
XMUT315 Control System Engineering

Introduction to Root Locus



Topics

• Introduction to Pole- Zero Diagrams

• Poles and Zeros of Systems

• System Performance

• Closed-Loop Poles and Zeros

• Examples of Root Locus Diagram

• Design using Root Locus Diagram

• Formalisations of Root Locus Diagram

• Examples of Plots in Root Locus.



Introduction

• Poles on the y-axis -> 

undamped response.

• Complex poles -> 

underdamped response.

• Single double poles on 

the x-axis -> critical 

damped response. 

• Poles on the x-axis -> 

overdamped response.

• We know that the location of the system poles and zeros determine 

the response of a LTI system.



Introduction

• To change the system response, we therefore need to change 

these root (pole and zero) location(s). 

• We will do this by applying feedback and including a 

compensator (or controller) into the system.

• Application of feedback enables us to manage the system.

• Compensator (or controller) enable us to determine the specific 

response of the system.



Introduction

• The root locus is a visual presentation of the way the roots of a 

system change as we vary some parameters of our 

compensator. 

• We will usually be interested in how altering the gain affects the 

system response, but we can use the root locus for other 

parameters too.



Poles on the Pole-Zero Map

• We know that pole location determines which modes will be present 

in a time response.

• The real part of a pole location determines the damping of a mode 

and the imaginary part determines the natural frequency of the 

mode.



Dominant Poles

• The pole with the slowest response will dominate the response of 

any system. 

• The pole near the origin (blue – with the 

slowest response) compared with the pole 

further from the origin (red). 



Dominant Poles

• The pole with the slowest response will dominate the response of 

any system. 

• The pole at the origin (red – with the slowest 

response) compared with complex poles 

(blue) further from origin. 



Dominant Poles

• We can therefore often approximate the response of a system as 

either a first order, or a second order system.

• We can then use the location of the dominant poles to determine 

the system’s settling time, overshoot, damping, natural frequency 

etc.

• So, if the dominant pole (pair) is sufficiently far away from any 

other poles, then we can ignore the other poles when designing 

our control system.

• This approximation is normally safe if other poles are at least a 

factor of three further to the left of the s-plane.



Zeros on the Pole-Zero Map

• Zeros near a pole suppress the mode corresponding to the nearby 

pole. 

• In the extreme case where the zeros and poles are co-located, we 

get complete cancellation of the corresponding mode.



System Performance - Settling Time

• The further a pole is to the left of the s-plane, the faster the 

corresponding mode decays. 

• Therefore, if we are given a specification for system response 

time, we can convert this to a requirement on pole position.

𝐺 𝑠 =
𝜔𝑛

2

𝑠2 + 2𝜔𝑛𝑠 + 𝜔𝑛
2

• Roots of the characteristic equation:

𝑠 = −
2𝜔𝑛 ± 2𝜔𝑛

2 − 4𝜔𝑛
2

2

   = −𝜔𝑛 ± 𝜔𝑛 2 − 1 = −𝜎 ± 𝜔𝑑



System Performance - Settling Time

• The two roots are 

imaginary when 𝜁 = 0.

• The two roots are 

complex conjugate 

when 0 < 𝜁 < 1. 

• The two roots are real 

and equal when 𝜁 = 1.

• The two roots are real 

but not equal when 𝜁 > 

1.

• For the given roots of characteristic equation:



System Performance - Settling Time

• The settling time of a second order system (𝑇𝑠) is approximately 

(e.g. for the 2% steady-state settling time standard): 

𝑇𝑠 =
4

𝜁𝜔𝑛
=

4

𝜎

Where: 𝜎 is the real part of the pole pair.

• So, for example if we 

have a requirement that 

settling time, 𝑇𝑠 < 2 

second, then we must 

have the dominant pole 

further left than 𝑠  =  - 2.



System Performance - Damping

• We are often also given a requirement 

on damping ratio. 

• Recall that a damping ratio 𝜁 occurs on 

the pole-zero diagram as a straight line 

with an angle of 𝜃 = cos−1 𝜁 to the 

negative real axis.

• We can thus similarly construct an 

allowed region for the poles if we are 

given a damping specification.

• For example, if we require 𝜁 > 0.707, 

then the poles must lie less than 𝜃 =

cos−1 0.707 ≈ 45° from the negative 

real axis.

Im
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System Performance - Allowed Pole Region

• We are often given specifications on both settling time and 

damping, so we must combine the constraints imposed by the two. 

• We therefore obtain a composite region in which we can place the 

poles.

• So, if the closed-loop system poles lie within the allowed 

region then we have satisfied the design specification.



Closed-Loop Poles

• If we have a plant described by an open-loop transfer function 

𝐺 (𝑠) ,  it will have a certain set of open-loop poles and zeros.

• We now enclose the plant within a unity-gain feedback loop including 

a compensator with a transfer function 𝐶 (𝑠 ) ,  which results in a 

closed-loop transfer function:

𝑇 𝑠 =
𝑌 𝑠

𝑅 𝑠
=

𝐶 𝑠 𝐺(𝑠)

1 + 𝐶 𝑠 𝐺(𝑠)



Closed-Loop Poles

• Notice that the closed-loop transfer function will not have the same 

pole locations as the open-loop transfer function. 

• There is no reason that the denominator of 𝐺(𝑠) and the 

denominator of 𝑇(𝑠) would have the same roots.

• Closing the loop has moved the poles, but we do not yet know to 

where it is heading. 

• Open-loop transfer function:

𝐺 𝑠 =
1

(𝑠 + 10)

• Root of characteristic equation:

𝑠 = −10

• Closed-loop transfer function:

𝑇 𝑠 =

1
𝑠 + 10

1 +
1

(𝑠 + 10)

=
1

𝑠 + 11

• Root of characteristic equation:

𝑠 = −11



Closed-Loop Poles

• We will find is that the location of the closed-loop poles will 

depend on the dc gain 𝐾 or the system. In this case:

𝐾 = ቚ𝐶 𝑠 𝐺(𝑠)
𝑠=0

• As we can change 𝐶(𝑠), we can use 𝐾 as a tuning parameter to 

move the closed-loop poles to a desired location. 

• The desired location for the poles will, in turn, be determined by 

the performance specification for our control system.



Closed-Loop Zeros

• Let’s consider the effect that feedback has on zeros. 

• Again, consider a plant with a transfer function 𝐺(𝑠) that we 

have controlled by adding a series compensator 𝐶 (𝑠 ) .  

• Again, the closed-loop transfer function is:

• The only way that 𝑇(𝑠) can be zero is if either 𝐶(𝑠) or 𝐺(𝑠) is 

zero (or both). 

• Thus, the set of zeros of the closed-loop system is the 

combination of the zeros of the plant and the compensator.

It is not possible to move the zeros of a plant using feedback.

𝑇 𝑠 =
𝐶 𝑠 𝐺(𝑠)

1 + 𝐶 𝑠 𝐺(𝑠)



Example #1

• Consider a system that has a single open-loop pole at 𝑠 = -1. 

𝐺 𝑠 =
1

𝑠 + 1

• Let us use a proportional compensator 𝐶 (𝑠) = 𝐾𝑝 and see what 

effect this has on the pole.

𝑇 𝑠 =
𝐶 𝑠 𝐺(𝑠)

1 + 𝐶 𝑠 𝐺(𝑠)
=

𝐾𝑝

𝑠 + 1

1 +
𝐾𝑝

𝑠 + 1

=
𝐾𝑝

𝑠 + 1 + 𝐾𝑝

• Thus, the closed-loop pole is at 𝑠 = −1 − 𝐾𝑝, compared to the 

open-loop pole at 𝑠 = -1. 

• We can choose the closed-loop pole position by choosing 𝐾𝑝, 

though only along a constrained path (e.g. a locus).



Example #1

• Depending on the value of proportional compensator, 𝐾, the 

locations of the closed-loop poles are along a constraint path 

(e.g. a locus). 

• Closed loop system:

𝑇 𝑠 =
𝐾𝑝

𝑠 + 1 + 𝐾𝑝

• These locus are:

𝐾𝑝 = 0 →  𝑠 = −1

𝐾𝑝 = 1 →  𝑠 = −2

𝐾𝑝 = 2 →  𝑠 = −3

𝐾𝑝 = 4 →  𝑠 = −5



Example #2

• Consider a DC motor with a transfer function 𝐺(𝑠) = 1/𝑠(𝑠 + 1). 

• Let us add a proportional controller 𝐶 (𝑠) = 𝐾𝑝 to this plant.

𝑇 𝑠 =

𝐾𝑝

𝑠 𝑠 + 1

1 +
𝐾𝑝

𝑠 𝑠 + 1

 =
𝐾𝑝

𝑠2 + 𝑠 + 𝐾𝑝

• Now, the closed-loop poles are located where the denominator is 

equal to zero. 

• Thus, we find them by solving 𝑠2 + 𝑠 + 𝐾𝑝 = 0 (or more generally), 

by solving the characteristic equation, 1 + 𝐶𝐺 = 0.



Example #2

• So let us find the roots of 𝑠2 + 𝑠 + 𝐾𝑝 = 0 using the quadratic 

equation.

𝑠 =
−1 ± 1 − 4𝐾𝑝

2

• For 𝐾𝑝 < 1/4, we get two real roots at:

𝑠 = −
1

2
±

1 − 4𝐾𝑝

2

• For 𝐾𝑝 > 1/4 we change 

from a first order to a 

second order (oscillatory) 

response as the poles 

become complex.



Design using the Root Locus

• Let us imagine that we have been asked to design a controller for 

the dc motor so that it has a settling time of less than 20 seconds 

and a damping ratio better than 𝜁 =  0.707.

• As we need 𝑇𝑠 = 4/𝜎 < 20 the dominant pole must be further left 

than 𝑠  =  -0.2 (e.g. 𝜎 = 4/20 = 0.2). 
Root Locus

-1.5             -1               -0.5      -0.2    0                 0.5

1

0.5  
             
-0.5

-1

• Damping ratio, 𝜁 > 0.707 

requires that the angle 

from the negative real 

axis be no greater than 

𝜃 = cos−1 0.707 = 45°.



Design using the Root Locus

• In this example, there are a range of possible 𝐾  values that 

would satisfy the design specification. 

• Let’s work out the minimum and maximum gains that would 

be acceptable.

• The dominant pole crosses into the allowed region at 𝑠 = -0.2. 

Root Locus
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Design using the Root Locus

• We know that while the roots are real, they are located at:

𝑠 = −
1

2
±

1 − 4𝐾𝑝

2

• So, in this case:

𝑠 = −0.5 ±
1 − 4𝐾𝑝

2
= −0.2

• Solving the equation given above:

1 − 4𝐾𝑝

2
= 0.3

• As a result, the proportional gain of the system is:

𝐾𝑝 = 0.16



Design using the Root Locus

• By inspection of the diagram, we can see that the poles leave 

the allowed region at 𝑠 = −0.5 ± 𝑗0.5.

• These points are the maximum values before that meet the 

design specification of the system.

Root Locus
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Design using the Root Locus

• We previously calculated that the complex poles are located 

at:

𝑠 = −
1

2
± 𝑗

4𝐾𝑝 − 1

2

• So, 𝜎 = -0.5 and again we can equate to find the value of 𝐾𝑝 

on the boundary:
4𝐾𝑝 − 1

2
= 0.5

• So, the proportional gain of the system is:

𝐾𝑝 = 0.5

• So, we have found that the design specification will be met for 

0.16 < 𝐾𝑝 < 0.5.



Design using the Root Locus
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• The graph shows the step responses of the system when 𝐾𝑝 =

0.16 and 𝐾𝑝 = 0.5.



The Evan’s Root Locus

• We can always determine the root locus using mathematical 

analysis as in the examples above. 

• However, this becomes tedious as the number of poles 

increases. 

• The Evan’s root locus is a graphical technique that automates 

the mathematics to provide a method to draw the locus directly.

• Examination of the root locus allows us to:

a. Determine the stability of a system as gain changes.

b. Choose an appropriate gain to produce a desired closed-

loop response.

c. Modify the form of 𝐶 (𝑠)  if an adequate closed-loop 

response cannot be achieved.



Root Locus Formalities

• The root locus is a pole zero diagram that shows the “tracks” 

taken by the system poles as some parameters (i.e. gain in our 

case) are varied.

• Formally, the root locus shows the locus traced out by the 

roots of the characteristic equation, 1 + 𝐶 (𝑠)𝐺 (𝑠 ) = 0 , as 

the gain is varied.

• To find a root locus, we are therefore searching for values of 𝑠 

that satisfy the characteristic equation:

1 + 𝐶 𝑠 𝐺 𝑠 = 0

• Rearrange the equation:

𝐶 𝑠 𝐺 𝑠 = −1

𝐶 𝑠 𝐺 𝑠 = 1∠ 2k + 1 180° for k ∈ ℤ



Example #3

𝐺 𝑠 =
𝑠 + 3 𝑠 + 4

𝑠 + 1 𝑠 + 2

Root Locus
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• Zeros: -3, -4.
• Poles: -1,-2.



Example #4

Root Locus
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Real Axis (per second)

𝐺 𝑠 =
𝑠 + 3

𝑠 𝑠 + 1 𝑠 + 2 𝑠 + 4

• Zeros: -3.
• Poles: 0,-1,-2,-4.



Example #5

Root Locus
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Real Axis (per second)

𝐺 𝑠 =
𝑠 − 2 2 + 16

𝑠 + 2 𝑠 + 4

• Zeros: 2 ± j4.
• Poles: -2,-4.



Example #6

Root Locus
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Real Axis (per second)

𝐺 𝑠 =
1

𝑠 𝑠 + 4 2 + 16
• Zeros:
• Poles: 0, -4  j4



Example #7

Root Locus
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Real Axis (per second)

𝐺 𝑠 =
1 + 𝑠

𝑠2

• Zeros: -1.
• Poles: -0 (double poles at origin).



Example #8

Root Locus
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Real Axis (per second)

𝐺 𝑠 =
1

𝑠 𝑠 + 2 𝑠 + 1 2 + 4

• Zeros:
• Poles: 0, -2, -1  j2



Example #9

Root Locus
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Real Axis (per second)

𝐺 𝑠 =
𝑠2 + 2𝑠 + 4

𝑠 𝑠 + 4 𝑠 + 6 𝑠2 + 1.4𝑠 + 1
• Zeros: -1  j 3.

• Poles: 0,-4,-6, -0.7  j 0.51



Things to Notice

These are the guidelines for construction of root locus diagram:

1. Each branch of the root locus begins at an open-loop pole.

2. Each branch of the root locus either terminates at a zero or 

goes to (complex) infinity.

3. One and only one branch leaves each pole.

4. One and only one branch enters each zero.

5. Like any pole-zero diagram, the root locus is always symmetric 

about the real axis (and complex poles always come in 

conjugate pairs).
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