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* Fundamentals of Nyquist diagram.

* From Bode to Nyquist diagram.

* Examples of Bode to Nyquist diagram.
* From Pole-Zero to Nyquist diagram.

* Examples of Pole-Zero to Nyquist diagram.



Nyquist Diagram

* We have been using the Bode and Root Locus plots of an
open-loop system to determine stability.

* However, as we discussed earlier, this method is only reliable
for simple cases.

* The Nyquist diagram provides a simple, universal method for
assessing the stability of SISO systems.

* |t works for simple systems that are manageable with a Bode
plot, but also for more complicated systems.

* The root locus and Routh-Hurwitz techniques also provide
methods for determining stability, but the Nyquist diagram has
the advantage of being applicable when you do not have a
mathematical description of your system (you can use it on
experimental data).



The Nyquist Diagram
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The Nyquist Diagram

* The graph’s axes are linear (not logarithmic), which makes the
plot awkward for visualising the entire behaviour of a system
that has high-gain regions.

* The Nyquist diagram is specialised for considering system
stability, as it focuses on the low-gain region (i.e. the region

near unity gain).

* We will examine three ways to construct a Nyquist diagram:
* Based on a given root locus diagram.
* Using a Bode plot or frequency response.

* Directly on the diagram.



Stability from Nyquist Diagram

* Recall that a system is stable if and only if it has no poles in the
right half of the s-plane.

* We seek a method that will tell us whether a system will be
stable, once we enclose it in a feedback loop - we want to
know about the stability of a closed-loop system.

* The Nyquist plot is a graphical technique that enables us to
determine whether a system has closed-loop poles in the
right half of the s-plane by examining its open-loop poles.

* Infact, it does more - it counts the number of closed-loop
poles in the right-half plane.



From Root Locus to Nyquist

* For the system in the figure above (5 G(s) Cls)
the Nyquist criterion can tell us how
many closed-loop poles are in the
right half-plane. H(s)

* Four important concepts that will be used during the derivation of
criteria:

a. the relationship between the poles of 1 + G(s)H(s) and the
poles of G(s)H(s).

b. the relationship between the zeros of 1 + G(s)H(s) and the
poles of the closed-loop transfer function, T'(s).

c. The concept of mapping points.

d. The concept of mapping contours.



From Root Locus to Nyquist

C(s)
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* Given the transfer functions of feedback control system:

N N
G(s) = D—z and H(s) = D—:
¢ Thus
N-N
G(s)H(s) = —=2

D;Dy



From Root Locus to Nyquist

* Then

NNy DDy + NgNy

14+ G(s)H(s) =1 =
+G(s)H(s) =1+ D.D,, DoD,,

* As aresult, the transfer function of closed loop system is:

G(s) NgDy

T = TG HGE) ~ Daby + Noly,

* We conclude that:

1. Polesof 1+ G(s)H(s) are the same as the poles of
G(s)H(s), the open-loop system.

2. Zeros of 1 + G(s)H(s) are the same as the poles of
T (s), the closed-loop system.



From Root Locus to Nyquist

* Finally, we discuss the concept of mapping contours.

* Consider the collection of points, called a contour, shown in
the figure below as contour A.

* Also, assume that:

(s=2z)(s—2) ..
(s —p(s—p2) ...

F(s) =

Contour A Im

s-plane & F-plane
Contour B
Q'

= 7 —a= [l —== \{J = Fe




From Root Locus to Nyquist

* Contour A can be mapped through F(s) into contour B by
substituting each point of contour A into the function F(s)
and plotting the resulting complex numbers.

!

* For example, point Q in the figure above maps into point Q
through the function F(s).

J = Contour A Im
s-planc & F-plane

Contour B

= 7 —a= [Fi5) —m= \{J

== R




From Root Locus to Nyquist

* Figure below shows a contour A that does not enclose closed-
loop poles, that is, the zeros of 1 + G(s)H(s).

s-plane GH-plane T

MMM 1
NN

O —» G(s)H(s) = " Re
. u W

O =zeros of 1 + G(s)H(s) X =poles of 1 + G(s)H(s)
= poles of closed-loop system = poles of G(s)H(s)
Location not known Location is known

* The contour thus maps through G(s)H (s) into a Nyquist
diagram that does not encircle the test point (—1, 0). Hence,
P=0;N=0,andZ=P—-N =0.

* Since Z is the number of closed-loop poles inside contour A,
which encircles the right half-plane, this system has no right-
half-plane poles and is stable.



From Root Locus to Nyquist

* Figure below shows a contour A that, while it does not enclose
open-loop poles, does generate two clockwise encirclements of the

test point (-1,0)” -
GH-plane &  Test radius

s-plane
@)
i B
HK—H—H O —» G(s)H(s) —> : Re
W
O =zeros of 1 + G(s)H(s) X =poles of 1 + G(s)H(s)
= poles of closed-loop system = poles of G(s)H(s)
Location not known Location is known

* Thus, P = 0; N = 2, and the system is unstable; it has two closed-
loop poles in the right half-plane, since Z = P — N = 2.

* The two closed-loop poles are shown inside contour A4 in the figure
above as zeros of 1 + G(s)H(s).



From Root Locus to Nyquist

Jjeo Im
Vivs
s-plane I +GH-plane | B = ——=
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Thus, N=P—-7Z7

Where:

N - Number of counterclockwise rotations of contour B about
the origin.

P - Number of poles of 1 + G(s)H(s) inside contour A.
Z - Number of zeros of 1 + G(s)H(s) inside contour A.



From Root Locus to Nyquist

Nyquist stability criterion is as follows:

If a contour, 4, that encircles the entire right half-plane is
mapped through G(s)H(s), then the number of closed-loop
poles, Z, in the right half-plane equals the number of open-
loop poles, P, that are in the right half-plane minus the number
of counterclockwise revolutions, N, around the test point (1,0)
of the mapping.

That is,
Z=P—N

The mapping is called the Nyquist diagram, or Nyquist plot, of
G(s)H(s).



From Root Locus to Nyquist Example

Given a first-order system with its transfer function equation:

G(s) =

s+ 0.1
a.  Derive the real and imaginary equations needed for sketching
the Nyquist diagram. [4 marks]
b.  Using equations derived in part (a), calculate the points
required for sketching the Nyquist diagram. [4 marks]
c.  Sketch the Nyquist diagram of the system. [6 marks]

d. Simulate the root locus diagram of the system in MATLAB. By
determining and obtaining values of the points in the diagram
required for sketching Nyquist diagram, convert the root locus
diagram to Nyquist diagram. [12 marks]



From Root Locus to Nyquist Example

Answer

a. Substituting s = jw, the transfer function equation of the
system becomes:

) 1 1 jo —0.1 jow —0.1
G(jw) = - = |- : ==
jo+01 \jw+01/\jw-0.1 w? +0.01
For sketching the Nyquist diagram, we need the following
equations for determining the points in the Nyquist diagram:

The real part and imaginary part of the complex equation:

0.1 '
RelGU)} = oygop  ImlGU@) =~ <w2 ]+w0.01>



From Root Locus to Nyquist Example

b. Choose the frequencies from 0 to +e along the y-axis
(imaginary axis) e.g. A=0rad/s, B=0.1rad/s, C=1rad/s, and
D = 10 rad/s. The points for sketching the Nyquist diagram are

calculated and tabulated in the following table.

Points w Re{G(jw)} Im{G(jw)}
A 0 0.1 B j(0) B
2001 ° - (m) =0
B 0.1 0.1 B j(0.1)
(0.)2+0.01 - (m) =
¢ ! 01 _ j)
2001 - 0% - (m) =099
D 10 0.1 _ j(lo)
aoy+oo1 - V0% - ((10)2 + 0.01) = 70099




From Root Locus to Nyquist Example

c. Based on the points listed in the table in part (b), the
following diagram shows the sketched Nyquist diagram.

Imaginary Axis

5

4t

Nyquist Diagram

Pw
|

Real Axis



From Root Locus to Nyquist Example

d.  Theresult of root locus diagram simulation of the system
in MATLAB is shown in the figure below.

Root Locus
0.015

0.01

0.005

o
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.0.015 . . . . . . .
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From Root Locus to Nyquist Example

Choose the frequencies from 0 to +o< along the y-axis (imaginary
axis) e.g. A=0j, B=0.1j, C=1j,and D = 10j.
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From Root Locus to Nyquist Example

Calculate the magnitudes and angles formed by the zero at (-1, 0) with
the chosen points in the diagram.

Points ) |G(w)| 2G(jw)
A 0 1 “ 10 —tan(0/0.1) = 0°
V(0.1)% + (0)2

B 0.1 1
— 707 ~tan <E> s
JO.DZ + (0.1)2 0.1

¢ ! ! 0.99 < ! >
———=0U. —tan|— | = —84.29°
V(0.1)% + (1)? 0.1

D 10 1 —tan(10/0.1) = —89.43°
—_—— =001
V(0.1)% + (10)2




From Root Locus to Nyquist Example

Sketch the Nyquist diagram based on the magnitudes and

angles obtained above.

Nyquist Diagram
5 . -

-

Imaginary Axis
N N =)

Real Axis



From Bode to Nyquist

* The curve on a Nyquist diagram can be determined by choosing
gain-phase points from a Bode plot at multiple frequencies.

* Thus, the Nyquist diagram is the locus traced out by the transfer
function as we vary frequency.

* Frequency thus varies along the Nyquist curve, but not in a
regular way. There is no way to use a Nyquist diagram to
determine the frequency at which something happens.

* To construct the Nyquist diagram, choose the points where
something “interesting” happens on the Bode plot and transfer
them to the Nyquist diagram.

* Join the points with sensible curves. This produces a plot of
gain vs. phase as the frequency varies from 0 to co.



From Bode to Nyquist

* Drawing a Nyquist diagram is slightly more complex than plotting
the gain vs phase curve for f=0 = co.

* Nyquist’s criterion (see later) actually requires that we evaluate the
transfer function as we traverse a clockwise path that completely
encloses the right half of the s-plane.

& P W Im{ s

* Evaluating the transfer function for f = ’

0 - oo corresponds to traversing the
upper straight part of the semicircle
shown in the diagram. Re{ s

* As the pole-zero diagram must be
symmetric we know that the Nyquist
diagram must be symmetric in the \] s-plane
section from f=-00 - 0.




From Bode to Nyquist

* To draw the complete Nyquist diagram, we need to add to the plot
that you produced by transferring data from the Bode plot.

* The section from -co to 0 is straightforward, as it is just the mirror
image of the 0 to co section that you have already drawn.

* Most transfer functions that you will meet have the degree of the
denominator larger than the numerator (they are strictly proper).

* A consequence of this is that the gain is infinitesimally small at
infinite frequency.

* Thus, the response for the circular part of the contour from w =
+00 to w = -0 is always zero.

* The whole sweep is therefore mapped to the origin of the Nyquist
diagram.



From Bode to Nyquist Example

Consider a first-order system with the transfer function:

100

G(s) =
) =5710

a. Simulate the Bode plots of the system the in MATLAB.
[5 marks]

b. Determine the gain and phase of the frequency response of
the system from the Bode plots for w = 1, 10, and 100 rad/s.
[6 marks]

c. Based on the results obtained in part (b), construct Nyquist
diagram of the system. [5 marks]



From Bode to Nyquist Example

* Consider the first-order system with the transfer function:

ey = 100
Bode Diagram (S) B s+ 10

. 20
R : w |G(w)| | 26(w)
g 10 |
LI : 1 20 dB 0°
g - (10)

- ; 10 | 17dB | -45°
. i 7)
P : 100 | 0dB(1) | —90°
§ —G0 i

-an, o X

Frequency (rad/sec)



From Bode to Nyquist Example

* Consider a first-order system with the transfer function:

s+ 10 MNyquist Diagram

o | |6(w)] |£6(w)

1 | 20d8 | © _9
(10 £

10 | 17dB | -45° £
£

(7)
100 | 0dB(1) | -90°

Feal Axis



From Bode to Nyquist Example

Consider a second-order system with the transfer function:

G(s) 100
(S)_sz+25+26
a. Simulate the Bode plots of the system the in MATLAB.

[5 marks]

b. Determine the gain and phase of the frequency response of
the system from the Bode plots for w = 1, 5, 10, 50, and 100
rad/s. [10 marks]

c. Based on the results obtained in part (b), construct Nyquist
diagram of the system. [5 marks]



From Bode to Nyquist Example

* Consider a second-order system with the transfer function:

6(s) 100
§)=—"7-—7—
2
Bode Diagram s+ 2s +26
= ® IG(w)] | 2G(w)
g Ot N 1 12 dB (4) 5°
g = ; s | 20dB | —90°
-40 : (10)
! 10 | s5dB | -165°
g ! (1.77)
®  -90t------\--  EREEE
£ . 5 50 | -30dB -175°
~180 L > : (0.03)
10 10 1 .
Frequency {radfsec) 100 -40 dB -180
(0.01)




From Bode to Nyquist Example

* Consider a second-order system with the transfer function:

G 100
S )=———
) s?+2s+ 26
w 1G(w)| 46G(w) . Nqu?t Diagram
1 | 12dB(4) 0° .
6
> 20dB -90° 4
(10) §
10 5dB —-165° |2 o
(1.77) g
50 -30dB -175° :;‘
(0.03) -
H0 “40dB 180° -4 -2 0 2 4 6
(0.01) Real Axis




Nyquist Diagram Analysis

* A system is stable if there is no encirclement of the curve
around the test point (-1,0) in the Nyquist criterion.

* The number of encirclement correspond to unstable pole and
zero in the closed-loop system:

N=P—-Z
* More precise stability condition of the system is determined

through gain and phase margin in the Nyquist diagram (e.g.
we will discuss about this topic later).



Nyquist Diagram Analysis Example

Apply Nyquist criterion to determine the stability of the
following feedback systems:

a. System (i) [5 marks]

G.(s) = s+ 20
(s+2)(s+7)(s+50)
b. System (ii) [5 marks]
s+3

Go(s) = (s +2)(s? + 2s + 25)

c. System (iii) [5 marks]
Go(s) = 500(s — 2)

(s+2)(s+7)(s+50)



Nyquist Diagram Analysis Example

For system (i):

Nyquist Diagram

* We have P =0 (open loop v
stable system). “2 —
e The Nyquist diagram does not i G ( \'\
enclose (-1, j0), (N = 0) H (
— 001 \\ /./

. Th us,Z=P-N=0. - ~—

e Systems (i) is stable since there %o ou o wn o o ow

Real Axis

are no closed loop poles in the
right half plane.



Nyquist Diagram Analysis Example

For system (ii):

Nyquist Diagram

* We have P =0 (open loop
stable system). 4
0.05 \\

*  The Nyquist diagram does not

)
enclose (-1, j0), (N =0) DE: < j

Imaginary Axis
/

° ThUS,Z=P—N=O. 01

° SyStemS (ll) is Stable since there %1 08 006 004 002 0 002 004 006 008 04

Real Axis

are no closed loop poles in the
right half plane.



Nyquist Diagram Analysis Example

For system (iii):

° We have P = 0 (Open‘ , Nyquist Diagram

loop stable system), but

1.5

I Y

o
o

e System (iii) is unstable 2 / - ~

with one closed-loo X o C )

P g—c 5 \ \ _— ‘

pole in the right-half - \\ ) /
plane. ! ~__



Nichols Chart

* A Nichols chart displays the
magnitude (in dB) plotted ®
against the phase (in
degrees) of the system
response. _ s

1 Te
|z
|

SN

=

_Gain margin = 15 db

-120"  -80°  -60° -30

* Nichols charts are useful to L
analyse open- and closed-

db magnitude

Phase angle

loop properties of SISO
systems but offer little /- ' s
insight into MIMO control

loops.



Nichols Chart

* Stability of the system is by evaluating the contour around the
test point (-180°, 0) - encircles the test point or not

* Gain margin (GM) and phase margin (PM)
of the system in the Nichols chart similar
to the steps in Nyquist diagram.

* The phase margin is phase difference
from the test point to the intersection
between the contour with x-axis. The
example is GM of 35°.

magnitude

Phase angle

db

Gain margin = 15 b

* The gain margin is gain difference between the gain at the point
of the contour at 180° and the x-axis. The example gain margin is
15 dB.



Nyquist Diagram vs. Nichols Chart

Pitfalls of the Nyquist diagram:

* Becomes messy for systems with multiple crossover
frequencies.

* Crossover region is imperceptible for systems with large
resonant peaks.

* Lacks system composition (superposition) properties of
Bode plots.



Nyquist Diagram vs. Nichols Chart

Since phase scale is linear rather than polar:

* Nichols chart is typically cleaner than Nyquist diagram
especially for systems with large phase lags, like time-
delay systems.

* As magnitude scale is in dB, regions with large magnitude
don’t dominate, hence the crossover region is more
visible.

* Also, the consequence of the logarithmic scale of
|log(jw)| is that multiplication of systems results in
superposition on Nichols chart, almost as easy as on the
Bode plots.



Nyquist Diagram vs. Nichols Chart

L(s) Bode Nyquist Nichols
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Example of Nichols Chart

* For example, on the following page, we see Bode plots and
Nichols charts for an uncompensated system (G (s)) and
compensated system (G (s)C(s)) with:

10°
6= (s + 1)(s? +4s + 1.639 x 10%)
And
25
C(s) = s+ 25

R(s)—?—v C(s) —»i G(s) }——» Y(s)




Example of Nichols Chart

Bode Diagram Nichols Chart
50
S o
(] —~
S s 3
5 £
g -100 S
o
—15% §
—_— |
g —90 &
o [oR
2 -180 O -100
)
@
-270 -
< 120
-360 _

2 -1 _0 1 2 3 140 - -
10 10 10 10 10 10 -360-270-180 -90 O
Frequency (rad/s) Open-Loop Phase (deg)

Note: blue line is uncompensated system and green line is compensated system.




Example of Nichols Chart

a. Forthe Bode diagram, notice that the gain margin (GM) and
phase margin (PM) of the uncompensated system (blue line)
are smaller compared with those of the compensated system
(green line).

We need to determine the exact values of GM and PM of the
system to find out if it is stable or not

For the Nichols chart, notice that the contour of the
uncompensated system (blue line) encircles the test point (-
180°, 0), but the contour of the compensated system is
underneath the test point.

From these results, compensated system is stable whereas
uncompensated system is unstable.



Example of Nichols Chart

b. From the results of part (b), it seems that Nyquist diagram is
easier to use than Bode plots for analysing stability of the
system.

We need only to evaluate the contour in the Nyquist
diagram whether it is encircling the test point (-180°, 0) to
determine if the system is stable or not.

On the other hand, we need to find out the values of GM
and PM of the system using Bode plots.
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