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• Modelling physical systems.

• Lumped parameters models.

• LTI models.

• Linearisation.

• Modelling aspects and process.

• Modelling mechanical systems.

• Modelling electrical systems.

• Modelling electromechanical systems.

Topics



• Scaled physical model: 

proportional to the actual 

model.

• Mathematical model: 

described as function and 

variable in mathematical 

equation.

How to Model Physical Systems

• Numerical model: represented as a set of numbers to describe 

system characteristic and behaviour. 



• These equations can then be used to 

forecast the behaviour of the system under 

specific conditions. 

• All systems can normally be approximated 

and modelled by one of several models, e.g. 

mechanical, electrical, thermal or fluid.   

• We also find that we can translate a system 

from one model to another to facilitate the 

modelling. 

Modelling of Physical Systems 

• Develop mathematical models, i.e. ordinary differential 

equations that describe the relationship between input and 

output characteristics of a system. 



Lumped Parameter Models

• Use standard laws of physics and break a system down 

into several building blocks. 

• Each of the parameters (property or function) is 

considered independently. 



Lumped Parameter Models

Millennium wobbly bridge: http://www.youtube.com/watch?v=eAXVa__XWZ8

http://www.youtube.com/watch?v=eAXVa__XWZ8


• Assume the property of 

linearity for these models. 

• A linear system will possess 

two properties:

• Superposition. 

• Homogeneity. 

• Allows us to use standard 

mathematical operations to 

simplify our models.

Linear Time Invariant Models



• Assume system is time-

invariant.

• Constants stay constants in 

the time-scales of our 

model.

• Proportionality between 

variables does not change.

Note: Our shock absorbers 

do not wear out in our car 

suspension model!

Linear Time Invariant Models



• Linearisation: Intuitively we could do it with order reduction, 

tangent, or Taylor series:

Order reduction method: 

• A finite number of terms will give an approximation of the 

function e.g. the first two terms will give a linear 

approximation.

𝑦 = 𝑓 𝑥0 +
𝑑𝑦

𝑑𝑥
𝑥0

𝑥 − 𝑥0 +
𝑑2𝑦

𝑑𝑥2
𝑥0

𝑥 − 𝑥0

2!
+. . .

Linearisation 



Tangent method: 

• Using a linear function evaluated at a given point (i.e. tangent 

of the curve) instead of higher order function.

Linearisation 



Linearisation 

Taylor series method:

• Suppose we know that 𝑦 is a function of 𝑥 and we know the 

values of 𝑦 and 𝑦′ when 𝑥 = 𝑎, that is 𝑦(𝑎) and 𝑦′(𝑎) are 

known. 

• We can use 𝑦(𝑎) and 𝑦′(𝑎) to determine a linear polynomial 

which approximates to 𝑦(𝑥). Let this polynomial be:

𝑝1 𝑥 =  𝑐0  +  𝑐1𝑥

• Thus

𝑝1(𝑥) = 𝑦(𝑎) + 𝑦′(𝑎)(𝑥 − 𝑎)

• The 𝑝1(𝑥) is the first-order Taylor polynomial generated by 𝑦 

at 𝑥 = 𝑎.



Example of Linearisation 1 

• Consider the force acting in a spring during the plastic zone 

condition that can be described as a third-order function of 

extension (𝜀): 𝑓 𝜀 = 2𝜀 + 5𝜀3. 

• At its operating point at 𝜀 = 1, this function can be 

approximated as: 𝑓 𝜀 ≅ −10 + 17𝜀.



Example of Linearisation 1 

• Model the spring force as 𝑓(𝜀) = −10 + 17𝜀 around the 

point 𝜀 = 1.0 and the linearised spring forced constant 

would be given by: 

𝑑𝑓

𝑑𝜀
= 17 N/m



Example of Linearisation 2 

Find a linear approximation to a function 𝑦(𝑡) = 𝑡2 near 𝑡 = 3 

using Taylor series.

• We require the equation of the tangent to 𝑦 = 𝑡2 at 𝑡 = 3, 

that is the first-order Taylor polynomial about 𝑡 = 3. 

• Note that 𝑦(3) = 9 and 𝑦′(3) = 6.

𝑝1(𝑡) = 𝑦(𝑎) + 𝑦′(𝑎)(𝑡 − 𝑎) = 𝑦(3) + 𝑦′(3)(𝑡 − 3)

 = 9 + 6(𝑡 − 3) = 6𝑡 − 9

• At 𝑡 = 3, 𝑝1(𝑡) and 𝑦(𝑡) have an identical value. 

• Near to 𝑡 = 3, 𝑝1(𝑡) and 𝑦(𝑡) have similar values, for example 

𝑝1(2.8) = 7.8, and on the other hand 𝑦(2.8) = 7.84.



Signals

• Components are connected 

together by signals. 

• Signals have many different 

forms.

• Signals must also have 

direction and name.

• Signals continue until interrupted.

• Signals and components are considered ideal. 

• We add other signals and components to alter the signals.



Signals

• We wish to know how the output signal varies  with  an  input  

signal for a fixed (invariant) system.

• We  may  plot  two  signals  against  each other invariant of 

time (system relationship).



Constants

• System  constants  are  

time  invariant  for the 

given system.

• We now consider a 

different system as the 

spring has been 

changed.

• However, the analysis 

stays the same.



• Alternative method: level of water, 𝐿, changes because of the 

flow of liquid. 

Differentiation

• Mathematically, change of level (Δ𝐿) with time (Δ𝑡) is 

calculated from: 

Δ𝐿

Δ𝑡
=

𝑑𝐿(𝑡)

𝑑𝑡



• In fact, the change in 𝐿 is proportional to flow, 𝐹(𝑡) and inversely 

proportional to cross-sectional area of the connecting pipe, 𝐶:

𝑑𝐿(𝑡)

𝑑𝑡
=

1

𝐶
𝐹(𝑡) and 𝐹(𝑡) =

𝐼 − 𝐿(𝑡)

𝑅

Where: 𝐼 is height of larger tank, 𝐿 is height of smaller tank, and 

𝑅 is radius of pipe.

• The flow is related to difference in levels, thus:

𝑑𝐿(𝑡)

𝑑𝑡
=

1

𝐶

𝐼 − 𝐿(𝑡)

𝑅
=

𝐼 − 𝐿(𝑡)

𝐶𝑅

Where: 𝐶𝑅 is the time constant, 𝑇. 

• Note: the above case is a differential equation. It has the 

differential of 𝐿(𝑡) being a function including 𝐿(𝑡).

Differentiation



• Consider the graph of 𝐿(𝑡) 

against time.

• At any instant of time, we 

can see value of 𝐿(𝑡). 

Differentiation: Slopes

L

t

• The change in 𝐿(𝑡) is the slope of the graph, which varies 

with time.

• Initially steep (high value), then less, then less. 

• But the flow is initially high, then becoming less, then least.

• Thus, slope of 𝐿(𝑡) is like 𝐹(𝑡), but slope is change of 𝐿(𝑡).  

• In fact, 𝐹(𝑡) is proportional to derivate of 𝐿(𝑡) with time.



• The reverse process is integration. 

• Graphical interpretation: area under a graph. 

• Consider the flow graph: the area at different times is shown.  

Integration: Area

F F F

t t t

• After a short time, area is as shown. 

• Later, area has grown, but by less, etc. 



• Consider the height of water in the tank. 

• Thus, 𝐿(𝑡) like area under 𝐹(𝑡): 

𝐿(𝑡) ∝ න 𝐹(𝑡) 𝑑𝑡

• 𝐿(𝑡) is proportional to integral of 𝐹(𝑡) with time. 

• In fact, for this system, we have:           

𝑑𝐿(𝑡)

𝑑𝑡
=

1

𝐶
𝐹(𝑡) and 𝐿(𝑡) =

1

𝐶
න 𝐹(𝑡) 𝑑𝑡

• The flow, 𝐹(𝑡) is differential of 𝐿(𝑡) and 𝐿(𝑡) is integral of 𝐹(𝑡). 

Integration: Area



Integration: Area

• Differentiation and integration are opposites (note: here they 

are used to model a water systems).

• It can also model electronic circuits, mechanical systems, 

motors, etc. 

• In fact, the differential equation has the same form, and hence 

the same exponential response as that for many systems.

• Note: there are analogies between water systems and 

electronics: pipe like a resistor, tank like a capacitor. 

• Also, for thermals, walls have thermal resistance, rooms have 

thermal capacity.



Mechanical Components

• We know that distance (𝑥(𝑡)) is related to velocity (𝑣(𝑡)) is 

related to acceleration (𝑎(𝑡)) through differentiation.

• Displacement:

Distance = 𝑥 𝑡

• Velocity:

𝑣 𝑡 =
𝑑𝑥 𝑡

𝑑𝑡

• Acceleration:

𝑎(𝑡) =
𝑑𝑣

𝑑𝑡
=

𝑑
𝑑𝑥(𝑡)

𝑑𝑡

𝑑𝑡
=

𝑑2𝑥(𝑡)

𝑑𝑡2



Mechanical Components

• It gets messy writing 𝑑/𝑑𝑡 all the time! 

• Therefore, we use Laplace transform and will write in term of 

‘𝑠’ instead.

• Displacement

Distance = 𝑋 𝑠

• Velocity

𝑉 𝑠 = 𝑠𝑋 𝑠

• Acceleration

𝐴(𝑠) = 𝑠𝑉(𝑠) = 𝑠2𝑋(𝑠)

• Note: both time and frequency domain are transformed with 

respect to the variable.



Mechanical Components

• Standard mechanical components for modelling physical system.



Example of Mechanical System Modelling

For the mechanical system below with mass, spring and damper:

• We assume the mass is displaced by 𝑥(𝑡) toward the right. 

• Note that taking into consideration the zero initial condition, 

just like the spring, the damper will also oppose the force. 

• Thus, only the applied force points to the right.

• All other forces impede the motion and act to oppose it e.g. 

the spring, damper, and the force due to acceleration point to 

the left.

Determine the transfer function 

equation of the system in the time 

domain.  [6 marks]



Example of Mechanical System Modelling

• Write the differential equation of motion using second Newton's 

law to sum to zero of all the forces shown on the system:

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝑓𝑣

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥 𝑡 = 𝑓(𝑡)

• Taking the Laplace transform, assuming zero initial conditions, 

the equation above becomes:

𝑚𝑠2𝑋 𝑠 + 𝑓𝑣𝑠𝑋 𝑠 + 𝑘𝑋 𝑠 = 𝐹(𝑠)

• As a result, the transfer function equation of the given 

mechanical system is:

𝐺 𝑠 =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚𝑠2 + 𝑓𝑣𝑠 + 𝑘



Electrical Components 

• We know that to find the reactance of electrical devices 

such inductor and capacitor requires integration and 

differentiation respectively:

• Voltage across resistor:

𝑣𝑅 𝑡 = 𝑅𝑖 𝑡

• Voltage across capacitor:

𝑣𝐶(𝑡) =
1

𝐶
න

0

𝑡

𝑖(𝑡)

• Voltage across inductor:

𝑣𝐿(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡



Electrical Components 

Applying Laplace transform, we have the following:

• Voltage across resistor:

𝑉𝑅 𝑠 = 𝑅𝑖 s

• Voltage across capacitor:

𝑉𝐶(𝑠) =
1

𝑠𝐶
𝑖(𝑠)

• Voltage across inductor:

𝑉𝐿(𝑠) = 𝑠𝐿𝑖(𝑠)

Note: both with respect to the variable.



Electrical Components 

• Standard electrical components for modelling physical system.



Example of Electrical System Modelling 

For the electrical system as shown below:

Determine the time-domain expression for the output voltage 

over the input voltage for the given circuit.  [12 marks]

• It is a series RLC circuit. 

• Assume in this case that capacitor 

voltage as the output and applied 

voltage as the input.

• Assume zero initial conditions (no 

prior conditions before modelling 

existed).



Example of Electrical System Modelling 

• Summing the voltages around the loop, assuming zero 

initial conditions, yields the integral-differential equation 

for this network as:

𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖 𝑡 +

1

𝐶
න

0

𝑡

𝑖 𝜏 𝑑𝜏 = 𝑣(𝑡)

• Changing variables from current to charge using 𝑖 𝑡 =

𝑑𝑞(𝑡)/𝑑𝑡 yields:

𝐿
𝑑2𝑞(𝑡)

𝑑𝑡2
+ 𝑅

𝑑𝑞(𝑡)

𝑑𝑡
+

1

𝐶
𝑞 𝑡 = 𝑣(𝑡)

• From the voltage-charge relationship for a capacitor:

𝑞 𝑡 = 𝐶𝑣𝑐(𝑡)



Example of Electrical System Modelling 

• Substituting Eq. (2) into Eq. (1) yields:

𝐶
𝑑2𝑣𝑐(𝑡)

𝑑𝑡2
+ 𝑅𝐶

𝑑𝑣𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑐 𝑡 = 𝑣(𝑡)

• Taking the Laplace transform assuming zero initial 

conditions, rearranging terms, and simplifying yields:

(𝐿𝐶𝑠2 + 𝑅𝐶𝑠 + 1)𝑉𝑐 𝑠 = 𝑉(𝑠)

• Solving for the transfer function, 𝑉𝐶(𝑠)/𝑉(𝑠), we obtain:

𝑉𝐶 𝑠

𝑉(𝑠)
=

1
𝐿𝐶

𝑠2 +
𝑅
𝐿

𝑠 + 1/𝐿𝐶



Modelling Electromechanical System

• Modelling of electromechanical system could be performed 

using the standard components of the mechanical and 

electrical systems. 

• DC motor is commonly used 

to illustrate the modelling of 

the electromechanical 

systems.

• Modelling process divided 

into electrical system, 

mechanical system and 

electromechanical system.



Modelling Electrical System

• The modelling components of a DC motor are illustrated 
as shown in the figure below.

• Typically, there are two windings in the DC motor e.g. 

armature winding and (fixed) field excitation winding.



Modelling Electrical System

• Applying the KVL in the armature winding, the equation 

for the circuit is:

𝑒𝑎 𝑡 = 𝑅𝑎𝑖𝑎 𝑡 + 𝐿𝑎 𝑡
𝑑𝑖 𝑡

𝑑𝑡
+ 𝑣𝑏 𝑡

• Using Laplace transform

𝐸𝑎 𝑠 = 𝑅𝑎𝐼𝑎 𝑠 + 𝐿𝑎 𝑠 𝑠𝐼𝑎 𝑠 + 𝑉𝑏 𝑠  (𝐸𝑞. 1)



Modelling Electrical System

• Where 𝐾𝑏 is the back EMF constant and 𝑑𝜃𝑚(𝑡)/𝑑𝑡 = 𝜔𝑚(𝑡), 

for a given motor, the back EMF of the motor is:

𝑣𝑏 𝑡 = 𝐾𝑏

𝑑𝜃𝑚 𝑡

𝑑𝑡
 so 𝑉𝑏(𝑠) = 𝐾𝑏𝑠𝜃𝑚 𝑠  (𝐸𝑞. 2)

• The torque developed by motor is proportional to armature 

current: 𝑇𝑚 𝑡 = 𝐾𝑡𝑖𝑎(𝑡) where 𝐾𝑡 is a motor torque 

constant, thus, it is determined from:

𝑇𝑚 𝑠 = 𝐾𝑡𝐼𝑎 𝑠  (𝐸𝑞. 3)

• Thus

𝐼𝑎 𝑠 =
1

𝐾𝑡
𝑇𝑚 𝑠  (𝐸𝑞. 4)



Modelling Mechanical System

• The following figure shows the equivalent mechanical 

loading that typically connected to a DC motor.

Where: 

• 𝐽𝑚 is the equivalent inertia of the motor (e.g.: both of 

inertia of the armature and load).

• 𝐷𝑚 is the vicious damping (e.g.: both of vicious damping 

of the armature and load). 



Modelling Mechanical System

• The torque of the DC motor is calculated from:

𝑇𝑚 𝑡 = 𝐽𝑚

𝑑2𝜃𝑚 𝑡

𝑑𝑡2
+ 𝐷𝑚

𝑑𝜃𝑚 𝑡

𝑑𝑡

• Thus

𝑇𝑚 𝑠 = 𝐽𝑚𝑠2 + 𝐷𝑚𝑠 𝜃𝑚 𝑠  (𝐸𝑞. 5)



Modelling Mechanical System

For a DC motor connected with a mechanical load as given in 

the figure below, modelling components of the system are:

• Motor is used to drive a mechanical load (𝐽𝐿) pushing a 

damper (𝐷𝐿).

• Motor has inertia (𝐽𝑎) and damping factors (𝐷𝑎).

• Gear ratios of the DC motor (𝑁1) and mechanical load (𝑁2).



Modelling Mechanical System

• Knowing inertia (𝐽𝑚) and damping factor (𝐷𝑚) of the motor 

are related through:

𝐽𝑚 = 𝐽𝑎 +𝐽𝐿

𝑁1

𝑁2

2

And

𝐷𝑚 = 𝐷𝑎 + 𝐷𝐿

𝑁1

𝑁2

2

• Substituting eqs. (2) and (4) into eq. (1), with 𝐿𝑎 = 0, yields:

𝑅𝑎

𝐾𝑡
𝑇𝑚(𝑠) + 𝐾𝑏𝑠𝜃𝑚(𝑠) = 𝐸𝑎(𝑠)



Modelling Mechanical System

• As 𝑠𝜃𝑚 𝑠 = 𝑑𝜃𝑚(𝑡)/𝑑𝑡 = 𝜔𝑚(𝑡), applying the inverse 

Laplace transform, we get:

𝑅𝑎

𝐾𝑡
𝑇𝑚(𝑡) + 𝐾𝑏𝜔𝑚(𝑡) = 𝑒𝑎(𝑡)

• Rearrange the equation, the equation above becomes:

𝑇𝑚(𝑡) = −
𝐾𝑏𝐾𝑡

𝑅𝑎
𝜔𝑚(𝑡) +

𝐾𝑡

𝑅𝑎
𝑒𝑎(𝑡)

• When the equation above is plotted, it becomes a straight-

line graph, 𝑇𝑚 vs. 𝜔𝑚, as shown in the figure below.



• The torques-speed curve diagram, with the armature voltage is 

set at 𝑒𝑎1
, the DC motor is set at the extreme conditions. 

• Stalling state when 𝜔𝑚 = 0 (motor stops and max current). 

• No-load state when 𝑇𝑚 = 0 (max speed with no load). 

• The intercepts in the diagram = the extreme conditions.

• Stall torque, 𝑇stall:

𝑇stall =
𝐾𝑡

𝑅𝑎
𝑒𝑎(𝑡)

• No load speed, 𝜔no−load:

𝜔no−load =
𝑒𝑎(𝑡)

𝐾𝑏

Modelling Mechanical System



Modelling Mechanical System

• We could obtain the electrical constants, 𝐾𝑡/𝑅𝑎 and 𝐾𝑏 

from the torques-speed curve diagram given above.

𝐾𝑡

𝑅𝑎
=

𝑇stall

𝑒𝑎(𝑡)

• And

𝐾𝑏 =
𝑒𝑎(𝑡)

𝜔no−load



Modelling Electromechanical System

• The DC motor is typically illustrated as a block diagram 

(𝐺(𝑠)) with armature voltage, 𝐸𝑎(𝑠) as input and angular 

speed of the motor, 𝜃𝑚(𝑠) as output.

• Substitute equations (4) and (2) into equation (1), the 

equation becomes:

𝑅𝑎 + 𝐿𝑎𝑠 𝑇𝑚 𝑠

𝐾𝑡
+ 𝐾𝑏𝑠𝜃𝑚 𝑠 = 𝐸𝑎 𝑠  (𝐸𝑞. 6)



Modelling Electromechanical System

• Substitute equation (5) into equation (6), it is:

𝑅𝑎 + 𝐿𝑎𝑠 𝐽𝑚𝑠2 + 𝐷𝑚𝑠 𝜃𝑚 𝑠

𝐾𝑡
+ 𝐾𝑏𝑠𝜃𝑚 𝑠 = 𝐸𝑎(𝑠)

• As 𝐿𝑎 ≪ 𝑅𝑎, common for a DC motor, the equation becomes:

𝑅𝑎

𝐿𝑎
𝐽𝑚𝑠 + 𝐷𝑚 + 𝐾𝑏 𝑠𝜃𝑚 𝑠 = 𝐸𝑎(𝑠)

• Rearrange the equation to a ratio of 𝜃𝑚(𝑠)/𝐸𝑎(𝑠), it is:

𝜃𝑚(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑡/ 𝑅𝑎𝐽𝑚

𝑠 𝑠 +
1

𝐽𝑚
𝐷𝑚 +

𝐾𝑡𝐾𝑏
𝑅𝑎



Example of Electromechanical System Modelling

Given the DC motor connected to a mechanical load as shown in 

part (a) in the figure below used as an example of electromechanical 

system and torque-speed curve shown in part (b), find the transfer 

function, 𝜃𝐿(𝑠)/𝐸𝑎(𝑠).    [20 marks]



Example of Electromechanical System Modelling

• Begin by finding the mechanical constants, 𝐽𝑚 and 𝐷𝑚. 

• From the equation given below, the total inertia at the 

armature of the motor is:

𝐽𝑚 = 𝐽𝑎 + 𝐽𝐿

𝑁1

𝑁2

2

= 5 + 700
1

10

2

= 12 (𝐸𝑞. 1)

• The total damping at the armature of the motor is:

𝐷𝑚 = 𝐷𝑎 + 𝐷𝐿

𝑁1

𝑁2

2

= 2 + 800
1

10

2

= 10 (𝐸𝑞. 2)



Example of Electromechanical System Modelling

• Now we will find the electrical constants, 𝐾𝑡 = 𝑅𝑎 and 𝐾𝑏. 

• From the torque-speed curve of the part (b) in the figure,

𝑇𝑠𝑡𝑎𝑙𝑙 = 500 (𝐸𝑞. 3)

𝜔no−load = 50 (𝐸𝑞. 4)

𝑒𝑎(𝑡) = 100 (𝐸𝑞. 5)

• Hence, the electrical constants are:

𝐾𝑡

𝑅𝑎
=

𝑇𝑠𝑡𝑎𝑙𝑙

𝑒𝑎(𝑡)
=

500

100
= 5 (𝐸𝑞. 6)

• And

𝐾𝑏 =
𝑒𝑎(𝑡)

𝜔𝑛𝑜−𝑙𝑜𝑎𝑑
=

100

50
= 2 (𝐸𝑞. 7)



Example of Electromechanical System Modelling 

• Substituting Eqs. (1), (2), (6), and (7) into the equation below.

𝜃𝑚 𝑠

𝐸𝑎 𝑠
=

𝐾𝑡

𝑅𝑎𝐽𝑚

𝑠 𝑠 +
1

𝐽𝑚
𝐷𝑚 +

𝐾𝑡𝐾𝑏
𝑅𝑎

 =
5/12

𝑠 𝑠 +
1

12
10 + 5 2

=
0.417

𝑠 𝑠 + 1.667

• To find 𝜃𝐿(𝑠)/𝐸𝑎(𝑠), we use the gear ratio, 𝑁1/𝑁2 = 1/10, 

and find:

𝜃𝐿 𝑠

𝐸𝑎(𝑠)
=

0.0417

𝑠 𝑠 + 1.667



Example of Electromechanical System Modelling

• Or, as shown as a block diagram in the figure below.
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