
Laplace Transforms

XMUT315 Control System Engineering



Topics

• Differential equations and Laplace transforms.

• Transfer functions, poles and modes, and zeros.

• Modal decomposition and expansion method.

• Cover up (Heaviside) method.

• Complex factors.

• Repeated factors.

• Partial fractions.

• S-plane and final value theorem.



Solving DEs with the Laplace Transform

• The Laplace transform is useful because it allows us to convert 

linear,  constant-coefficient differential equations into 

algebraic equations. 



Solving DEs with the Laplace Transform

• This results from the differentiation in time property of the 

Laplace  transform.

ℒ 𝑦′(𝑡) = 𝑠ℒ 𝑦(𝑡) − 𝑦(0−)

ℒ 𝑦′′(𝑡) = 𝑠2ℒ 𝑦(𝑡) − 𝑠𝑦 0− − 𝑦′(0−)

…

ℒ 𝑦(𝑛)(𝑡) = 𝑠𝑛ℒ 𝑦(𝑡) − 𝑠(𝑛−1)𝑦 0− … 𝑦(𝑛−1)(0−)

• Recall that 𝑦(0−) ,𝑦𝑗(0−) and so forth are initial 

conditions. 

• For an 𝑛-th order DE, we need to know the initial values of 

the first 𝑛 derivatives to solve a differential equation 

uniquely using the Laplace transform.



Example of Solving DEs

• Find 𝑦(𝑡) in a system described by the differential equation:

𝑦′′ 𝑡 + 4𝑦′ 𝑡 + 3𝑦 𝑡 = 0

With initial conditions: 

𝑦 0 = 3, 𝑦′ 0 = 1

                  [10 marks]



Example of Solving DEs

• We start by taking the Laplace transform of the entire 

differential equation. 

• Using the differentiation in time formula, we can write the 

transforms of each of the derivatives of 𝑦.

ℒ 𝑦′ = 𝑠𝑌(𝑠) − 𝑦(0)

 = 𝑠𝑌(𝑠) − 3

• And

ℒ 𝑦′′ = 𝑠2𝑌(𝑠) − 𝑠𝑦 0 − 𝑦′(0)

= 𝑠2𝑌(𝑠) − 3𝑠 − 1



Example of Solving DEs

• We can therefore write the complete Laplace transform.

𝑠2𝑌(𝑠) − 3𝑠 − 1 + 4 𝑠𝑌(𝑠) − 3 + 3𝑌(𝑠) = 0

𝑠2 + 4𝑠 + 3 𝑌 𝑠 = 3𝑠 + 13

• Rearrange the equation and factorise roots:

𝑌 𝑠 =
3𝑠 + 13

𝑠2 + 4𝑠 + 3
=

3𝑠 + 13 

(𝑠 + 1) 𝑠 + 3

• Apply partial fraction expansion to simplify the form of the 

equation:

𝑌(𝑠) =
5 

(𝑠 + 1) 
+

−2

(𝑠 + 3) 



Example of Solving DEs

• We have solved our DE by Laplace transforming it, solving 

an algebraic equation.

• Then, using inverse Laplace transform, transform the 

equation back to the time domain (see table of Laplace 

transform).

𝑦 𝑡 = 5𝑒−𝑡 − 2𝑒−3𝑡 𝑢(𝑡)



The Transfer Function

• When characterising a system, we are interested in what the 

system does to an arbitrary input signal. 

• We typically assume that any initial transients have been given 

time to die away, which is equivalent to  assuming zero initial 

conditions.

𝑦′′ 𝑡 + 𝑦′ 𝑡 + 𝑦 𝑡 = 𝑥(𝑡)

• Take Laplace transform of the equation

𝑠2𝑌 𝑠 + 𝑠𝑌 𝑠 + 𝑌 𝑠 = 𝑋 𝑠

• Rearrange the equation

(𝑠2+𝑠 + 1)𝑌 𝑠 = 𝑋(𝑠)



The Transfer Function

• Rearrange the equation in terms of ratio of the parameters that 

we are interested e.g. 𝑌(𝑠) and 𝑋(𝑠).

𝐺 𝑠 =
𝑌(𝑠)

𝑋(𝑠)
=

1

𝑠2 + 𝑠 + 1

• This is the so-called transfer function (TF) -> it tells us what the 

system does to an arbitrary 𝑋(𝑠).



Example of The Transfer Function

• Find the transfer function of the following differential equation:

𝑦′′ 𝑡 + 4𝑦′ 𝑡 + 3𝑦 𝑡 = 0

                         [4 marks]



Example of The Transfer Function

• Take Laplace transform of the equation

𝑠2𝑌 𝑠 +  4𝑠𝑌 𝑠 + 3𝑌 𝑠 = 𝑋(𝑠)

• Gather all coefficients of 𝑌(𝑠) to the left and the rest of other 

coefficients to the right.

(𝑠2+4𝑠 + 3)𝑌 𝑠 = 𝑋(𝑠)

• Form the equation of 𝑌(𝑠)/𝑋(𝑠):

𝐺 𝑠 =
𝑌(𝑠)

𝑋(𝑠)
=

1

𝑠2 + 4𝑠 + 3



Poles and Modes

• The poles of the transfer function are important (e.g. the values 

of 𝑠 that make the denominator of the TF zero), as they allow 

us to find the modes of the system. 

• The modes are simply the characteristic  responses that the 

system will exhibit when excited by a signal, or by initial 

conditions.

𝐺(𝑠) =
1

(𝑠 + 𝑎)(𝑠 + 𝑏)

• Poles at 𝑠 = −𝑎 and 𝑠 = −𝑏. The modes will be 𝑒−𝑎𝑡 and 𝑒−𝑏𝑡

𝑦 𝑡 = 𝐴𝑒−𝑎𝑡 + 𝐵𝑒−𝑏𝑡 𝑢(𝑡)

• Where: 𝐴 and 𝐵 depend on the input and the initial conditions.



Example of Poles and Modes

• Find the mode of the characteristic response of the system 

as given below.               [4 marks]

𝐺 𝑠 =
1

𝑠2 + 4𝑠 + 3



Example of Poles and Modes

• For the given system, factorise its transfer function 

equation as shown below

𝐺 𝑠 =
1

𝑠2 + 4𝑠 + 3
=

1

(𝑠 + 1)(𝑠 + 3)

• With the given system, the poles at 𝑠 = −1 and 𝑠 = −3. 

• The modes will be 𝑒−𝑡 and 𝑒−3𝑡

𝑔 𝑡 = 𝐴𝑒−𝑡 + 𝐵𝑒−3𝑡 𝑢(𝑡)

Where: 𝐴 and 𝐵 depend on the input and the initial 

conditions.



Zeros

• In general, we can also have a polynomial of 𝑠 in the numerator 

of the transfer function. 

• The values of 𝑠 that make the numerator zero are called zeros 

of the transfer function.

• The system will exhibit no output when driven by a signal 

having these values of 𝑠.

• The zeros do not produce modes, but they play an important 

role in setting the relative magnitude of the various modes. 

• In particular, a pole that has an 𝑠 value that is close to that of a 

zero will have a “small” mode.



Modal Decomposition

• We use partial fraction expansion to simplify expressions in the 

s-domain. 

• We must begin with a proper rational polynomial, otherwise the 

form of the system modes will be obscured. 

Not a rational polynomial: 

𝑌1 𝑠 =

1
𝑠

+ 1

(𝑠 + 2)(𝑠 + 3)

Not strictly proper:

𝑌2 𝑠 =
𝑠2

(𝑠 + 2)(𝑠 + 3)



Example of Modal Decomposition

Decompose the following functions into its simplest forms.

                [4 marks]

• System 1: 

𝑌1 𝑠 =
(1/𝑠) + 1

(𝑠 + 2)(𝑠 + 3)

• System 2:

𝑌2 𝑠 =
𝑠2

(𝑠 + 2)(𝑠 + 3)



Example of Modal Decomposition

• If the transfer function of the system is not a rational 

polynomial, perform modal decomposition of the equation 

as shown below: 

𝑌 𝑠 =
(1/𝑠) + 1

𝑠 + 2 𝑠 + 3

 =
𝑠

𝑠

1/𝑠 + 1

𝑠 + 2 𝑠 + 3

 =
(𝑠 + 1)

𝑠(𝑠 + 2)(𝑠 + 3)



Example of Modal Decomposition

• If the transfer function of the system is not strictly proper, 

we can simplify the equation as below:

𝑌 𝑠 =
𝑠2

(𝑠 + 2)(𝑠 + 3)

 =
𝑠2 + 5𝑠 + 6

𝑠2 + 5𝑠 + 6
−

5𝑠 + 6

𝑠2 + 5𝑠 + 6

 = 1 −
5𝑠 + 6

(𝑠 + 2)(𝑠 + 3)



Modal Expansion

• We then write our expression as the sum of a set of appropriate  

terms, each of which corresponds to a particular mode and has 

an unknown amplitude.

• We write the denominator as a combination of three types of 

poles:

• Simple real poles: (𝑠 + 𝑎) ⟺ 𝐴𝑒−𝑎𝑡

• Complex pole pairs: (𝑠 + 𝑎)2+𝜔𝑑
2 ⟺ 𝐵𝑒−𝑎𝑡 cos(𝜔𝑑𝑡 + 𝜙)

or 

Control systems: 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 ⟺ 𝐵𝑒−𝜁𝑡 cos(𝜔𝑛𝑡 + 𝜙)

• Repeated real poles: (𝑠 + 𝑎)𝑛⟺ 𝐶𝑛𝑡𝑛−1𝑒−𝑎𝑡 + …



Modal Expansion

• You only need to use partial fraction expansion when you need 

to write an equation for the output of a system. 

• If you need to know the amplitudes of the modes, then use 

partial fractions. 

• If you don’t need the amplitudes, just wish to find out the 

mode of the system, then stop!



Simple Real Poles

• For real poles:

𝑌 𝑠 =
𝑛(𝑠)

𝑠 + 𝑎 𝑑(𝑠)
= 𝑌1 𝑠 +

𝐴

𝑠 + 𝑎

• Thus

𝑦 𝑡 = 𝑌1 𝑡 + 𝐴𝑒−𝑎𝑡𝑢(𝑡)

• We can solve this system with simple real poles using ordinary 

partial-fraction expansion method or using Heaviside or cover-

up method.



Example of Simple Real Poles

• Find the time domain equation of a system described as 

the transfer function equation below using ordinary partial 

fraction expansion method.         [8 marks]

𝑌 𝑠 =
𝑠 + 1

𝑠3 + 𝑠2 − 6𝑠



Example of Simple Real Poles

• For the given system, factorise the transfer function equation 

and perform partial fraction expansion.

𝑌 𝑠 =
𝑠 + 1

𝑠3 + 𝑠2 − 6𝑠

 =
𝑠 + 1

𝑠(𝑠2 + 𝑠 − 6)

 =
𝑠 + 1

𝑠(𝑠 − 2)(𝑠 + 3)

 =
𝐴

𝑠
+

𝐵

𝑠 − 2
+

𝐶

𝑠 + 3



Example of Simple Real Poles

• The first method we will use is multiplying out the new form of 

the equation and equating it with the original form.

𝑠 + 1

𝑠3 + 𝑠2 − 6𝑠
=

𝐴

𝑠
+

𝐵

𝑠 − 2
+

𝐶

𝑠 + 3

=
𝐴(𝑠 − 2) 𝑠 + 3 + 𝐵𝑠 𝑠 + 3 + 𝐶𝑠(𝑠 − 2)

𝑠3 + 𝑠2 − 6𝑠

=
𝐴 + 𝐵 + 𝐶 𝑠2 + 𝐴 + 3𝐵 − 2𝐶 𝑠 − 6𝐴

𝑠3 + 𝑠2 − 6𝑠

• The denominators of these expressions are identical, so the  

numerators must be equivalent. 



Example of Simple Real Poles

• We therefore equate coefficients of  the various powers of 𝑠 

in the numerator polynomials of the two sides.

𝑠2:  0 = 𝐴 + 𝐵 + 𝐶

𝑠1:  1 = 𝐴 + 3𝐵 − 2𝐶

𝑠0:  1 = −6𝐴

• From the last of these equations, we know that 𝐴 = −1/6.

• Substituting into the other two equations we find:

𝐵 + 𝐶 =
1

6
 and 3𝐵 − 2𝐶 =

7

6
• Solving these two equations simultaneously we find:

𝐵 =
3

10
, 𝐶 = −

2

15



Example of Simple Real Poles

• So,

Y s =
𝑠 + 1

𝑠 𝑠2 + 𝑠 − 6
= −

1

6

1

𝑠
+

3

10

1

𝑠 − 2
−

2

15

1

𝑠 + 3

• Taking the inverse Laplace transform (from the table), we 
therefore find:

y t = −
1

6
+

3

10
𝑒2𝑡 −

2

15
𝑒−3𝑡 𝑢(𝑡)



The Heaviside or Cover-up Method

• There is a quicker method for finding the partial fraction 

expansion, known as the Heaviside or cover-up method. 

• “Cover” the term in the denominator for which you are trying 

to find the coefficient and then calculate the value of the 

remaining fraction at the value that would cause the covered 

term to be zero.

• Say for example that you have the following function to be 

decomposed into partial fractions:

𝑥 − 7

𝑥 − 1 𝑥 + 2
=

𝐴

𝑥 − 1
+

𝐵

𝑥 + 2



The Heaviside or Cover-up Method

• On the left-hand side, we mentally remove (or cover up with a 

finger) the factor 𝑥 − 1 associated with 𝐴, and substitute 𝑥

= 1 into what’s left; this gives 𝐴:

ቤ
𝑥 − 7

𝑥 + 2 𝑥 = 1
=

1 − 7

1 + 2
= −2 = 𝐴

• Similarly, 𝐵 is found by covering up the factor 𝑥 + 2 on the left, 

and substituting 𝑥 = −2 into what’s left. This gives:

ቤ
𝑥 − 7

𝑥 − 1 𝑥 = −2
=

−2 − 7

−2 − 1
= 3 = 𝐵

• Thus, the partial fraction of the function is:

𝑥 − 7

𝑥 − 1 𝑥 + 2
=

−2

𝑥 − 1
+

3

𝑥 + 2



Example of The Heaviside or Cover-up Method

• Find the time domain equation of a control system given 

as the following transfer function equation below using 

the cover-up method.            [5 marks]

𝑌 𝑠 =
𝑠 + 1

𝑠3 + 𝑠2 − 6𝑠



Example of The Heaviside or Cover-up Method

• For the given system, factorise the transfer function equation 

and perform partial fraction expansion using cover-up 

method.

𝑠 + 1

𝑠3 + 𝑠2 − 6𝑠
=

𝑠 + 1

𝑠(𝑠 − 2)(𝑠 + 3)

 =
𝐴

𝑠
+

𝐵

𝑠 − 2
+

𝐶

𝑠 + 3

• The coefficients 𝐴, 𝐵, and 𝐶 in the equation above are 

calculated from:

𝐴 = ቤ
𝑠 + 1

(𝑠 − 2)(𝑠 + 3)
𝑠=0

= −
1

6



Example of The Heaviside or Cover-up Method

𝐵 = ቤ
𝑠 + 1

𝑠 (𝑠 + 3)
𝑠=2

=
3

2(2 + 3)
=

3

10

𝐶 = ቤ
𝑠 + 1

𝑠(𝑠 − 2) 
𝑠=−3

=
−2

−3(−3 − 2)
= −

2

15

• Thus

𝑠 + 1

𝑠3 + 𝑠2 − 6𝑠
= −

1

6𝑠
+

3

10(𝑠 − 2)
−

2

15(𝑠 + 3)



Unique Complex Factors

• For complex pole pair:

𝑌 𝑠 =
𝑛(𝑠)

𝑠 + 𝑎 2 + 𝜔2 𝑑(𝑠)
= 𝑌1 𝑠 +

𝐴𝑠 + 𝐵

(𝑠 + 𝑎)2+𝜔2

• Thus

𝑦 𝑡 = 𝑦1 𝑡 + 𝐴𝑒−𝑎𝑡 cos 𝜔𝑡 + 𝜙 𝑢(𝑡)

Where: 𝜙  depends on 𝐴 and 𝐵.

• The coefficients of complex factors must be found by the 

cross-multiplication method. Find the residuals of other 

factors first.



Example of Unique Complex Factors

• For a given system described as the following transfer 

function equation with a pair of complex factors, find its 

time-domain equation.                [8 marks]

𝑌 𝑠 =
1

𝑠 𝑠2 + 𝑠 + 1



Example of Unique Complex Factors

• The coefficients of complex factors must be found by the cross- 

multiplication method. 

• Find the residuals of other factors first.

𝑌 𝑠 =
1

𝑠(𝑠2 + 𝑠 + 1)

 =
1

𝑠
+

𝐴2𝑠 + 𝐴3

𝑠2 + 𝑠 + 1

 =
𝑠2 + 𝑠 + 1 + 𝐴2𝑠2 + 𝐴3𝑠

𝑠(𝑠2 + 𝑠 + 1)

 =
(𝐴2+1)𝑠2 + (𝐴3 + 1)𝑠 + 1

𝑠(𝑠2 + 𝑠 + 1)



Example of Unique Complex Factors

• We equate the coefficients of the powers of 𝑠 in the numerators 

of the two sides.

𝑠2:  0 = 𝐴2 + 1 ⟹ 𝐴2 = −1

𝑠1:  0 = 𝐴3 + 1 ⟹ 𝐴3 = −1

 𝑠0:  1 = 1

• Thus

𝑌 𝑠 =
1

𝑠
+

−𝑠 − 1

𝑠2 + 𝑠 + 1
=

1

𝑠
−

𝑠 +
1
2 +

1
2

𝑠 +
1
2

2

+
3
4



Example of Unique Complex Factors

The equation becomes:

𝑌(𝑠) =
1

𝑠
−

𝑠 +
1
2

𝑠 +
1
2

2

+
3
4

−

1
2

𝑠 +
1
2

2

+
3
4

=
1

𝑠
−

𝑠 +
1
2

𝑠 +
1
2

2

+
3
4

−

1

3

3
2

𝑠 +
1
2

2

+
3
4

• Taking inverse Laplace transform: 

𝑦 𝑡 = 1 − 𝑒−
𝑡
2 cos

3

2
𝑡 −

1

3
𝑒−

𝑡
2 sin

3

2
𝑡 𝑢(𝑡)



Repeated Real Factors

• Repeated Real poles:

𝑌 𝑠 =
𝑛(𝑠)

𝑠 + 𝑎 𝑘𝑑(𝑠)

• Or

𝑌 𝑠 = 𝑌1 𝑠 +
𝐴𝑘

(𝑠 + 𝑎)𝑘
+

𝐴𝑘−1

(𝑠 + 𝑎)𝑘−1
+ ⋯ +

𝐴0

𝑠 + 𝑎

• Thus

𝑦 𝑡

= 𝑦1 𝑡 + 𝐴𝑘𝑡𝑘−1𝑒−𝑎𝑡 + 𝐴𝑘−1𝑡𝑘−2𝑒−𝑎𝑡 + ⋯ + 𝐴0𝑒−𝑎𝑡 𝑢(𝑡)

• Repeated poles lead to a set of partial fractions, with 

decreasing multiplicity of the pole.



Example of Repeated Real Factors

• Find the time-domain equation of a system expressed as 

the following transfer function equation with a pair of 

repeated poles.              [5 marks]

𝑌 𝑠 =
3𝑠 + 8

(𝑠 + 2)2



Example of Repeated Real Factors

• With the given transfer function equation, factorise and perform 

partial fraction expansion.

𝑌 𝑠 =
3𝑠 + 8

(𝑠 + 2)2
=

𝐴2

(𝑠 + 2)2
+

𝐴1

𝑠 + 2

• The coefficients 𝐴1 and 𝐴2 are found from:

𝐴2 = lim
𝑠→−2

𝑠 + 2 2(3𝑠 + 8)

(𝑠 + 2)2
= ቚ3𝑠 + 8

𝑠→−2
= 2

• (Just the Heaviside technique)

𝐴1 = lim
𝑠→−2

𝑑

𝑑𝑠

𝑠 + 2 2(3𝑠 + 8)

(𝑠 + 2)2
= lim

𝑠.→−2

𝑑

𝑑𝑠
(3𝑠 + 8)



Example of Repeated Real Factors

• The equation for coefficient 𝐴1 becomes:

𝐴1 = ( ቚ3)
𝑠→−2

= 3

• Thus, the overall transfer function equation is:

𝑌 𝑠 =
2

(𝑠 + 2)2
+

3

𝑠 + 2

• Taking inverse Laplace transform of the transfer function, 

the equation in the time domain is:

𝑦 𝑡 = 2𝑡𝑒−2𝑡 +3𝑒−2𝑡 𝑢(𝑡)



Partial Fractions Summary

• Real poles:

𝑌 𝑠 =
𝑛(𝑠)

𝑠 + 𝑎 𝑑(𝑠)
= 𝑌1 𝑠 +

𝐴

𝑠 + 𝑎

𝑌 𝑡 = 𝑌1 𝑡 + 𝐴𝑒−𝑎𝑡𝑢(𝑡)

• Complex pole pair:

𝑌 𝑠 =
𝑛(𝑠)

𝑠 + 𝑎 2 + 𝜔2 𝑑(𝑠)
= 𝑌1 𝑠 +

𝐴 + 𝐵

(𝑠 + 𝑎)2+𝜔2

𝑦 𝑡 = 𝑦1 𝑡 + 𝐴𝑒−𝑎𝑡 cos 𝜔𝑡 + 𝜙 𝑢(𝑡)

Where: 𝜙 depends on 𝐴 and 𝐵.



Partial Fractions Summary

• Repeated real poles:

𝑌 𝑠 =
𝑛(𝑠)

𝑠 + 𝑎 𝑘𝑑(𝑠)

𝑌 𝑠 = 𝑌1 𝑠 +
𝐴𝑘

(𝑠 + 𝑎)𝑘
+

𝐴𝑘−1

(𝑠 + 𝑎)𝑘−1
+ ⋯ +

𝐴0

𝑠 + 𝑎

𝑦 𝑡

= 𝑦1 𝑡 + 𝐴𝑘𝑡𝑘−1𝑒−𝑎𝑡 + 𝐴𝑘−1𝑡𝑘−2𝑒−𝑎𝑡 + ⋯ + 𝐴0𝑒−𝑎𝑡 𝑢(𝑡)



The s-plane

• We often don’t care about the precise amplitude of modes, but 

are instead content to talk about the modes themselves. 

• Plotting pole-zero diagrams let’s us visualise what is happening.



The s-plane

• Remember that any system having poles only in the left half 

of the s-plane will be stable. 

• Its modes will (eventually) decay to zero.

• Conversely, a system having one or more poles in the right 

half of the s-plane will be unstable, and its output will tend to 

infinity with increasing time.



Example of The s-plane

For each of the given control systems below, determine the 

location of poles and/or zeros in the s-plane and predict its 

transient response.            [9 marks]

a. System 1

𝑌1 𝑠 =
𝑠 + 20

𝑠2 + 101𝑠 + 100

a. System 2

𝑌2 𝑠 =
0.5𝑠 + 2.5

𝑠2 + 2𝑠 + 10

a. System 3

𝑌3 𝑠 =
5𝑠 − 500

𝑠3 − 3𝑠 − 2



Example of The s-plane

a. System 1

𝑌1 𝑠 =
(𝑠 + 20)

(𝑠 + 1)(𝑠 + 100)

The s-plane diagram of the system is as shown in the figure 

below.

Since all the poles and zero 

are located at the left-hand 

side of the diagram, the 

system is stable. 

As the poles are all real, 

then the transient response 

of the system is 

overdamped.



Example of The s-plane

b. System 2

𝑌2 𝑠 =
0.5(𝑠 + 5)

𝑠2 + 2𝑠 + 10
=

0.5 𝑠 + 5

𝑠 + 1 2 + 3 2

The s-plane diagram of the system is as shown in the figure 

below.

Since all the poles are a pair 

of complex poles at the left-

hand side of the diagram, 

the system is stable. 

Because of these complex 

poles, the transient 

response of the system is 

underdamped.



Example of The s-plane

c. System 3

𝑌3 𝑠 =
5(𝑠 − 100)

𝑠 − 2 𝑠 + 1 2

The s-plane diagram of the system is as shown in the figure 

below.

Since there is a pole at 

the right-hand side of 

the diagram, the 

system is found to be 

unstable.



Final Value Theorem

• The final value theorem allows us to calculate the final value 

that a system’s output will take, without needing to do partial 

fractions expansion and inverting the Laplace transform.

lim
𝑡→∞

𝑓 𝑡 = lim
𝑠→0

𝑠𝐹(𝑠)

• We will find this particularly useful in finding the response of a 

system to a step input, which makes the equation particularly 

simple.

lim
𝑡→∞

𝑦 𝑡 = lim
𝑠→0

𝑠𝐺(𝑠)
1

𝑠
= lim

𝑠→0
𝐺(𝑠)

• The final theorem only holds if the system is stable. Be careful!



Example of Final Value Theorem

Determine the steady-state characteristics of the following control 

systems given as the following transfer function equations. 

                          [6 marks]

a. System 1 when it is subjected to a step input (1/𝑠):

𝐹1 𝑠 =
𝑠(𝑠 + 10)

(𝑠 + 2)(𝑠 + 50)

b. System 2 when it is subjected to a ramp input (1/𝑠2):

𝐹2 𝑠 =
10 𝑠 + 5

𝑠 𝑠2 + 𝑠 + 10

c. System 3 when it is subjected to a parabolic input (1/𝑠3):

𝐹3 𝑠 =
𝑠2(𝑠 + 2)

(𝑠 + 15) 𝑠 + 100



Example of Final Value Theorem

The steady-state characteristics of the following control systems 

are as outlined below.

a. System 1

lim
𝑡→∞

𝑓1 𝑡 = lim
𝑠→0

𝑠𝐹1 𝑠
1

𝑠

 = lim
𝑠→0

𝑠
𝑠 𝑠 + 10

𝑠 + 2 𝑠 + 50

1

𝑠

 =
10𝑠

2 50
= 0

Thus, the system settles to 0 at steady-state condition



Example of Final Value Theorem

b. System 2

lim
𝑡→∞

𝑓2 𝑡 = lim
𝑠→0

𝑠𝐹2 𝑠
1

𝑠2

 = lim
𝑠→0

𝑠
10 𝑠 + 5

𝑠 𝑠2 + 𝑠 + 10

1

𝑠2

 =
10 5

𝑠2 10
= ∞

The system is becoming unstable at steady-state condition. 

This shows that input can have a significant effect towards 

response of the system at steady-state condition.



Example of Final Value Theorem

c. System 3

lim
𝑡→∞]

𝑓3 𝑡 = lim
𝑠→0

𝑠𝐹3 𝑠
1

𝑠3

 = lim
𝑠→0

𝑠
𝑠2 𝑠 + 2

𝑠 + 15 𝑠 + 100

1

𝑠3
 

 =
2

15 100
=

1

750

The system settles down to a constant e.g. 1/750 at 

steady-state condition.
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