

Introduction to Root Locus

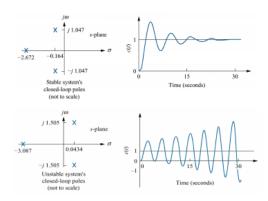
XMUT315 Control System Engineering

Topics

- Introduction to Pole- Zero Diagrams
- Poles and Zeros of Systems
- System Performance
- Closed-Loop Poles and Zeros
- Examples of Root Locus Diagram
- Design using Root Locus Diagram
- Formalisations of Root Locus Diagram
- Examples of Plots in Root Locus.

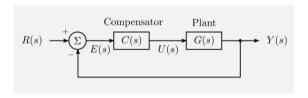
Introduction

- We know that the location of the system poles and zeros determine the response of a LTI system.
 - Poles on the y-axis -> undamped response.
 - Complex poles -> underdamped response.
 - Single double poles on the x-axis -> critical damped response.
 - Poles on the x-axis -> overdamped response.



Introduction

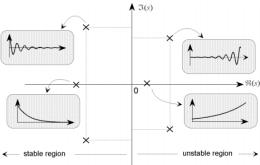
- To change the system response, we therefore need to change these root (pole and zero) location(s).
- We will do this by applying feedback and including a compensator (or controller) into the system.



- Application of feedback enables us to manage the system.
- Compensator (or controller) enable us to determine the specific response of the system.

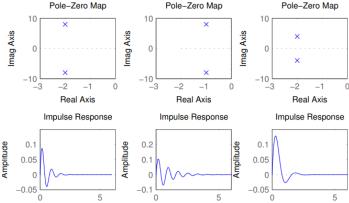
Introduction

- The root locus is a visual presentation of the way the roots of a system change as we vary some parameters of our compensator.
- We will usually be interested in how altering the gain affects the system response, but we can use the root locus for other parameters too.



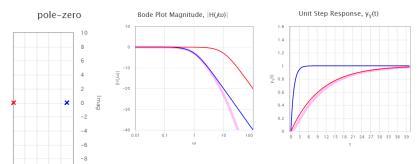
Poles on the Pole-Zero Map

- We know that pole location determines which modes will be present in a time response.
- The real part of a pole location determines the damping of a mode and the imaginary part determines the natural frequency of the mode.



Dominant Poles

 The pole with the slowest response will dominate the response of any system.

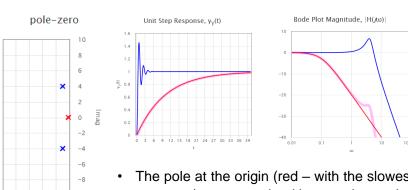


Real

The pole near the origin (blue – with the slowest response) compared with the pole further from the origin (red).

Dominant Poles

 The pole with the slowest response will dominate the response of any system.



Real

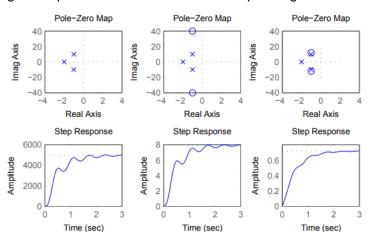
 The pole at the origin (red – with the slowest response) compared with complex poles (blue) further from origin.

Dominant Poles

- We can therefore often approximate the response of a system as either a first order, or a second order system.
- We can then use the location of the dominant poles to determine the system's settling time, overshoot, damping, natural frequency etc.
- So, if the dominant pole (pair) is sufficiently far away from any other poles, then we can ignore the other poles when designing our control system.
- This approximation is normally safe if other poles are at least a factor of three further to the left of the s-plane.

Zeros on the Pole-Zero Map

- Zeros near a pole suppress the mode corresponding to the nearby pole.
- In the extreme case where the zeros and poles are co-located, we get complete cancellation of the corresponding mode.



System Performance - Settling Time

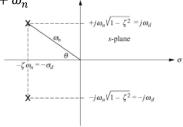
- The further a pole is to the left of the s-plane, the faster the corresponding mode decays.
- Therefore, if we are given a specification for system response time, we can convert this to a requirement on pole position.

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Roots of the characteristic equation:

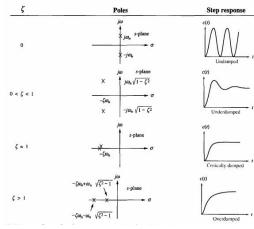
$$s = -\frac{2\zeta\omega_n \pm \sqrt{(2\zeta\omega_n)^2 - 4\omega_n^2}}{2}$$

$$= -\zeta\omega_n + \omega_n\sqrt{\zeta^2 - 1} = -\sigma + \omega_d$$



System Performance - Settling Time

- For the given roots of characteristic equation:
 - The two roots are imaginary when ζ = 0.
 - The two roots are complex conjugate when 0 < ζ < 1.
 - The two roots are real and equal when $\zeta = 1$.
 - The two roots are real but not equal when ζ > 1.



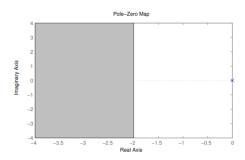
System Performance - Settling Time

• The settling time of a second order system (T_s) is approximately (e.g. for the 2% steady-state settling time standard):

$$T_{s} = \frac{4}{\zeta \omega_{n}} = \frac{4}{\sigma}$$

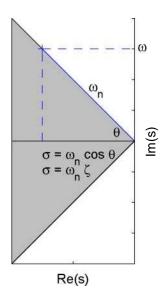
Where: σ is the real part of the pole pair.

So, for example if we have a requirement that settling time, T_s < 2 second, then we must have the dominant pole further left than s = -2.



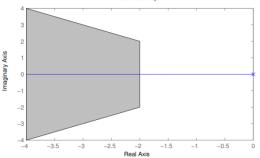
System Performance - Damping

- We are often also given a requirement on damping ratio.
- Recall that a damping ratio ζ occurs on the pole-zero diagram as a straight line with an angle of $\theta = \cos^{-1} \zeta$ to the negative real axis.
- We can thus similarly construct an allowed region for the poles if we are given a damping specification.
- For example, if we require $\zeta > 0.707$, then the poles must lie less than $\theta = \cos^{-1} 0.707 \approx 45^{\circ}$ from the negative real axis.



System Performance - Allowed Pole Region

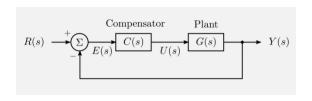
- We are often given specifications on both settling time and damping, so we must combine the constraints imposed by the two.
- We therefore obtain a composite region in which we can place the poles.



• So, if the closed-loop system poles lie within the allowed region then we have satisfied the design specification.

Closed-Loop Poles

If we have a plant described by an open-loop transfer function G(s), it will have a certain set of open-loop poles and zeros.



• We now enclose the plant within a unity-gain feedback loop including a compensator with a transfer function $\mathcal{C}(s)$, which results in a closed-loop transfer function:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

Closed-Loop Poles

- Notice that the closed-loop transfer function will not have the same pole locations as the open-loop transfer function.
- There is no reason that the denominator of G(s) and the denominator of T(s) would have the same roots.
- Closing the loop has moved the poles, but we do not yet know to where it is heading.

$$G(s) = \frac{1}{(s+10)}$$

Root of characteristic equation:

$$s = -10$$

Closed-loop transfer function:

$$T(s) = \frac{\frac{1}{(s+10)}}{1 + \frac{1}{(s+10)}} = \frac{1}{s+11}$$

Root of characteristic equation:

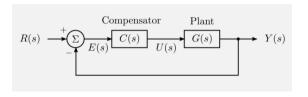
$$s = -11$$

Closed-Loop Poles

• We will find is that the location of the closed-loop poles will depend on the dc gain *K* or the system. In this case:

$$K = C(s)G(s)\Big|_{s=0}$$

- As we can change C(s), we can use K as a tuning parameter to move the closed-loop poles to a desired location.
- The desired location for the poles will, in turn, be determined by the performance specification for our control system.



Closed-Loop Zeros

- Let's consider the effect that feedback has on zeros.
- Again, consider a plant with a transfer function G(s) that we have controlled by adding a series compensator C(s).
- Again, the closed-loop transfer function is:

$$T(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

- The only way that T(s) can be zero is if either C(s) or G(s) is zero (or both).
- Thus, the set of zeros of the closed-loop system is the combination of the zeros of the plant and the compensator.
 It is not possible to move the zeros of a plant using feedback.

• Consider a system that has a single open-loop pole at s = -1.

$$G(s) = \frac{1}{s+1}$$

• Let us use a proportional compensator $C(s) = K_p$ and see what effect this has on the pole.

$$T(s) = \frac{C(s)G(s)}{1 + C(s)G(s)} = \frac{\left(\frac{K_p}{s+1}\right)}{1 + \left(\frac{K_p}{s+1}\right)} = \frac{K_p}{s + (1 + K_p)}$$

- Thus, the closed-loop pole is at $s = -1 K_p$, compared to the open-loop pole at s = -1.
- We can choose the closed-loop pole position by choosing K_p , though only along a constrained path (e.g. a locus).

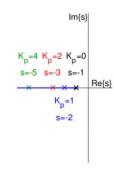
- Depending on the value of proportional compensator, K, the locations of the closed-loop poles are along a constraint path (e.g. a locus).
- Closed loop system:

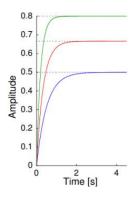
$$T(s) = \frac{K_p}{s + (1 + K_p)} \qquad \begin{cases} K_p = 4 & K_p = 2 & K_p = 0 \\ s = -5 & s = -3 & s = -1 \end{cases}$$

These locus are:

$$K_p = 0 \rightarrow s = -1$$

 $K_p = 1 \rightarrow s = -2$
 $K_p = 2 \rightarrow s = -3$
 $K_p = 4 \rightarrow s = -5$





- Consider a DC motor with a transfer function G(s) = 1/s(s+1).
- Let us add a proportional controller C(s) = Kp to this plant.

$$T(s) = \frac{\left[\frac{K_p}{s(s+1)}\right]}{1 + \left[\frac{K_p}{s(s+1)}\right]}$$
$$= \frac{K_p}{s^2 + s + K_p}$$

- Now, the closed-loop poles are located where the denominator is equal to zero.
- Thus, we find them by solving $s^2 + s + K_p = 0$ (or more generally), by solving the characteristic equation, 1 + CG = 0.

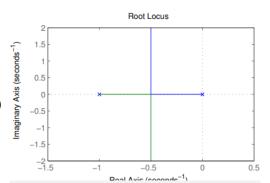
• So let us find the roots of $s^2 + s + K_p = 0$ using the quadratic equation.

$$s = \frac{-1 \pm \sqrt{1 - 4K_p}}{2}$$

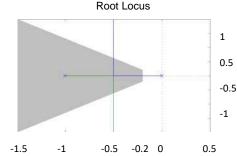
• For $K_n < 1/4$, we get two real roots at:

$$s = -\frac{1}{2} \pm \frac{\sqrt{1 - 4K_p}}{2}$$

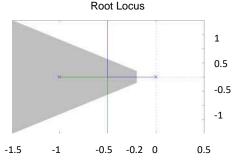
 For K_p > 1/4 we change from a first order to a second order (oscillatory) response as the poles become complex.



- Let us imagine that we have been asked to design a controller for the dc motor so that it has a settling time of less than 20 seconds and a damping ratio better than ζ = 0.707.
- As we need $T_s = 4/\sigma < 20$ the dominant pole must be further left than s = -0.2 (e.g. $\sigma = 4/20 = 0.2$).
- Damping ratio, $\zeta > 0.707$ requires that the angle from the negative real axis be no greater than $\theta = \cos^{-1} 0.707 = 45^{\circ}$.



- In this example, there are a range of possible *K* values that would satisfy the design specification.
- Let's work out the minimum and maximum gains that would be acceptable.
- The dominant pole crosses into the allowed region at s = -0.2.



We know that while the roots are real, they are located at:

$$s = -\frac{1}{2} \pm \frac{\sqrt{1 - 4K_p}}{2}$$

· So, in this case:

$$s = -0.5 \pm \frac{\sqrt{1 - 4K_p}}{2} = -0.2$$

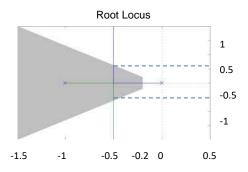
· Solving the equation given above:

$$\frac{\sqrt{1-4K_p}}{2} = 0.3$$

As a result, the proportional gain of the system is:

$$K_p = 0.16$$

- By inspection of the diagram, we can see that the poles leave the allowed region at $s = -0.5 \pm j0.5$.
- These points are the maximum values before that meet the design specification of the system.



 We previously calculated that the complex poles are located at:

$$s=-\frac{1}{2}\pm j\frac{\sqrt{4K_p-1}}{2}$$

• So, $\sigma = -0.5$ and again we can equate to find the value of K_p on the boundary:

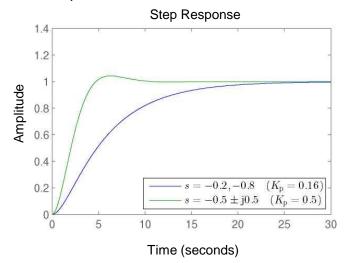
$$\frac{\sqrt{4K_p-1}}{2}=0.5$$

So, the proportional gain of the system is:

$$K_p = 0.5$$

• So, we have found that the design specification will be met for $0.16 < K_n < 0.5$.

• The graph shows the step responses of the system when $K_p = 0.16$ and $K_p = 0.5$.



The Evan's Root Locus

- We can always determine the root locus using mathematical analysis as in the examples above.
- However, this becomes tedious as the number of poles increases.
- The Evan's root locus is a graphical technique that automates the mathematics to provide a method to draw the locus directly.
- Examination of the root locus allows us to:
 - a. Determine the stability of a system as gain changes.
 - Choose an appropriate gain to produce a desired closedloop response.
 - c. Modify the form of C(s) if an adequate closed-loop response cannot be achieved.

Root Locus Formalities

- The root locus is a pole zero diagram that shows the "tracks" taken by the system poles as some parameters (i.e. gain in our case) are varied.
- Formally, the root locus shows the locus traced out by the roots of the characteristic equation, 1 + C(s)G(s) = 0, as the gain is varied.
- To find a root locus, we are therefore searching for values of *s* that satisfy the characteristic equation:

$$1 + C(s)G(s) = 0$$

Rearrange the equation:

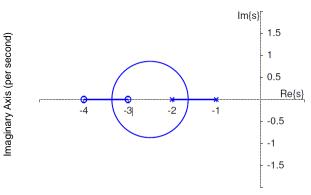
$$C(s)G(s) = -1$$

$$C(s)G(s) = 1 \angle (2k+1)180^{\circ} \text{ for } k \in \mathbb{Z}$$

$$G(s) = \frac{(s+3)(s+4)}{(s+1)(s+2)}$$

- Zeros: -3, -4.
- Poles: -1,-2.

Root Locus

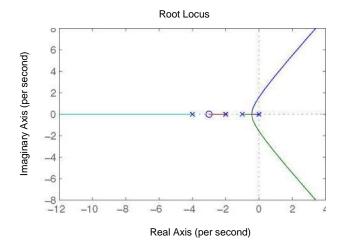


Real Axis (per second)

$$G(s) = \frac{s+3}{s(s+1)(s+2)(s+4)}$$

Zeros: -3.

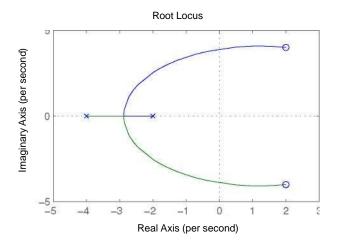
Poles: 0,-1,-2,-4.



$$G(s) = \frac{(s-2)^2 + 16}{(s+2)(s+4)}$$

Zeros: 2 ± j4.

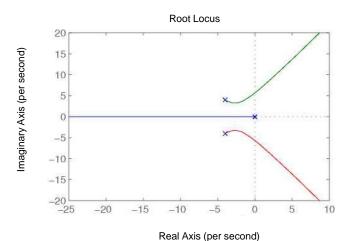
• Poles: -2,-4.



$$G(s) = \frac{1}{s[(s+4)^2 + 16]}$$

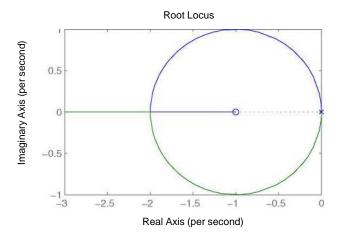
Zeros:

• Poles: 0, -4 \pm j4



$$G(s) = \frac{1+s}{s^2}$$

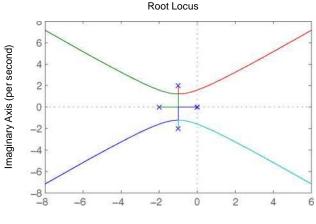
- Zeros: -1.
 - Poles: -0 (double poles at origin).



$$G(s) = \frac{1}{s(s+2)[(s+1)^2 + 4]}$$

Zeros:

• Poles: 0, -2, -1 \pm j2

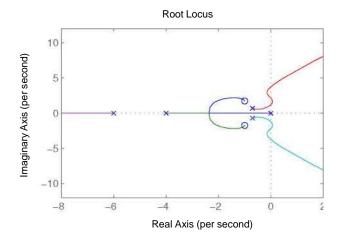


Real Axis (per second)

$$G(s) = \frac{s^2 + 2s + 4}{s(s+4)(s+6)(s^2 + 1.4s + 1)}$$

• Zeros: $-1 \pm j\sqrt{3}$.

• Poles: 0,-4,-6, -0.7 \pm j $\sqrt{0.51}$



Things to Notice

These are the guidelines for construction of root locus diagram:

- 1. Each branch of the root locus begins at an open-loop pole.
- Each branch of the root locus either terminates at a zero or goes to (complex) infinity.
- 3. One and only one branch leaves each pole.
- One and only one branch enters each zero.
- Like any pole-zero diagram, the root locus is always symmetric about the real axis (and complex poles always come in conjugate pairs).