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» Differential equations and Laplace transforms.
* Transfer functions, poles and modes, and zeros.
* Modal decomposition and expansion method.
* Cover up (Heaviside) method.

* Complex factors.

* Repeated factors.

* Partial fractions.

* S-plane and final value theorem.



Solving DEs with the Laplace Transform

* The Laplace transform is useful because it allows us to convert
linear, constant-coefficient differential equations into
algebraic equations.

Time domain

Solution is difficult

Zl(f) - System described by ODE - y(f)

U(S) - | System described by - Y(S)

Transfer function

—_— Solution is easier
Laplace domain



Solving DEs with the Laplace Transform

* This results from the differentiation in time property of the

Laplace transform.
L{y' ()} = sL{y(©)} — y(07)
L{y" ()} = s*L{y(t)} — sy(07) —y'(07)

L{y™ (@)} = s"L{y®)} — s Vy(07) ..y ™D (07)
* Recall that y(07) ,y/(07) and so forth are initial

conditions.

* For an n-th order DE, we need to know the initial values of
the first n derivatives to solve a differential equation
uniquely using the Laplace transform.



Example of Solving DEs

* Find y(t) in a system described by the differential equation:
y" () +4y'(6) +3y(6) =0

With initial conditions:

y(0) =3,y'(0) =1

[10 marks]



Example of Solving DEs

* We start by taking the Laplace transform of the entire
differential equation.

* Using the differentiation in time formula, we can write the
transforms of each of the derivatives of y.

L{y'} = sY(s) —y(0)
=sY(s)—3
e And
L{y"} = s?Y(s) — sy(0) — y'(0)
=s%Y(s)—3s—1



Example of Solving DEs

* We can therefore write the complete Laplace transform.
(s2Y(s) —3s—1) +4(sY(s) —3) +3Y(s) =0
(s2+4s+3)Y(s) =3s+13
* Rearrange the equation and factorise roots:

3s+ 13 _ 3s+13
(s24+4s+3) (s+1(s+3)

* Apply partial fraction expansion to simplify the form of the
equation:

Y(s) =

-2

Y(S):(s+1) +(s+3)




Example of Solving DEs

* We have solved our DE by Laplace transforming it, solving
an algebraic equation.

* Then, using inverse Laplace transform, transform the
equation back to the time domain (see table of Laplace
transform).

y(t) = (5~ — 273 u(t)



The Transfer Function

* When characterising a system, we are interested in what the
system does to an arbitrary input signal.

* We typically assume that any initial transients have been given
time to die away, which is equivalent to assuming zero initial
conditions.

y'(@®) +y'(©) +y() = x(t)
* Take Laplace transform of the equation
s2Y(s) + sY(s) + Y(s) = X(s)
* Rearrange the equation

(s2+s+ 1)Y(s) = X(s)



The Transfer Function

* Rearrange the equation in terms of ratio of the parameters that
we are interested e.g. Y (s) and X(s).

* This is the so-called transfer function (TF) -> it tells us what the
system does to an arbitrary X(s).



Example of The Transfer Function

* Find the transfer function of the following differential equation:

y'() +4y'(6) +3y() =0
[4 marks]



Example of The Transfer Function

* Take Laplace transform of the equation
s2Y(s) + 4sY(s) +3Y(s) = X(s)

* Gather all coefficients of Y (s) to the left and the rest of other
coefficients to the right.

(s?+4s + 3)Y(s) = X(s)
* Form the equation of Y (s)/X(s):

Y(s) 1
X(s) sZ+4s+3

G(s) =



Poles and Modes

* The poles of the transfer function are important (e.g. the values
of s that make the denominator of the TF zero), as they allow
us to find the modes of the system.

* The modes are simply the characteristic responses that the
system will exhibit when excited by a signal, or by initial

conditions.
G(s) = ——
VT G+as+b)
e Polesats = —a and s = —b. The modes will be e~ %t and e~ Pt

y(t) = [Ae~* + Be Pt u(t)

* Where: A and B depend on the input and the initial conditions.



Example of Poles and Modes

* Find the mode of the characteristic response of the system
as given below. [4 marks]

G(S)zsz+4s+3



Example of Poles and Modes

* For the given system, factorise its transfer function
equation as shown below

1
s2+4s+3 (s+1)(s+3)

G(s) =

* With the given system, the polesat s = —1 and s = —3.

* The modes will be et and e3¢

g(t) = [Ae™t + Be 3 u(t)

Where: A and B depend on the input and the initial
conditions.



Zeros

* In general, we can also have a polynomial of s in the numerator
of the transfer function.

¢ The values of s that make the numerator zero are called zeros
of the transfer function.

* The system will exhibit no output when driven by a signal
having these values of s.

* The zeros do not produce modes, but they play an important
role in setting the relative magnitude of the various modes.

* In particular, a pole that has an s value that is close to that of a
mode.

I”

zero will have a “smal



Modal Decomposition

* We use partial fraction expansion to simplify expressions in the
s-domain.

* We must begin with a proper rational polynomial, otherwise the
form of the system modes will be obscured.

Not a rational polynomial:

1

s+1
(s+2)(s+3)

Y1(s) =

Not strictly proper:

SZ

(s+2)(s+3)

Y2(s) =



Example of Modal Decomposition

Decompose the following functions into its simplest forms.

[4 marks]
* System 1:
_ (1/s)+1
W) = GG+
* System 2:
2
Vo(s) = ———

(s+2)(s+3)



Example of Modal Decomposition

* |f the transfer function of the system is not a rational
polynomial, perform modal decomposition of the equation
as shown below:

_ (1/s)+1
Y(s) = (s+2)(s+3)

(s (1/s+1)
B (E) (s+2)(s+3)

_ (s+1)
T s(s+2)(s+3)




Example of Modal Decomposition

* |f the transfer function of the system is not strictly proper,
we can simplify the equation as below:

SZ

T (5+2)(s+3)

Y(s)

s?+55+6 55+ 6
T s2+55+6 s2+55+6
55+ 6

C(s+2)(s+3)




Modal Expansion

* We then write our expression as the sum of a set of appropriate
terms, each of which corresponds to a particular mode and has
an unknown amplitude.

* We write the denominator as a combination of three types of
poles:
* Simple real poles: (s + a) & Ae™ %
« Complex pole pairs: (s + a)?+w3 < Be™* cos(wyt + ¢)
or

Control systems: s% + 2{w,s + w? < Be St cos(wpt + @)

* Repeated real poles: (s + a)"< C,t" te 3 + ..



Modal Expansion

* You only need to use partial fraction expansion when you need
to write an equation for the output of a system.

* If you need to know the amplitudes of the modes, then use
partial fractions.

* If you don’t need the amplitudes, just wish to find out the
mode of the system, then stop!



Simple Real Poles

* For real poles:

_ n(s) B A
Y(s) = m =Y;(s) +s+_a

* Thus
y(t) = Y1(t) + Ae™u(t)

* We can solve this system with simple real poles using ordinary
partial-fraction expansion method or using Heaviside or cover-
up method.



Example of Simple Real Poles

* Find the time domain equation of a system described as
the transfer function equation below using ordinary partial
fraction expansion method. [8 marks]



Example of Simple Real Poles

* For the given system, factorise the transfer function equation
and perform partial fraction expansion.

s+1
Y j—
() 34+52—6s
B s+1
~ s(s2+s5—6)
B s+1
~s(s—=2)(s+3)
A B C

+ +
s s—2 s+3




Example of Simple Real Poles

* The first method we will use is multiplying out the new form of
the equation and equating it with the original form.

s+1 _A B N C
s34+s2—6s s s—2 s+3
_A(s—=2)(s+3)+Bs(s+3)+Cs(s — 2)
B s34+ 52 —6s
_(A+B+0C)s*+(A+3B—20)s—6A
B s3 + 52 —6s

* The denominators of these expressions are identical, so the

numerators must be equivalent.



Example of Simple Real Poles

* We therefore equate coefficients of the various powers of s
in the numerator polynomials of the two sides.

s> 0=A+B+C

st:1=A4+3B-2C

s% 1=-64
* From the last of these equations, we know that A = —1/6.
* Substituting into the other two equations we find:

BicC=_ d 3B_20="
s ~ 5

* Solving these two equations simultaneously we find:



Example of Simple Real Poles

* So,
Yo - s+l _ (1), 3/ 1 2/ 1
Y52 +s—-6)  6\s) 10\s—2/) 15\s+3

* Taking the inverse Laplace transform (from the table), we
therefore find:

3

1 2
— |- _ 2t _ — -3t
y(©) l et Tse lu(t)



The Heaviside or Cover-up Method

* Thereis a quicker method for finding the partial fraction
expansion, known as the Heaviside or cover-up method.

* “Cover” the term in the denominator for which you are trying
to find the coefficient and then calculate the value of the
remaining fraction at the value that would cause the covered
term to be zero.

* Say for example that you have the following function to be
decomposed into partial fractions:

x—17 _ A 4 B
(x—Dx+2) x—1 x+2




The Heaviside or Cover-up Method

* On the left-hand side, we mentally remove (or cover up with a
finger) the factor x — 1 associated with A, and substitute x
= 1 into what’s left; this gives A:

x—7
x+ 2

x=1 1+2

—2=A

* Similarly, B is found by covering up the factor x + 2 on the left,
and substituting x = —2 into what’s left. This gives:

x—7

x—1

_—2-7
x=-2 =-2-1

=3=R

* Thus, the partial fraction of the function is:

x—7 -2 N 3
(x—Dx+2) x—1 x+2




Example of The Heaviside or Cover-up Method

* Find the time domain equation of a control system given
as the following transfer function equation below using
the cover-up method. [5 marks]



Example of The Heaviside or Cover-up Method

* For the given system, factorise the transfer function equation
and perform partial fraction expansion using cover-up

method.
s+1 _ s+1
s3+5s52—6s s(s—2)(s+3)
A B C
=—+ +

s s—2 s+3

* The coefficients A, B, and C in the equation above are
calculated from:

s+1 1

(s—=2)(s+3) o 6




Example of The Heaviside or Cover-up Method

5 s+1 3 3
Cs(s+3)|_, 2@2+3) 10
s+1 -2 2

C=6-2 ., —3(3-2 15
* Thus

s+1 1 3 2

_— = + j—
s3+s2—6s 6s 10(s—2) 15(s+3)




Unique Complex Factors

* For complex pole pair:

n(s) As+B

V) = [(s + a)? + w?]d(s) =N+ (s + a)*+w?

* Thus
y() = y1(t) + [Ae™ cos(wt + $)Ju(t)
Where: ¢ dependson A and B.

* The coefficients of complex factors must be found by the
cross-multiplication method. Find the residuals of other
factors first.



Example of Unique Complex Factors

* For a given system described as the following transfer
function equation with a pair of complex factors, find its
time-domain equation. [8 marks]

1

V(o) = s(s2+s+1)



Example of Unique Complex Factors

* The coefficients of complex factors must be found by the cross-
multiplication method.

¢ Find the residuals of other factors first.

1

V(o) = s(s?2+s+1)

1 A,s+A4,

+—
s s2+4s+1

(P + s+ 1)+ 4,87 + Ass
B s(s2+s+1)

(At 1)s?+ (A3 + Ds+1
B s(s?+s+1)




Example of Unique Complex Factors

* We equate the coefficients of the powers of s in the numerators
of the two sides.

SZZO=A2+1:A2=—1

51:0=A3+1=~A3=—1
s%:1=1
e Thus



Example of Unique Complex Factors

The equation becomes:

s

Y(s)==— — 2
S +H,3 LH,3
$T73 z \572 !

1 143

1 st V32
1\? 3 1\¢ 3
<S+§) +Z (S-I—z) +Z

* Taking inverse Laplace transform:

y(t) = [1—9 gcos<§t>—%e gsm<\/§ )]u(t)



Repeated Real Factors

* Repeated Real poles:

B n(s)
'O = v arde
* Or
~ Ay Ap-1 Ao
Y(s) =Y(s) + GroF + (s + a)k1 + - +s+_a
* Thus
y()

= y1(8) + [Apt"Te™ ™ + A1t 72T + o+ Age ™ u(t)

* Repeated poles lead to a set of partial fractions, with
decreasing multiplicity of the pole.



Example of Repeated Real Factors

* Find the time-domain equation of a system expressed as
the following transfer function equation with a pair of
repeated poles. [5 marks]

35+ 8

VO =512



Example of Repeated Real Factors

* With the given transfer function equation, factorise and perform
partial fraction expansion.

35+8 A +A1
(s+2)2 (s+2)2 s+2

Y(s) =

* The coefficients A; and A, are found from:

- (s+2)2(35+8)_3 8 _,
2_5—1}112 (S+2)2 =95t S—)—Z_

* (Just the Heaviside technique)

. . d
Ay = lim, ds (s +2)? B s,lirzlzg (35 +8)



Example of Repeated Real Factors

* The equation for coefficient A; becomes:

Aa=@)| =3
§—>—2
* Thus, the overall transfer function equation is:

3
_(s+2)2+s+2

Y(s)

* Taking inverse Laplace transform of the transfer function,
the equation in the time domain is:

y(t) = (2te™?t +3e2H)u(t)



Partial Fractions Summary

* Real poles:

n(s) B A
(s +a)d(s) hi(s)+ s+a

Y(t) =Y, (t) + Ae %u(t)

Y(s) =

* Complex pole pair:

n(s) _v A+B
[(s + a)? + w?]d(s) 1(s) + (s + a)*+w?

y(®) = y1() + [Ae™ cos(wt + P ]u(t)
Where: ¢ depends on A and B.

Y(s) =




Partial Fractions Summary

* Repeated real poles:

n(s)

YO =T ore

Ag—1 Ao

B K e —9
Y(s) =Yi(s) + (s + a)k + (s + @)k 1 + +s +a

y(t)
= y1(6) + [Apt"Te™ + A1t 727 + o+ Age ™ u(t)



The s-plane

* We often don’t care about the precise amplitude of modes, but
are instead content to talk about the modes themselves.

* Plotting pole-zero diagrams let’s us visualise what is happening.
iA / . .
NWAan /| 1‘1{_
‘ Uﬁl\ﬁ ; AUL\ ;

s-plane
" \/\
\
: .
\
= .

X

X

\\ 1 —




The s-plane

* Remember that any system having poles only in the left half
of the s-plane will be stable.

* Its modes will (eventually) decay to zero.

* Conversely, a system having one or more poles in the right
half of the s-plane will be unstable, and its output will tend to
infinity with increasing time.



Example of The s-plane

For each of the given control systems below, determine the
location of poles and/or zeros in the s-plane and predict its

transient response. [9 marks]
a. System1
s+ 20
Y. =
19 = T 7015 + 100
a. System?2
Y,(s) = 0.5s + 2.5
2 =2 25+ 10
a. System3
55 — 500

¥3(s) T8 _3s5-2



Example of The s-plane

a. System 1
(s +20)

h) = 5 DG+ 100

The s-plane diagram of the system is as shown in the figure
below. Pole-Zero Map

Since all the poles and zero  °¢
are located at the left-hand rz:
side of the diagram, the

o
Y

o

system is stable. %
2-02
As the poles are all real, g0
-06

then the transient response
of the system is “

100 80 60 40 20 0

overdamped. Real Axis (seconds™)



Example of The s-plane

b. System 2

v s - 0.5(s+5) _ 05(s+5)

s24254+10 (s+1)2+(3)2

The s-plane diagram of the system is as shown in the figure
below.

Pole-Zero Map

Since all the poles are a pair
of complex poles at the left- 2
hand side of the diagram,
the system is stable.

o

Because of these complex
poles, the transient

response of the system is
underdamped. s 4 3 2 i 0

Real Axis (seconds”)

Imaginary Axis (samnds‘1)
3 kN




Example of The s-plane

c. System3
5(s —100)
(s—2)(s+1)2

Y3(s) =

The s-plane diagram of the system is as shown in the figure
below.

Pole-Zero Map

0.8

Since there is a pole at
the right-hand side of
the diagram, the
system is found to be
unstable.

Imaginary Axis (seconds'w)
& & & © o o o
® ® B N O N & @

-20 0 20 40 60 80 100
Real Axis (semnds“‘ )



Final Value Theorem

* The final value theorem allows us to calculate the final value
that a system’s output will take, without needing to do partial
fractions expansion and inverting the Laplace transform.

fin £0) = iy sF(5)

* We will find this particularly useful in finding the response of a
system to a step input, which makes the equation particularly
simple.

. . 1
lim y(¢) = lim sG(s) = = lim G(s)

* The final theorem only holds if the system is stable. Be careful!



Example of Final Value Theorem

Determine the steady-state characteristics of the following control
systems given as the following transfer function equations.
[6 marks]

a. System 1 when it is subjected to a step input (1/s):

s(s +10)
(s+2)(s+50)

Fi(s) =
b. System 2 when it is subjected to a ramp input (1/s2):

10(s +5)
s(s?2+ s+ 10)

Fy(s) =
c. System 3 when it is subjected to a parabolic input (1/s3):

s¥(s+2)
(s + 15)(s + 100)

F3(s) =



Example of Final Value Theorem

The steady-state characteristics of the following control systems
are as outlined below.

a. System1
. . 1
lim f,(¢) = lim sFy (s) (;)
_ [ s(s + 10) <1>
= lims

S

s-0 |(s+2)(s+ 50)
_ 10s —0
~(2)(60)

Thus, the system settles to 0 at steady-state condition



Example of Final Value Theorem

b. System 2

. . 1
th_)r{)'lo f2(t) = £1_1)% sF;(s) <5—2>

i 10(s + 5) 1
~ 50’ ls(s2 + s+ 10)] <3_2>

_0)(5) -
©s2(10)

The system is becoming unstable at steady-state condition.
This shows that input can have a significant effect towards
response of the system at steady-state condition.



Example of Final Value Theorem

c. System3

. . 1
tll)rg.}] f3(t) = Ll_l)'% sF5(s) <5—3>

i s?(s+2) 1
T 500 [(s +15)(s + 100) <s_3)
21

~ (15)(100) 750

The system settles down to a constant e.g. 1/750 at
steady-state condition.
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