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+ Introduction to Pole- Zero Diagrams
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Introduction

We know that the location of the system poles and zeros determine

the response of a LTI system.

* Poles on the y-axis ->
undamped response.

* Complex poles ->
underdamped response.

* Single double poles on
the x-axis -> critical
damped response.

* Poles on the x-axis ->
overdamped response.
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Introduction

* To change the system response, we therefore need to change
these root (pole and zero) location(s).

*  We will do this by applying feedback and including a
compensator (or controller) into the system.

Compensator Plant

R(s) ;@ﬁm-{ C(s) ]W-I G(s) —— Y(5)

* Application of feedback enables us to manage the system.

» Compensator (or controller) enable us to determine the specific
response of the system.



Introduction

» The root locus is a visual presentation of the way the roots of a
system change as we vary some parameters of our
compensator.

*  We will usually be interested in how altering the gain affects the
system response, but we can use the root locus for other
parameters too.
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Poles on the Pole-Zero Map

*  We know that pole location determines which modes will be present
in a time response.

* The real part of a pole location determines the damping of a mode
and the imaginary part determines the natural frequency of the

mode.
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Dominant Poles

The pole with the slowest response will dominate the response of
any system.
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Dominant Poles

* The pole with the slowest response will dominate the response of

any system.
pole-zero Unit Step Response, yy(t) Bode Plot Magnitude, [H(w)!
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Dominant Poles

* We can therefore often approximate the response of a system as
either a first order, or a second order system.

* We can then use the location of the dominant poles to determine
the system’s settling time, overshoot, damping, natural frequency
etc.

* So, if the dominant pole (pair) is sufficiently far away from any
other poles, then we can ignore the other poles when designing
our control system.

+ This approximation is normally safe if other poles are at least a
factor of three further to the left of the s-plane.



Zeros on the Pole-Zero Map

« Zeros near a pole suppress the mode corresponding to the nearby
pole.

* In the extreme case where the zeros and poles are co-located, we
get complete cancellation of the corresponding mode.
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System Performance - Settling Time

* The further a pole is to the left of the s-plane, the faster the
corresponding mode decays.

* Therefore, if we are given a specification for system response
time, we can convert this to a requirement on pole position.

G(s) =

* Roots of the characteristic equation:
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System Performance - Settling Time

For the given roots of characteristic equation:

The two roots are

Step response

imaginary when ¢ = 0.

The two roots are
complex conjugate
when0<{<1.

The two roots are real
and equal when ¢ = 1.

The two roots are real
but not equal when ¢ >

=

Undamped
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Underdamped
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Critically dumped
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Overdamped



System Performance - Settling Time

The settling time of a second order system (T) is approximately

(e.g. for the 2% steady-state settling time standard):

Ts

So, for example if we
have a requirement that
settling time, Ty < 2
second, then we must
have the dominant pole
further left than s = - 2.

_Cwn

Where: ¢ is the real part of the pole pair.
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We are often also given a requirement
on damping ratio.

Recall that a damping ratio ¢ occurs on
the pole-zero diagram as a straight line
with an angle of 8 = cos™1 { to the
negative real axis.

We can thus similarly construct an
allowed region for the poles if we are
given a damping specification.

For example, if we require ¢ > 0.707,
then the poles must lie less than 6 =
cos™10.707 =~ 45° from the negative

real axis.

System Performance - Damping

Im(s)



System Performance - Allowed Pole Region

* We are often given specifications on both settling time and
damping, so we must combine the constraints imposed by the two.

* We therefore obtain a composite region in which we can place the
poles. Polo-Zoo ap

Imaginary Axis

4 35 3 1

Real Axis

* So, if the closed-loop system poles lie within the allowed
region then we have satisfied the design specification.



Closed-Loop Poles

« If we have a plant described by an open-loop transfer function
G (s), it will have a certain set of open-loop poles and zeros.

Compensator Plant
R(s . C(s G(s — V(s
(s)—(?m-{ ) 51 6@ = Y

*  We now enclose the plant within a unity-gain feedback loop including
a compensator with a transfer function € (s), which results in a
closed-loop transfer function:

Y C)G(s)
T R(s) 1+4C(s)G(s)

T(s)



Closed-Loop Poles

* Notice that the closed-loop transfer function will not have the same
pole locations as the open-loop transfer function.

* There is no reason that the denominator of G(s) and the
denominator of T(s) would have the same roots.

* Closing the loop has moved the poles, but we do not yet know to
where it is heading.

* Open-loop transfer function: » Closed-loop transfer function:

1 1
G(s) =———=
)= 5710 r(s) = G+ 10) 1

- . - 1

* Root of characteristic equation: 1+ GF+10) s+11

s=-10 * Root of characteristic equation:
s=-—11




Closed-Loop Poles

*  We will find is that the location of the closed-loop poles will
depend on the dc gain K or the system. In this case:

K =C(s)G(s) o

* As we can change C(s), we can use K as a tuning parameter to
move the closed-loop poles to a desired location.

» The desired location for the poles will, in turn, be determined by
the performance specification for our control system.

Compensator Plant
+

R(s) A?TJ{ C(s) }W-I G(s) — Y(5)




Closed-Loop Zeros

» Let's consider the effect that feedback has on zeros.

» Again, consider a plant with a transfer function G (s) that we
have controlled by adding a series compensator C (s).

* Again, the closed-loop transfer function is:

_ C(5)G(s)
") =T e

» The only way that T(s) can be zero is if either C(s) or G(s) is
zero (or both).

* Thus, the set of zeros of the closed-loop system is the
combination of the zeros of the plant and the compensator.

It is not possible to move the zeros of a plant using feedback.



Example #1

+ Consider a system that has a single open-loop pole at s = -1.
6() =—
8= s+1

+ Let us use a proportional compensator C (s) = K, and see what
effect this has on the pole.

)

_C()G(s)  \st1l)] K,

TS =TT emee - K, \ s+(1+K,)
1+ S+1

* Thus, the closed-loop pole is at s = —1 — K,,, compared to the
open-loop pole at s = -1.

* We can choose the closed-loop pole position by choosing K,,,
though only along a constrained path (e.g. a locus).



Example #1

+ Depending on the value of proportional compensator, K, the
locations of the closed-loop poles are along a constraint path

(e.g. alocus).
0.8 o
. Im{s}
Closed loop system: -
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T(s) = K, Ko=4 K =2 K =0 o
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Example #2

» Consider a DC motor with a transfer function G(s) = 1/s(s + 1).

* Letus add a proportional controller C (s) = K, to this plant.

[ K, ]
s(s+1)
1+[ K ]

s(s+1)

Ky

s?+s+K,

T(s) =

* Now, the closed-loop poles are located where the denominator is
equal to zero.

* Thus, we find them by solving s + s + K, = 0 (or more generally),
by solving the characteristic equation, 1+ CG = 0.



Example #2

* So let us find the roots of s* 4+ s + K, = 0 using the quadratic
equation.
-1+ ,/1-4K,
2
 For K, < 1/4, we get two real roots at:

A/ 1 - 4Kp Root Locus

2

S =

S = 5T

 For K, > 1/4 we change
from a first order to a
second order (oscillatory)
response as the poles
become complex. !
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Design using the Root Locus

Let us imagine that we have been asked to design a controller for
the dc motor so that it has a settling time of less than 20 seconds
and a damping ratio better than ¢ = 0.707.

As we need Ty = 4/0 < 20 the dominant pole must be further left
thans = -0.2 (e.g. 0 =4/20 = 0.2).

Root Locus

Damping ratio, { > 0.707 '
requires that the angle !
from the negative real 0.5
axis be no greater than 4‘—* 05
0 = cos™10.707 = 45°.

-1.5 -1 05 -02 0 0.5



Design using the Root Locus

* In this example, there are a range of possible K values that
would satisfy the design specification.

* Let's work out the minimum and maximum gains that would
be acceptable.

* The dominant pole crosses into the allowed region at s = -0.2.

Root Locus

105

-0.5

-1.5 -1 05 -02 0 0.5



Design using the Root Locus

We know that while the roots are real, they are located at:

1, /T3

T2 2

So, in this case:

JI=4K, _

— 05+
§ T

-0.2

Solving the equation given above:

-5, _

2

As a result, the proportional gain of the system is:

K, = 0.16



Design using the Root Locus

* By inspection of the diagram, we can see that the poles leave
the allowed region at s = —0.5 %+ j0.5.

* These points are the maximum values before that meet the
design specification of the system.

Root Locus

-1.5 -1 -05 -02 0 0.5



Design using the Root Locus

We previously calculated that the complex poles are located

at:
1 JaK,—1
s=-gtiT——

So, o0 =-0.5 and again we can equate to find the value of K,

on the boundary:
i JAK, — 1

5 =0.5

So, the proportional gain of the system is:
K, =0.5

So, we have found that the design specification will be met for
0.16 <K, <0.5.



Design using the Root Locus

 The graph shows the step responses of the system when K, =
0.16 and K, = 0.5.

Step Response
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The Evan’s Root Locus

*  We can always determine the root locus using mathematical
analysis as in the examples above.

* However, this becomes tedious as the number of poles
increases.

» The Evan’s root locus is a graphical technique that automates
the mathematics to provide a method to draw the locus directly.

* Examination of the root locus allows us to:
a. Determine the stability of a system as gain changes.

b. Choose an appropriate gain to produce a desired closed-
loop response.

c. Modify the form of C (s) if an adequate closed-loop
response cannot be achieved.



Root Locus Formalities

* The root locus is a pole zero diagram that shows the “tracks”
taken by the system poles as some parameters (i.e. gain in our
case) are varied.

* Formally, the root locus shows the locus traced out by the
roots of the characteristic equation, 1+ C(s)G(s) =0, as
the gain is varied.

» To find a root locus, we are therefore searching for values of s
that satisfy the characteristic equation:

1+C(s)G(s) =0
» Rearrange the equation:
C(s)G(s) =-1
C(s)G(s) = 1£(2k+1)180° for keZ



Example #3

G(s) = (s+3)(s+4) + Zeros: -3, -4.
TG+ DG +2) . Poles:-1,-2.
Root Locus
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G(s) =

Imaginary Axis (per second)

-2

L
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Example #4

s+3 e Zeros:-3.
s(s+1D(s+2)(s+4) * Poles:0,-1,-2,-4.
Root Locus
GC—¥
g =10 =8 =B =4 —é 2

Real Axis (per second)



Example #5

G(s) = SR H16 - Zeros:2td.
T (5+2)(s+4) * Poles:-2,-4.
Root Locus
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Example #6

G(s) = 1 + Zeros:

s[(s +4)% + 16] * Poles:0,-4+j4

Root Locus
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G(s) =

Imaginary Axis (per second)

Example #7

1+s * Zeros:-1.
52 * Poles: -0 (double poles at origin).
Root Locus
'
0.5
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Example #8

1 * Zeros:
s(s+2)[(s+1)2 + 4] * Poles:0,-2,-1+j2

G(s) =

Root Locus

Imaginary Axis (per second)

-8 -6 -4 =2 0 2 4 6

Real Axis (per second)



Example #9

G(s) = s?+2s+4 + Zeros:-1+jV/3.
s(s+4)(s+6)(s*+14s+1)  « poles:0,-4,-6, -0.7 +jv/0.51

Root Locus

Imaginary Axis (per second)
X
x
P

-8 -6 -4 -2 0 ¢

Real Axis (per second)



Things to Notice

These are the guidelines for construction of root locus diagram:

1.
2.

Each branch of the root locus begins at an open-loop pole.

Each branch of the root locus either terminates at a zero or
goes to (complex) infinity.

One and only one branch leaves each pole.
One and only one branch enters each zero.

Like any pole-zero diagram, the root locus is always symmetric
about the real axis (and complex poles always come in
conjugate pairs).
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