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Topics

• Fundamentals of Nyquist diagram.

• From Bode to Nyquist diagram.

• Examples of Bode to Nyquist diagram.

• From Pole-Zero to Nyquist diagram.

• Examples of Pole-Zero to Nyquist diagram.



Nyquist Diagram

• We have been using the Bode and Root Locus plots of an 

open-loop system to determine stability. 

• However, as we discussed earlier, this method is only reliable 

for simple cases.

• The Nyquist diagram provides a simple, universal method for 

assessing the stability of SISO systems. 

• It works for simple systems  that are manageable with a Bode 

plot, but also for more complicated  systems.

• The root locus and Routh-Hurwitz techniques also provide 

methods for determining stability, but the Nyquist diagram has 

the advantage of being applicable when you do not have a 

mathematical description of your system (you can use it on 

experimental data).



The Nyquist Diagram
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• A Nyquist diagram is a 

plot of the real part vs 

the imaginary part of 

an open-loop transfer 

function. 

• Equivalently, you can 

think of it as a polar 

plot of a transfer 

function.

Frequency 𝝎 Magnitude 𝑮(𝝎) Phase ∠𝑮(𝝎)

𝜔1 𝐺(𝜔1) ∠𝐺(𝜔1)

𝜔2 𝐺(𝜔2) ∠𝐺(𝜔2)



The Nyquist Diagram

• The graph’s axes are linear (not logarithmic), which makes the 

plot awkward for visualising the entire behaviour of a system 

that has high-gain regions.

• The Nyquist diagram is specialised for considering system 

stability, as it focuses on the low-gain region (i.e. the region 

near unity gain).

• We will examine three ways to construct a Nyquist diagram:

• Based on a given root locus diagram.

• Using a Bode plot or frequency response.

• Directly on the diagram.



Stability from Nyquist Diagram

• Recall that a system is stable if and only if it has no poles in the 

right half of the s-plane.

• We seek a method that will tell us whether a system will be

stable, once we enclose it in a feedback loop - we want to

know about the stability of a closed-loop system.

• The Nyquist plot is a graphical technique that enables us to  

determine whether a system has closed-loop poles in the 

right half of the s-plane by examining its open-loop poles.

• In fact, it does more - it counts the number of closed-loop 

poles in the right-half plane.



From Root Locus to Nyquist

• Four important concepts that will be used during the derivation of 

criteria: 

a. the relationship between the poles of 1 + 𝐺(𝑠)𝐻(𝑠) and the 

poles of 𝐺(𝑠)𝐻(𝑠).

b. the relationship between the zeros of 1 + 𝐺(𝑠)𝐻(𝑠) and the 

poles of the closed-loop transfer function, 𝑇(𝑠). 

c. The concept of mapping points. 

d. The concept of mapping contours.

• For the system in the figure above, 

the Nyquist criterion can tell us how 

many closed-loop poles are in the 

right half-plane. 



From Root Locus to Nyquist

• Given the transfer functions of feedback control system:

𝐺 𝑠 =
𝑁𝐺

𝐷𝐺
 and 𝐻 𝑠 =

𝑁𝐻

𝐷𝐻

• Thus

𝐺 𝑠 𝐻 𝑠 =
𝑁𝐺𝑁𝐻

𝐷𝐺𝐷𝐻



From Root Locus to Nyquist

• Then

1 + 𝐺 𝑠 𝐻 𝑠 = 1 +
𝑁𝐺𝑁𝐻

𝐷𝐺𝐷𝐻
=

𝐷𝐺𝐷𝐻 + 𝑁𝐺𝑁𝐻

𝐷𝐺𝐷𝐻

• As a result, the transfer function of closed loop system is:

𝑇 𝑠 =
𝐺 𝑠

1 + 𝐺 𝑠 𝐻(𝑠)
=

𝑁𝐺𝐷𝐻

𝐷𝐺𝐷𝐻 + 𝑁𝐺𝑁𝐻

• We conclude that:

1. Poles of 1 + 𝐺(𝑠)𝐻(𝑠) are the same as the poles of 

𝐺(𝑠)𝐻(𝑠), the open-loop system. 

2. Zeros of 1 + 𝐺(𝑠)𝐻(𝑠) are the same as the poles of 

𝑇(𝑠), the closed-loop system.



From Root Locus to Nyquist

• Finally, we discuss the concept of mapping contours. 

• Consider the collection of points, called a contour, shown in 

the figure below as contour 𝐴. 

• Also, assume that:

𝐹 𝑠 =
𝑠 − 𝑧1 𝑠 − 𝑧2 …

𝑠 − 𝑝1 𝑠 − 𝑝2 …



From Root Locus to Nyquist

• Contour 𝐴 can be mapped through 𝐹(𝑠) into contour 𝐵 by 

substituting each point of contour 𝐴 into the function 𝐹(𝑠) 

and plotting the resulting complex numbers. 

• For example, point 𝑄 in the figure above maps into point 𝑄′ 

through the function 𝐹(𝑠). 



From Root Locus to Nyquist

• Figure below shows a contour 𝐴 that does not enclose closed-

loop poles, that is, the zeros of 1 + 𝐺(𝑠)𝐻(𝑠). 

• The contour thus maps through 𝐺(𝑠)𝐻(𝑠) into a Nyquist 

diagram that does not encircle the test point (−1, 0). Hence, 

𝑃 = 0; 𝑁 = 0, and 𝑍 = 𝑃 − 𝑁 = 0. 

• Since 𝑍 is the number of closed-loop poles inside contour 𝐴, 

which encircles the right half-plane, this system has no right-

half-plane poles and is stable.



From Root Locus to Nyquist

• Figure below shows a contour 𝐴 that, while it does not enclose 

open-loop poles, does generate two clockwise encirclements of the 

test point (-1,0). 

• Thus, 𝑃 = 0; 𝑁 = 2, and the system is unstable; it has two closed-

loop poles in the right half-plane, since 𝑍 = 𝑃 − 𝑁 = 2.

• The two closed-loop poles are shown inside contour 𝐴 in the figure 

above as zeros of 1 + 𝐺(𝑠)𝐻(𝑠).



From Root Locus to Nyquist

Thus,  𝑁 = 𝑃 − 𝑍

Where: 

𝑁 - Number of counterclockwise rotations of contour 𝐵 about 

the origin.

𝑃 - Number of poles of 1 + 𝐺(𝑠)𝐻(𝑠) inside contour 𝐴. 

𝑍 - Number of zeros of 1 + 𝐺(𝑠)𝐻(𝑠) inside contour 𝐴.



From Root Locus to Nyquist

Nyquist stability criterion is as follows:

If a contour, 𝐴, that encircles the entire right half-plane is 

mapped through 𝐺(𝑠)𝐻(𝑠), then the number of closed-loop 

poles, 𝑍, in the right half-plane equals the number of open-

loop poles, 𝑃, that are in the right half-plane minus the number 

of counterclockwise revolutions, 𝑁, around the test point (1,0) 

of the mapping. 

That is, 

𝑍 = 𝑃 − 𝑁

The mapping is called the Nyquist diagram, or Nyquist plot, of 

𝐺(𝑠)𝐻(𝑠).



From Root Locus to Nyquist Example

Given a first-order system with its transfer function equation:

𝐺 𝑠 =
1

𝑠 + 0.1

a. Derive the real and imaginary equations needed for sketching 

the Nyquist diagram.                         [4 marks]

b. Using equations derived in part (a), calculate the points 

required for sketching the Nyquist diagram.                [4 marks] 

c. Sketch the Nyquist diagram of the system.                  [6 marks]

d. Simulate the root locus diagram of the system in MATLAB. By 

determining and obtaining values of the points in the diagram 

required for sketching Nyquist diagram, convert the root locus 

diagram to Nyquist diagram.                        [12 marks]



From Root Locus to Nyquist Example

Answer

a. Substituting 𝑠 = 𝑗𝜔, the transfer function equation of the 

system becomes:

𝐺 𝑗𝜔 =
1

𝑗𝜔 + 0.1
=

1

𝑗𝜔 + 0.1

𝑗𝜔 − 0.1

𝑗𝜔 − 0.1
= −

𝑗𝜔 − 0.1

𝜔2 + 0.01

For sketching the Nyquist diagram, we need the following 

equations for determining the points in the Nyquist diagram:

The real part and imaginary part of the complex equation:

Re 𝐺 𝑗𝜔 =
0.1

𝜔2 + 0.01
 Im 𝐺(𝑗𝜔) = −

𝑗𝜔

𝜔2 + 0.01



From Root Locus to Nyquist Example

b. Choose the frequencies from 0 to +∞ along the y-axis 

(imaginary axis) e.g. A = 0 rad/s, B = 0.1 rad/s, C = 1 rad/s, and 

D = 10 rad/s. The points for sketching the Nyquist diagram are 

calculated and tabulated in the following table.

Points 𝝎 𝐑𝐞 𝑮(𝒋𝝎) 𝐈𝐦{𝑮(𝒋𝝎)}

A 0 0.1

(0)2+0.01
= 10 −

𝑗 0

0 2 + 0.01
= 0

B 0.1 0.1

(0.1)2+0.01
= 5 −

𝑗 0.1

0.1 2 + 0.01
= −5

C 1 0.1

(1)2+0.01
= 0.099 −

𝑗 1

1 2 + 0.01
= −0.99

D 10 0.1

(10)2+0.01
= 0.001 −

𝑗 10

10 2 + 0.01
= −0.099



From Root Locus to Nyquist Example

c. Based on the points listed in the table in part (b), the 

following diagram shows the sketched Nyquist diagram.



From Root Locus to Nyquist Example

d. The result of root locus diagram simulation of the system 

in MATLAB is shown in the figure below.



From Root Locus to Nyquist Example

Choose the frequencies from 0 to +∞ along the y-axis (imaginary 
axis) e.g. A = 0j, B = 0.1j, C = 1j, and D = 10j. 



From Root Locus to Nyquist Example

Points 𝝎 𝑮 𝒋𝝎 ∠𝑮 𝒋𝝎

A 0 1

0.1 2 + 0 2
= 10

− tan(0/0.1) = 0°

B 0.1 1

0.1 2 + 0.1 2
= 7.07 − tan

0.1

0.1
= −45°

C 1 1

0.1 2 + 1 2
= 0.99 − tan

1

0.1
= −84.29°

D 10 1

0.1 2 + 10 2
= 0.01

−tan(10/0.1) = −89.43°

Calculate the magnitudes and angles formed by the zero at (-1, 0) with 
the chosen points in the diagram.



From Root Locus to Nyquist Example

Sketch the Nyquist diagram based on the magnitudes and 

angles obtained above.



From Bode to Nyquist

• The curve on a Nyquist diagram can be determined by choosing 
gain-phase points from a Bode plot at multiple frequencies. 

• Thus, the Nyquist diagram is the locus traced out by the transfer 
function as we vary frequency.

• Frequency thus varies along the Nyquist curve, but not in a 
regular way. There is no way to use a Nyquist diagram to 
determine the frequency at which something happens.

• To construct the Nyquist diagram, choose the points where 
something “interesting” happens on the Bode plot and transfer 
them to the Nyquist diagram. 

• Join the points with sensible curves. This produces a  plot of 
gain vs. phase as the frequency varies from 0 to ∞.



From Bode to Nyquist

• Drawing a Nyquist diagram is slightly more complex than plotting 
the gain vs phase curve for f = 0 → ∞. 

• Nyquist’s criterion (see later) actually requires that we evaluate the 
transfer function as we traverse a clockwise path that completely 
encloses the right half of the s-plane.

• Evaluating the transfer function for f = 
0 → ∞ corresponds to traversing the 
upper straight part of the semicircle  
shown in the diagram. 

• As the pole-zero diagram must be 
symmetric we know  that the Nyquist 
diagram must be symmetric in the 
section from f = −∞ → 0.

Im{ s}

Re{ s}

s = ∞

s-plane



From Bode to Nyquist

• To draw the complete Nyquist diagram, we need to add to the plot 
that you produced by transferring data from the Bode plot. 

• The section from -∞ to 0 is straightforward, as it is just the mirror 
image of the 0 to ∞ section that you have already drawn.

• Most transfer functions that you will meet have the degree of the  
denominator larger than the numerator (they are strictly proper). 

• A consequence of this is that the gain is infinitesimally small at 
infinite frequency. 

• Thus, the response for the circular part of the contour from ω = 
+∞ to ω = -∞ is always zero. 

• The whole sweep is therefore mapped to the origin of the Nyquist 
diagram.



From Bode to Nyquist Example

Consider a first-order system with the transfer function: 

𝐺(𝑠) =
100

𝑠 + 10

a. Simulate the Bode plots of the system the in MATLAB. 

                   [5 marks]

b. Determine the gain and phase of the frequency response of 

the system from the Bode plots for 𝜔 = 1, 10, and 100 rad/s.

                   [6 marks]

c. Based on the results obtained in part (b), construct Nyquist 

diagram of the system.                  [5 marks]



From Bode to Nyquist Example

𝝎 𝑮(𝝎) ∠𝑮(𝝎)

1 20 dB 
(10)

0°

10 17 dB 
(7)

-45°

100 0 dB (1) −90°

• Consider the first-order system with the transfer function: 

𝐺(𝑠) =
100

𝑠 + 10



From Bode to Nyquist Example

𝝎 𝑮(𝝎) ∠𝑮(𝝎)

1 20 dB 
(10)

0°

10 17 dB 
(7)

-45°

100 0 dB (1) -90°

• Consider a first-order system with the transfer function: 

𝐺(𝑠) =
100

𝑠 + 10



From Bode to Nyquist Example

Consider a second-order system with the transfer function: 

𝐺(𝑠) =
100

𝑠2 + 2𝑠 + 26

a. Simulate the Bode plots of the system the in MATLAB. 

                                        [5 marks]

b. Determine the gain and phase of the frequency response of 

the system from the Bode plots for 𝜔 = 1, 5, 10, 50, and 100 

rad/s.                                    [10 marks]

c. Based on the results obtained in part (b), construct Nyquist 

diagram of the system.                    [5 marks]



From Bode to Nyquist Example

𝝎 𝑮(𝝎) ∠𝑮(𝝎)

1 12 dB (4) 5°

5 20 dB 
(10)

−90°

10 5 dB 
(1.77)

-165°

50 -30 dB 
(0.03)

-175°

100 -40 dB 
(0.01)

-180°

• Consider a second-order system with the transfer function: 

𝐺(𝑠) =
100

𝑠2 + 2𝑠 + 26



From Bode to Nyquist Example

𝝎 𝑮(𝝎) ∠𝑮(𝝎)

1 12 dB (4) 0°

5 20 dB 
(10)

-90°

10 5 dB 
(1.77)

−165°

50 -30 dB 
(0.03)

-175°

100 -40 dB 
(0.01)

180°

• Consider a second-order system with the transfer function: 

𝐺(𝑠) =
100

𝑠2 + 2𝑠 + 26



Nyquist Diagram Analysis

• A system is stable if there is no encirclement of the curve 

around the test point (-1,0) in the Nyquist criterion.

• The number of encirclement correspond to unstable pole and 

zero in the closed-loop system: 

𝑁 = 𝑃 − 𝑍

• More precise stability condition of the system is determined 

through gain and phase margin in the Nyquist diagram (e.g. 

we will discuss about this topic later).



Nyquist Diagram Analysis Example

Apply Nyquist criterion to determine the stability of the 

following feedback systems:

a. System (i)   [5 marks]

𝐺1 𝑠 =
𝑠 + 20

(𝑠 + 2)(𝑠 + 7)(𝑠 + 50)

b. System (ii)   [5 marks]

𝐺2 𝑠 =
𝑠 + 3

(𝑠 + 2)(𝑠2 + 2𝑠 + 25)

c. System (iii)   [5 marks]

𝐺3 𝑠 =
500(𝑠 − 2)

(𝑠 + 2)(𝑠 + 7)(𝑠 + 50)



Nyquist Diagram Analysis Example

For system (i):

• We have P = 0 (open loop 

stable system).

• The Nyquist diagram does not 

enclose (-1, j0), (N = 0)

• Thus, Z = P – N = 0. 

• Systems (i) is stable since there 

are no closed loop poles in the 

right half plane.



Nyquist Diagram Analysis Example

For system (ii):

• We have P = 0 (open loop 

stable system).

• The Nyquist diagram does not 

enclose (-1, j0), (N = 0)

• Thus, Z = P – N = 0. 

• Systems (ii) is stable since there 

are no closed loop poles in the 

right half plane.



Nyquist Diagram Analysis Example

For system (iii):

• We have P = 0 (open-

loop stable system), but 

N = -1. 

• System (iii) is unstable 

with one closed-loop 

pole in the right-half 

plane.



Nichols Chart

• A Nichols chart displays the 

magnitude (in dB) plotted 

against the phase (in 

degrees) of the system 

response.

• Nichols charts are useful to 

analyse open- and closed-

loop properties of SISO 

systems but offer little 

insight into MIMO control 

loops.



Nichols Chart

• Gain margin (GM) and phase margin (PM) 

of the system in the Nichols chart similar 

to the steps in Nyquist diagram.

• The phase margin is phase difference 

from the test point to the intersection 

between the contour with x-axis. The 

example is GM of 35.

• The gain margin is gain difference between the gain at the point 

of the contour at 180 and the x-axis. The example gain margin is 

15 dB.

• Stability of the system is by evaluating the contour around the 

test point (-180, 0) - encircles the test point or not



Nyquist Diagram vs. Nichols Chart

Pitfalls of the Nyquist diagram: 

• Becomes messy for systems with multiple crossover 

frequencies. 

• Crossover region is imperceptible for systems with large 

resonant peaks. 

• Lacks system composition (superposition) properties of 

Bode plots.



Nyquist Diagram vs. Nichols Chart

Since phase scale is linear rather than polar:

• Nichols chart is typically cleaner than Nyquist diagram 

especially for systems with large phase lags, like time-

delay systems. 

• As magnitude scale is in dB, regions with large magnitude 

don’t dominate, hence the crossover region is more 

visible. 

• Also, the consequence of the logarithmic scale of 

|log(𝑗)| is that multiplication of systems results in 

superposition on Nichols chart, almost as easy as on the 

Bode plots.



Nyquist Diagram vs. Nichols Chart



Example of Nichols Chart

• For example, on the following page, we see Bode plots and 

Nichols charts for an uncompensated system (𝐺(𝑠)) and 

compensated system (𝐺(𝑠)𝐶(𝑠)) with:

𝐺 𝑠 =
105

𝑠 + 1 𝑠2 + 4𝑠 + 1.639 × 104

And

𝐶 𝑠 =
25

𝑠 + 25



Example of Nichols Chart
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Example of Nichols Chart

a. For the Bode diagram, notice that the gain margin (GM) and 

phase margin (PM) of the uncompensated system (blue line) 

are smaller compared with those of the compensated system 

(green line). 

We need to determine the exact values of GM and PM of the 

system to find out if it is stable or not

For the Nichols chart, notice that the contour of the 

uncompensated system (blue line) encircles the test point (-

180, 0), but the contour of the compensated system is 

underneath the test point. 

From these results, compensated system is stable whereas 

uncompensated system is unstable.



Example of Nichols Chart

b. From the results of part (b), it seems that Nyquist diagram is 

easier to use than Bode plots for analysing stability of the 

system.

We need only to evaluate the contour in the Nyquist 

diagram whether it is encircling the test point (-180, 0) to 

determine if the system is stable or not. 

On the other hand, we need to find out the values of GM 

and PM of the system using Bode plots.
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