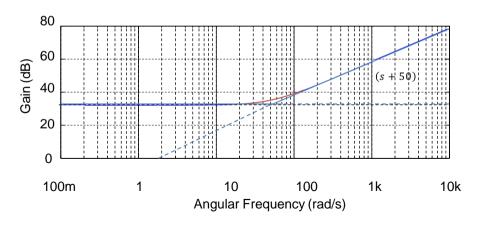
· Matlab simulation of the system:

$$G_6(s) = \frac{7}{s+20}$$
Bode Diagram
$$G_{60}(s) = \frac{7}{s+20}$$

$$G_{60}(s)$$

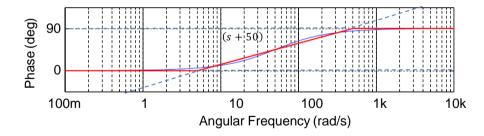
For a system with the following transfer function equation:

$$G_7(s) = (s + 50)$$

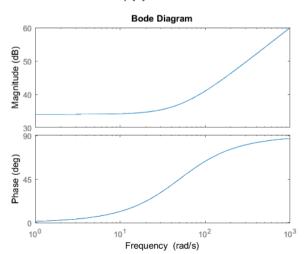

• DC gain at $\omega = 0$ rad/s:

$$|G_7(s)|_{\omega=0} = 50 = 34 \text{ dB}$$

- Real zero at $\omega = 50$:
 - Gain slope of +20 dB/decade after ω = 50 rad/s.
 - Phase shift of 0° at ω = 5 rad/s.
 - Phase shift of 45° at ω = 50 rad/s.
 - Phase shift of $+90^{\circ}$ at $\omega = 500$ rad/s.


· Gain sketch of the system:

$$G_7(s) = (s + 50)$$


Phase sketch of the system:

$$G_7(s) = (s + 50)$$

• Matlab simulation of the system:

$$G_7(s) = s + 50$$

For a system with the following transfer function equation:

$$G_8(s) = \frac{1}{(s+2)(s+20)}$$

• DC gain at $\omega = 0$ rad/s:

$$|G(s)|_{\omega = 0} = \frac{1}{(2)(20)} = 0.025 = -32 \text{ dB}$$

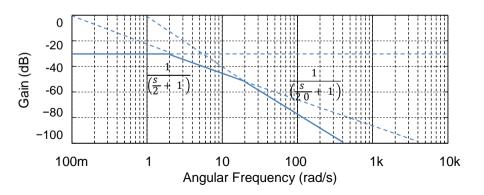
- First real pole at ω = 2 rad/s:
 - Gain slope of 20 dB/decade after ω = 2 rad/s.
 - Phase shift of 0° at $\omega = 0.2$ rad/s.
 - Phase shift of -45° at $\omega = 2 \text{ rad/s}$.
 - Phase shift of -90° at ω = 20 rad/s.

- Second real pole at $\omega = 20 \text{ rad/s}$:
 - Gain slope of 20 dB/decade after $\omega = 20$ rad/s.
 - Phase shift of 0° at $\omega = 2 \text{ rad/s}$
 - Phase shift of -45° at $\omega = 20$ rad/s.
 - Phase shift of -90° at ω = 200 rad/s.

Overall gain of the system:

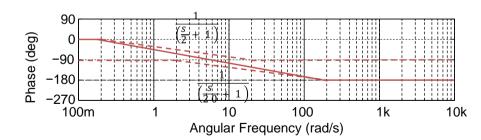
$$G_8(s) = \frac{1}{(s+2)(s+20)}$$

- DC gain of 0.025 (= -32 dB) at ω = 0 rad/s.
- Gain slope of -20 dB/decade after ω = 2 rad/s.
- Gain slope of -40 dB/decade after ω = 20 rad/s.

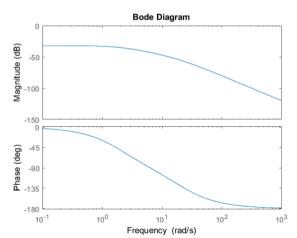

Overall phase shift of the system:

$$G_8(s) = \frac{1}{(s+2)(s+20)}$$

- Phase shift of 0° at ω = 0 rad/s.
- Phase shift of -45° at $\omega = 2 \text{ rad/s}$
- Phase shift of -90° after $\omega = 20 \text{ rad/s}$
- Phase shift of -135° at ω = 20 rad/s.
- Phase shift of -180° after ω = 200 rad/s.


· Gain sketch of the system:

$$G_8(s) = \frac{1}{(s+2)(s+20)}$$


Phase sketch of the system:

$$G_8(s) = \frac{1}{(s+2)(s+20)}$$

· Matlab simulation of the system:

$$G_8(s) = \frac{1}{(s+2)(s+20)}$$

For a system with the following transfer function equation:

$$G_9(s) = \frac{(s+100)}{(s+5)}$$

DC gain at ω = 0 rad/s:

$$|G(s)|_{\omega = 0} = \frac{100}{(5)} = 20 = 26 \,\mathrm{dB}$$

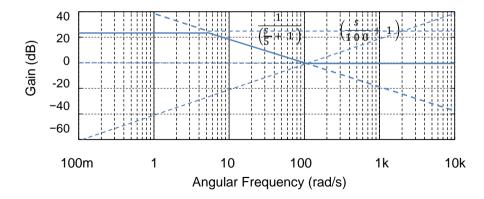
- Real pole at ω = 5 rad/s:
 - Gain slope of -20 dB/decade after $\omega = 5$ rad/s.
 - Phase shift of 0° at ω = 0.5 rad/s.
 - Phase shift of -45° at $\omega = 5$ rad/s.
 - Phase shift of -90° at ω = 50 rad/s.

- Real zero at ω = 100 rad/s:
 - Gain slope of +20 dB/decade after ω = 100 rad/s.
 - Phase shift of 0° at ω = 10 rad/s.
 - Phase shift of +45° at ω = 100 rad/s.
 - Phase shift of $+90^{\circ}$ at $\omega = 1000$ rad/s.

Overall gain of the system:

$$G_9(s) = \frac{(s+100)}{(s+5)}$$

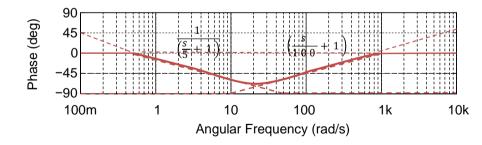
- DC gain of 20 (= 26 dB) at ω = 0 rad/s.
- Gain slope of -20 dB/decade after ω = 5 rad/s.
- Gain slope of 0 dB/decade after ω = 100 rad/s.


Overall phase shift of the system:

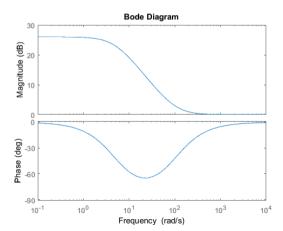
$$G_9(s) = \frac{(s+100)}{(s+5)}$$

- Phase shift of 0° at $\omega = 0$ rad/s.
- Phase shift of -45° at ω = 5 rad/s.
- Phase shift of -90° after ω = 50 rad/s.
- Phase shift of -45° at ω = 100 rad/s.
- Phase shift of 0° after $\omega = 1000$ rad/s.

· Gain sketch of the system:


$$G_9(s) = \frac{(s+100)}{(s+5)}$$

Exercise 7: Real pole and zero


Phase sketch of the system:

$$G_9(s) = \frac{(s+100)}{(s+5)}$$

Exercise 7: Real pole and zero

$$G_9(s) = \frac{(s+100)}{(s+5)}$$

For a system with the following transfer function:

$$G_{10}(s) = \frac{(s+100)}{(s+5)^2}$$

DC gain at ω = 0 rad/s:

$$|G(s)|_{\omega = 0} = \frac{100}{(5)^2} = 4 = 12 \text{ dB}$$

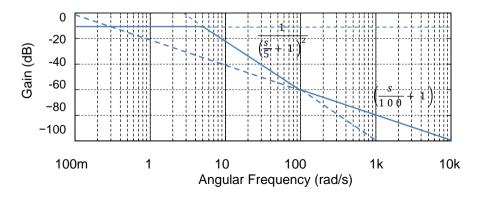
- Real double poles at ω = 5 rad/s:
 - Gain slope of -20 dB/decade after ω = 5 rad/s.
 - Phase shift of 0° at $\omega = 0.5$ rad/s.
 - Phase shift of -90° at ω = 5 rad/s.
 - Phase shift of -180° at ω = 50 rad/s.

- Real zero at ω = 100 rad/s:
 - Gain slope of +20 dB/decade after ω = 100 rad/s.
 - Phase shift of 0° at ω = 10 rad/s.
 - Phase shift of +45° at ω = 100 rad/s.
 - Phase shift of $+90^{\circ}$ at $\omega = 1000$ rad/s.

Overall gain of the system:

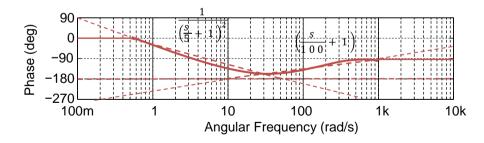
$$G_{10}(s) = \frac{(s+100)}{(s+5)^2}$$

- DC gain of 4 (= 12 dB) at ω = 0 rad/s.
- Gain slope of -40 dB/decade after $\omega = 5$ rad/s.
- Gain slope of -20 dB/decade after $\omega = 100$ rad/s.

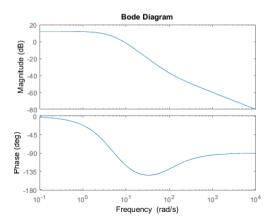

Overall phase shift of the system:

$$G_{10}(s) = \frac{(s+100)}{(s+5)^2}$$

- Phase shift of 0° at $\omega = 0$ rad/s.
- Phase shift of -90° at $\omega = 5$ rad/s.
- Phase shift of about -90° to -180° around ω = 10 rad/s and ω = 50 rad/s.
- Phase shift of -135° at $\omega = 100$ rad/s.
- Phase shift of -90° after ω = 1000 rad/s.


Gain sketch of the system:

$$G_{10}(s) = \frac{(s+100)}{(s+5)^2}$$



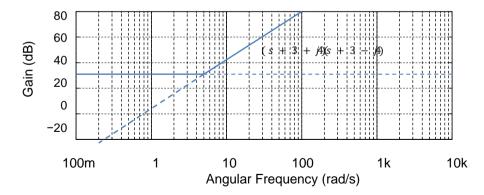
Phase sketch of the system:

$$G_{10}(s) = \frac{(s+100)}{(s+5)^2}$$

$$G_{10}(s) = \frac{(s+100)}{(s+5)^2}$$

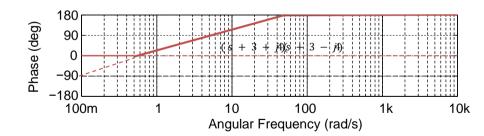
For a system with the following transfer function equation:

$$G_{11}(s) = (s+3+j4)(s+3-j4)$$

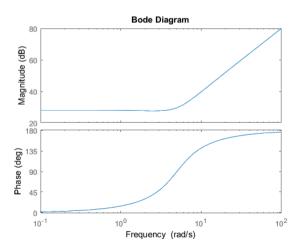

• DC gain at $\omega = 0$ rad/s:

$$|G_{11}(s)|_{\omega = 0} = (5)(5) = 25 = 28 \text{ dB}$$

- A pair of complex zeros at $\omega = 3 + j4$ and 3 j4 rad/s:
 - Gain slope of +40 dB/decade after ω = 5 rad/s.
 - Phase shift of 0° at ω = 0.5 rad/s.
 - Phase shift of -90° at ω = 5 rad/s.
 - Phase shift of +180° at ω = 50 rad/s.


Gain sketch of the system:

$$G_{11}(s) = (s+3+j4)(s+3-j4)$$



· Phase sketch of the system:

$$G_{11}(s) = (s+3+j4)(s+3-j4)$$

$$G_{11}(s) = (s+3+j4)(s+3-j4)$$

For a system with the following transfer function equation:

$$G_{12}(s) = \frac{(s+100)}{(s+3+j4)(s+3-j4)}$$

DC gain at ω = 0 rad/s:

$$|G(s)|_{\omega = 0} = \frac{100}{(5)(5)} = 4 = 12 \text{ dB}$$

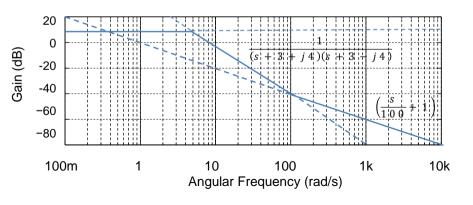
- Complex poles at $\omega = -3 j4$ and -3 + j4 rad/s:
 - Gain slope of -40 dB/decade after ω = 5 rad/s.
 - Phase shift of 0° at $\omega = 0.5$ rad/s.
 - Phase shift of -90° at ω = 5 rad/s.
 - Phase shift of -180° at ω = 50 rad/s.

- Real zero at ω = 100 rad/s:
 - Gain slope of +20 dB/decade after ω =100 rad/s.
 - Phase shift of 0° at ω = 10 rad/s.
 - Phase shift of +45° at ω = 100 rad/s.
 - Phase shift of $+90^{\circ}$ at $\omega = 1000$ rad/s.

• Overall gain of the system:

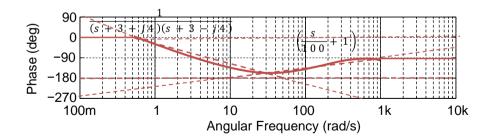
$$G_{12}(s) = \frac{(s+100)}{(s+3+j4)(s+3-j4)}$$

- DC gain of 4 (= 12 dB) at ω = 0 rad/s.
- Gain slope of -40 dB/decade after $\omega = 5$ rad/s.
- Gain slope of -20 dB/decade after ω = 100 rad/s.

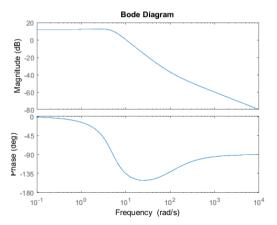

Overall phase shift of the system:

$$G_{12}(s) = \frac{(s+100)}{(s+3+j4)(s+3-j4)}$$

- Phase shift of 0° at $\omega = 0$ rad/s.
- Phase shift of -90° at $\omega = 5$ rad/s.
- Phase shift of about -90° to -180° around ω = 10 rad/s and ω = 50 rad/s.
- Phase shift of -135° at $\omega = 100$ rad/s.
- Phase shift of -90° after $\omega = 1000$ rad/s.


Gain sketch of the system:

$$G_{12}(s) = \frac{(s+100)}{(s+3+j4)(s+3-j4)}$$



Phase sketch of the system:

$$G_{12}(s) = \frac{(s+100)}{(s+3+j4)(s+3-j4)}$$

$$G_{12}(s) = \frac{(s+100)}{(s+3+j4)(s+3-j4)}$$

