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* Construction of Nyquist diagram.

* Poles on the complex axis.

* Gain and phase margins in Nyquist diagram.

* Stability in Nyquist diagram.

* Design with compensators in Nyquist diagram.
* Analysis with Nichols chart.

* Design procedures of control systems with Nyquist diagram

and Nichols chart.



Construction of Nyquist Diagram

* We can draw a Nyquist diagram Im{s}
directly, without needing to draw
a Bode plot first. _AS=jo
* We just consider the system Jo+ 2z e
response as we move around the «—e==" Nl >
required contour. jo+ p lRe{ s}

* Recall the magnitude and phase of frequency response.
* Magnitude:
|K||s + z,||s + 23| ... |s + z|

s + palls + pal ... Is + Pl

1G(s)| =
* Phase:
2G(s)=24(s+z)+ 2(s+2y) ...+ 2(s + zx)
—2(s+py) —2(s+py)...— 2(s+ py)



Construction of Nyquist Diagram

* For example, consider the contribution of a single LHP pole at
pole location of —a.

* As we move from zero to infinite frequency, the phase will move
from zero to -90°.

0
£G(jw) =tan™?! (%) =0°
* At the same time, the gain will drop.

1
V(jw)? + (a)?

* We can therefore sketch the Nyquist diagram those results.

1G(w)| =



Example of Construction of Nyquist Diagram

Consider a first-order system with the transfer function:

G(s) =

s + 0.2

a. Determine the equations for calculating magnitude and

phase of the frequency response of the system.
[4 marks]

b. Calculate the magnitude and phase of the frequency
response of the system for w =0, 0.2, and 1 rad/s.
[6 marks]

c.  Sketch the Nyquist diagram based on the results obtained in
part (b). [4 marks]



Example of Construction of Nyquist Diagram

* For the given first-order system with the transfer function:

G(s) =

s+ 0.2
* Magnitude: |G(jw)| = 1/4/ (jw)?+(0.2)?
¢ Phase: 2G(jw) = —tan"1(jw/0.2)

w 1G(s)l £G(s)

0 1 0
- _s —tant(—) = o°
J©2 +(0.2)? an <0.2> 0

0.2 1 0.2
—_— =35 _tan—l <_> = —45°
J02)7 +(02)2 2

1 1 1
——— =098 —tan?! <—> = -78.7°
V(1?2 +(0.2)? 0.2




Example of Construction of Nyquist Diagram

* The Nyquist diagram of the first-order system with transfer
function:

G =
(5) s + 0.2

Nyquist Diagram

Imaginary Axis

Real Axis



Example of Construction of Nyquist Diagram

See the following second order system with transfer function:

1
G(S):(s+j+2)(s—j+2)

a. Determine the equations for calculating magnitude and
phase of the frequency response of the system.
[4 marks]
b. Calculate the magnitude and phase of the frequency
response of the system for w =0, 1, and 10 rad/s.
[6 marks]

c.  Sketch the Nyquist diagram based on the results obtained
in part (b). [4 marks]



Example of Construction of Nyquist Diagram

For the given second order system:
G(s) = 1 _ 1
° C(sHj+2D(s—j+2) s2+4s+5
* Magnitude: |G(jw)| = 1/y/ (5 — (jw)2)?+(4jw)?

+ Phase: £G(jw) = —tan" 1 [4jw/(5 — (jw)?)]

o [G(s)l 2G(s)
ol __ 1 _o; ~tan-! <9> o
5= 002+ (0)2 5
1 1 4
—_ = (.17 — -1 ) = —45°
JG— 122 + (4)2 an <4> 45
10 1 B Nz )
TGt s oy 07 | tan ' <ﬁ> =152




Example of Construction of Nyquist Diagram

* The Nyquist diagram of the system with transfer function:

1
(S +j + 2)(5 —j + 2) Nyquist Diagram
0.4 - ‘ - 5 - -
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Poles on the Complex Axis

* Following the contour we discussed before does not work if we
have poles (or zeros) that would lie on the contour.

* Thus, if we have poles of zeros on the imaginary axis, we modify
the contour so that it takes an infinitesimally small “detour”
around the imaginary root. We then proceed as normal.
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Poles on the Complex Axis - Example

For example, consider a second-order system with transfer

function:

G(S) =———
() s(s+1)
a.  Simulate the Nyquist diagram of the system in MATLAB.
[4 marks]

b. Determine the stability of the system by evaluating the

encirclement at the test point (-1, 0).
[4 marks]



Poles on the Complex Axis - Example

Root locus and Nyquist diagrams of system with transfer function:
G(s) =————
() s(s+1)

The Nyquist diagram of the above given system is shown in the
figure below.
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Margins on the Nyquist Diagram

* We can examine the Nyquist diagram
to determine the gain and phase

margins. In:'{G(S)}

* The phase margin can simply be read 1/GM |
as the difference between the phase T
= -180°line and the point where the I
curve crosses the unit circle. PM\ " Re{ G(s)}

* The gain margin is the inverse of the
distance to the point where the curve

crosses the negative real axis.

Note: that we can again have multiple gain and phase margins if
the curve crosses the negative x-axis multiple times.



Stability from the Nyquist Diagram

Nyquist showed mathematically that the number of poles in the right-
half plane of the closed-loop transfer function can be determined by
examining the Nyquist diagram of the open-loop transfer function.

Number of closed-loop poles in right-half of s-plane:
= Number of open-loop poles in right-half of s-plane
+ Number of clockwise encirclements of -1 + 0j.

Remember that for the system to be stable we must have no closed-
loop poles.

If we have the transfer function of the system, we can easily
determine the number of open-loop poles. So, if we use the
Nyquist diagram to count the clockwise encirclements, we will be
able to determine the closed-loop stability.



Counting Encirclements

* To count the clockwise encirclements:
1. Draw a straight line from -1 + 0j to < in any direction.

2. Count how many times the Nyquist diagram crosses from
left-to-right over your chosen line. For each such crossing,
add one to the your count of the number of encirclements.

3. Count how many times the Nyquist diagram crosses from
right-to-left over your chosen line. For each such crossing,
subtract one from your count of total encirclements.

* |f you have drawn a correctly constructed Nyquist diagram, then
the final number that you get will be the same, regardless of
which orientation you chose for your original line (so choose a
direction that makes counting easy).



Example of Third-order System

Consider a third-order system:
100
(s+1)(s+2)(s+5)

a. Simulate the Nyquist diagram of the system in
MATLAB. [4 marks]

G(s) =

b. Determine the stability of the system.
[2 marks]



Example of Third-order System

* The Nyquist diagram is as shown in the figure below.
Nyquist Diagram

Imaginary Axis

L 1 1 1 1 1
-2 0 2 4 6 8 10
Real Axis

* This system will be closed-loop stable, but if we were to increase

the gain, then it would eventually encircle s = -1 and become
unstable.



Example of Conditionally Stable System

Consider a complex system given as the following transfer function
equation:

B s?+2s+4
Cs(s+4)(s+6)(s2+ 145+ 1)

a. Simulate the Bode plots of the system in MATLAB.

G(s)

[4 marks]
b. Determine the stability of the system from results obtained in

part (a). [2 marks]

c. Simulate the Nyquist diagram of the system in MATLAB.
Comment on the difference using this method compared with
Bode plots. [6 marks]



Example of Conditionally Stable System

* The Bode plots are as shown in the figure below. There are
multiple crosses for determining the gain and phase margins.
Bode Plot
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Example of Conditionally Stable System

s242s5+4
s(s+4)(s+6)(s2+1.45+1)

* Nyquist diagram of system G (s) =

Nyquist Diagram
0.4 T

Imaginary Axis

-0.4 . . .
-2 -1.5 -1 -0.5 0
Real Axis

* For some gains, this will be stable, for others unstable. You
cannot easily determine this from a Bode plot.



Proportional Compensators

* A proportional compensator simply scales the Nyquist contour.

* Consider a third-order system:

50
(s+1D(+2)(s+3)

Nyquist Diagram

G(s) =

* Notice that a too much

10}

proportional gain makes
this system closed loop

unstable. U S ]
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. . -10 |
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Proportional Compensators

* Even if the system does not become unstable, the phase margin
will typically still be reduced by increasing the gain.

Nyquist Diagram

——G(s)
2t — 4G(9)
2 |
2
g
£ O[T
[}
(]
E |
= -1
_27
-3 -4 -2 0 2 4

Real Axis

* This example shows a second-order system with its phase margin is
reduced when a proportional compensator with a gain of 4 is used.



Lag Compensators

* Alag compensated system starts with a higher gain than the
uncompensated system but approaches the Nyquist contour
of the uncompensated system before it is near -1 + j0.

* Consider a lag compensator with transfer function:

Nyquist Diagram

s+ 0.4 30 ‘ :
C(S) = ) o — G(s)

s+ 0.1 20t

10

Where:

wp=01landa =4

Imaginary Axis
o

-10 |

-20 |

% 0 10 20 30
Real Axis



Lag Compensators - Effect of wy

* If wy is reduced, then the compensated system approaches the
uncompensated more “quickly”.
Nyquist Diagram

e | G(s)
151 ®,=0.01

©,;=0.03

Imaginary Axis

—20g 0 5 10 15 20 25 30 35
Real Axis



Pl Controllers - Effect of wy

* APl controller changes the shape of the Nyquist diagram at low
frequencies.

* Again, wj determines how quickly the system approaches the

uncompensated s

ystem. Nyquist Diagram
15 T T — i

1

-
) G(s)
10} S ,=0.03
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Real Axis



Lead Compensators

* The lead compensator “rotates” the Nyquist contour away from -1.

Nyquist Diagram

Imaginary Axis

0 5 10
Real Axis



Other Examples of Nyquist Diagram

Phase margin

log w

Gain margin

—20 dB/dec margin — 00 dB/dec
G3(s) K
S) =
(st1 + D(st2 + D(s3 + 1)
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177 o
—w: R & M
1 f _ '\\ Phase margin = 907
e aw=E .
L7 o o
+m: ‘/ pap 7 ‘
M*O?—A"’ —20 dB/dec
K
G2(s) = G4(s) = —
) (st + D(stp + 1) s



Other Examples of Nyquist Diagram
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Other Examples of Nyquist Diagram
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Analysis with Nichols Chart

* Like Nyquist diagram, it is used to analyse stability of control
systems.

* Its graph is magnitude (in dB) vs. phase 12 o /
(in degrees) of the system’s frequency i
1/

response.

* Stability analysis of the system can be
determined in terms of these

parameters.

* Either evaluating the curve at test point .« /
(-180°, 0) or through determining the /
gain and phase margins of the system. 0 20 -0 10 D




Example of Construction of Nichols Chart

For a system with the transfer function given below,

1
G(s) =
(s) (s+2)
a. Determine the equations for determining magnitude and
phase shift of the frequency response. [4 marks]

b. Determine the magnitude and phase shift of the system for w

=0,1, 2,5and 10 rad/s. [10 marks]

c.  Sketch the Nichols chart from the results obtained in part (b).
[4 marks]
d. Simulate the Nichols chart in MATLAB. [5 marks]

e. Evaluate the frequency response of the system based on the
results in part (d). [3 marks]



Example of Construction of Nichols Chart

a. Forthe given system with the transfer function given

below
G =
(s) s +2)
Magnitude:
1
G(jw)| = ——
V (2)2+w?
Phase shift:

4 [Jw
_ 1
240 = —tan (—2 >



Example of Construction of Nichols Chart

b. The frequency range of the points to be plotted are selected
from some frequencies between 0 to 10 rad/s.

Frequency | Magnitude (dB) Phase Shift (degree)
(rad/s)
1 0
0 —————=05=-6dB —tan~! (—) =0°
V(2)2—(0)? 2
1 1
1 —————=0.447 = -6.99dB —tan~! (—) = —26.56°
 (2)%2+4(1)? 2
1 2
2 ————=0.353 = -9.04 dB —tan~?! (—) = —45°
J(2)%2+4(2)? 2
1 5
5 ————=10.186 = —-14.61dB —tan~?! (—) =—68.2°
V(2)*+(5)* 2
1 10
10 —————=0.098=-19.82dB —tan"!| — | = — 78.69°
V(2)%+(10)? 2




Example of Construction of Nichols Chart

c. The sketch of the Nichols chart is shown in the figure below.

Nichols Chart
40 T T T

o 0dB..
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-360 -315 270 225 -180 -135 -90 -45 0
Open-Loop Phase (deg)



Example of Construction of Nichols Chart

d. The result of the Nichols chart simulation as shown in the
figure below.

Nichols Chart
40 T T T

SrgdB.

30

Open-Loop Gain (dB)
o
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360 315 270 225 180 135 90 45 0

Open-Loop Phase (deg)



Example of Analysis of Nichols Chart

e. The frequency response of the system based on the results in
part (d):

* At low frequency, the magnitude of the system are around
less than -6 dB and phase shift from 0 up to -90°.

* At high frequency, the magnitude and phase of the system
are settling at negative infinity gain and -90° phase shift.
The contour is underneath test point (-180, 0), thus
system is stable.

* The gain and phase shift is nowhere near the -180° mark,
the magnitude and phase margins of the system are both
positive values.



Example of Analysis of Nichols Chart

* From the resulting graph of the Nichols chart, we could
analyse the characteristics of the system.

Nichols Chart

* Gain margin: co dB T e
* Phase margin:co degree ] o ads ]
* Stability of the system: 8 R Y
g i
Since both margins are & St
positive, then the given G |
system is stable. ol oo L

Op;rkLcop Pi'ls:se {a;gl



Design with Nyquist Diagram

* Nyquist diagram is primarily used for analysing and
designing the stability of the control systems.

* Procedure for designing of control systems using Nyquist
diagram.

i Construct the Nyquist diagram for the given control
system.

ii.  Determine the stability of the system by evaluating
the position of the curve relative to the critical-test
point of Nyquist diagram (-1,0).

iii. Determine the gain and phase margins of the system.



Design with Nyquist Diagram

iv. Increase or decrease the gain of the system to meet the
required steady-state condition and transient response
of the system.

v.  If previous step is not successful, introduce compensator
or controller to meet the required steady-state condition
and transient response of the system.

vi.  Readjust, if necessary, the gain of the system to meet
the desired design specification.



Design with Nichols Chart

* Like Nyquist diagram, Nichols chart could provide alternative
for analysing and designing the stability of control systems.

* Procedure for designing of control systems using Nichols
chart:

i Construct the Nichols chart for the given control
system.

ii. Determine the stability of the system by evaluating the
position of the curve relative to the critical-test point
of Nichols chart (-180°,0).



Design with Nichols Chart

iii. Determine the gain and phase margins of the system.

iv. Increase or decrease the gain of the system to meet the
required steady-state condition and transient response of
the system.

v.  If previous step is not successful, introduce compensator or
controller to meet the required steady-state condition and
transient response of the system.

vi. Readjust, if necessary, the gain of the system to meet the
desired design specification.
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