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e Modelling physical systems.

e Lumped parameters models.

e LTI models.

e Linearisation.

e Modelling aspects and process.
e Modelling mechanical systems.
e Modelling electrical systems.

e Modelling electromechanical systems.



How to Model Physical Systems

e Scaled physical model:
proportional to the actual
model.

e Mathematical model:
described as function and
variable in mathematical

equation.

e Numerical model: represented as a set of numbers to describe
system characteristic and behaviour.



Modelling of Physical Systems

* Develop mathematical models, i.e. ordinary differential

equations that describe the relationship between input and

output characteristics of a system.

* These equations can then be used to
forecast the behaviour of the system under
specific conditions.

* All systems can normally be approximated
and modelled by one of several models, e.g.
mechanical, electrical, thermal or fluid.

* We also find that we can translate a system
from one model to another to facilitate the
modelling.
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Lumped Parameter Models

e Use standard laws of physics and break a system down
into several building blocks.

e Each of the parameters (property or function) is
considered independently.
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Lumped Parameter Models

Lateral movement
(Amplitude ofvibration: 70 mm)  Suspension cable

Damper for absorbing
Iateral forces created by
pedeslrians

-
|
7SON + 250N
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Millennium wobbly bridge: http://www.youtube.com/watch?v=eAXVa XWZ8



http://www.youtube.com/watch?v=eAXVa__XWZ8

Linear Time Invariant Models

Superposition of

 Assume the property of o waves
linearity for these models. °

* Alinear system will possess ol
two properties:

-15

* Superposition.

* Homogeneity.

 Allows us to use standard
mathematical operations to
simplify our models.




Linear Time Invariant Models

Gabriel vz

* Assume system is time- SHOCK ABSORBERS

The 8 signs of worn shock absorbers:

invariant.

* Constants stay constants in . . @

the time-scales of our

PAT C ES DNES WNE EXCESSIVELY
ON TYRES IN SIDE WINDS

model.

* Proportionality between
variables does not change.

Note: Our shock absorbers
do not wear out in our car
suspension model!




Linearisation

* Linearisation: Intuitively we could do it with order reduction,
tangent, or Taylor series:

Order reduction method:

* Afinite number of terms will give an approximation of the
function e.g. the first two terms will give a linear
approximation.

dx?

y=fe0+ || o ] SO



Linearisation

Tangent method:

* Using a linear function evaluated at a given point (i.e. tangent
of the curve) instead of higher order function.

YA y=f(x)
Oo,,
/’29/

<Y



Linearisation

Taylor series method:

* Suppose we know that y is a function of x and we know the
values of y and y’ when x = a, thatis y(a) and y'(a) are
known.

* We can use y(a) and y'(a) to determine a linear polynomial
which approximates to y(x). Let this polynomial be:
p1(x) = ¢o + c1x
* Thus
p1(x) =y(a) +y'(a)(x — a)
* The p;(x) is the first-order Taylor polynomial generated by y
atx = a.



Example of Linearisation 1

* Consider the force acting in a spring during the plastic zone
condition that can be described as a third-order function of
extension (&): f(g) = 2& + 5¢&3.

Elastic Zone Strain-Hardening Zone
4 | Plastic Zone Failure Zone

f 1 | '
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1 '

Fracture Point
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_ Strength;
Proportional-| (Fy) &
Limit

'] i Il : F
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e At its operating point at € = 1, this function can be
approximated as: f(g) = —10 + 17¢.



Example of Linearisation 1

Elastic Zone Strain-Hardening Zone

4 | Plastic Zone Failure Zone
f e g : "
[ ] ] ] [ ]
1 | | :
o : :
1Yield; . Fracture Point
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1 (Fy) Tensile |
] - Strength !
Proportional- (F)) &
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* Model the spring force as f(¢) = —10 + 17¢ around the
point € = 1.0 and the linearised spring forced constant
would be given by:

df

— = 17N
de /m



Example of Linearisation 2

Find a linear approximation to a function y(t) = t* neart = 3
using Taylor series.

 We require the equation of the tangenttoy = t% att = 3,
that is the first-order Taylor polynomial about t = 3.

* Note that y(3) =9and y'(3) = 6.
p1(0) = y(a) +y' (@)t —a) =y(3) +y'(3)( - 3)
=94+6(t—3)=6t—9
 Att = 3, p4(t) and y(t) have an identical value.

* Neartot = 3, p;(t) and y(t) have similar values, for example
p1(2.8) = 7.8, and on the other hand y(2.8) = 7.84.



| | Voltage A
oot
Components are connected etriea
together by signals.

Force N

. . Mechanical ,

Signals have many different

Fl F
forms. luid oW ‘
Signals must also have

Temperature K

direction and name. Thermal

Signals continue until interrupted.
Sighals and components are considered ideal.

We add other signals and components to alter the signals.



 We wish to know how the output signal varies with an input
signal for a fixed (invariant) system.

* We may plot two signals against each other invariant of
time (system relationship).

Input

Vv
0 >
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System constants are
time invariant for the

given system.

We now consider a
different system as the
spring has been
changed.

However, the analysis

stays the same.

Constants

Spring
constantk =1

W

Now k=2

mm\_

Distance

X

Distar

1CC

Force

F



Differentiation

* Alternative method: level of water, L, changes because of the

flow of liquid.

T L

 Mathematically, change of level (AL) with time (At) is

calculated from:

AL dL(t)
At dt



Differentiation

* In fact, the change in L is proportional to flow, F(t) and inversely
proportional to cross-sectional area of the connecting pipe, C:
dL(t) 1 I — L(t)
dt |c R
Where: I is height of larger tank, L is height of smaller tank, and

] F(t) and F(t) =

R is radius of pipe.

 The flow is related to difference in levels, thus:

dL(t) [”I—L(t)] I —L(t)

CR
Where: CR is the time constant, T.

* Note: the above case is a differential equation. It has the
differential of L(t) being a function including L(t).



Differentiation: Slopes

Consider the graphof L(t) L
against time.

At any instant of time, we

can see value of L(t).

The change in L(t) is the slope of the graph, which varies
with time.

Initially steep (high value), then less, then less.
But the flow is initially high, then becoming less, then least.
Thus, slope of L(t) is like F(t), but slope is change of L(t).
In fact, F(t) is proportional to derivate of L(t) with time.



Integration: Area

 The reverse process is integration.
* Graphical interpretation: area under a graph.

* Consider the flow graph: the area at different times is shown.

F F

t

» After a short time, area is as shown.

e Later, area has grown, but by less, etc.



Integration: Area

Consider the height of water in the tank.
Thus, L(t) like area under F(t):

L(t) x jF(t) dt
L(t) is proportional to integral of F(t) with time.
In fact, for this system, we have:

—\C

dL(t) (1
=

1
)F(t) and L(¢) =EfF(t) dt

The flow, F(t) is differential of L(t) and L(t) is integral of F(t).



Integration: Area

» Differentiation and integration are opposites (note: here they

are used to model a water systems).

* |t can also model electronic circuits, mechanical systems,

motors, etc.

* |n fact, the differential equation has the same form, and hence

the same exponential response as that for many systems.

* Note: there are analogies between water systems and

electronics: pipe like a resistor, tank like a capacitor.

e Also, for thermals, walls have thermal resistance, rooms have

thermal capacity.



Mechanical Components

* We know that distance (x(t)) is related to velocity (v(t)) is
related to acceleration (a(t)) through differentiation.

e Displacement:
Distance = x(t)
* Velocity:

dx(t)
dt

v(t) =

 Acceleration:

d
_dv d( Dccigjt)) _d%x(t)
a(t) = dt  dt  dt2




Mechanical Components

* It gets messy writing d/dt all the time!

* Therefore, we use Laplace transform and will write in term of
‘s’ instead.

* Displacement
Distance = X(s)
* Velocity
V(s) = sX(s)
* Acceleration
A(s) = sV(s) = s2X(s)
* Note: both time and frequency domain are transformed with
respect to the variable.



Mechanical Components

e Standard mechanical components for modelling physical system.

Torque-angular
Component velocity

Torque-angular

displacement

Impedence
Zy(s)=T(s)/6(s)

I(r) 6(1)
Spring

A :
A T(r) = K [yo(r)dr
N

Viscous 7(7) 6(r)

K

damper
syaTe T(t) = Dao(i)
T
D\ \
(1) 8(1)
Inertia
/\ﬂ da (1)

T ==

T(r) = KoO(t)

T(}_D%(:)
1) = ]ad()(r)

Ds

Js*




Example of Mechanical System Modelling

For the mechanical system below with mass, spring and damper:

* We assume the mass is displaced by x(t) toward the right.

* Note that taking into consideration the zero initial condition,

just like the spring, the damper will also oppose the force.

* Thus, only the applied force points to the right.

* All other forces impede the motion and act to oppose it e.g.

the spring, damper, and the force due to acceleration point to

the left.

]

——= X(7)

(T

M f{1)

Determine the transfer function
equation of the system in the time
domain. [6 marks]



Example of Mechanical System Modelling

Write the differential equation of motion using second Newton's
law to sum to zero of all the forces shown on the system:

d? d
m( dfff)) +f, ( ’;ﬁ”) +kx(t) = £()

Taking the Laplace transform, assuming zero initial conditions,

the equation above becomes:
ms?X(s) + f,sX(s) + kX(s) = F(s)

As a result, the transfer function equation of the given
mechanical system is:

X(s) 1

Gs) = F(s) ms2+f,s+k




Electrical Components

We know that to find the reactance of electrical devices
such inductor and capacitor requires integration and
differentiation respectively:

Voltage across resistor: A
vg(t) = Ri(t) Capacitor

Voltage across capacitor: AN~
Resistor

1 t
ve®@ =z ] i® e

Inductor
VoItage across inductor:

di(t)]

v (t) = L[ o



Electrical Components

Applying Laplace transform, we have the following:

* V\oltage across resistor:

Vo(s) = Ri(s) —

Capacitor

VN~

* Voltage across capacitor:

1 |
VA(s) = i(s Resistor
(s) (—SC> () .
* Voltage across inductor: Inductor

V. (s) = sLi(s)

Note: both with respect to the variable.



Electrical Components

e Standard electrical components for modelling physical system.

Component

Voltage-current

Current-voltage

Impedance

Z(s) = V(s)/I(s)

-

Capacitor

NN~

Resistor

— 00—

Inductor

l o]
1'{.!]-=—_/ i(t)dr
C 1)

vit) = Rilr)

di(r)
di

wit) =L

advlr)

)= C
{ el

iff]=%1{!]

|
Cs

[s




Example of Electrical System Modelling

For the electrical system as shown below:

 Jtis aseries RLC circuit.

* Assume in this case that capacitor
voltage as the output and applied
voltage as the input. o ()

 Assume zero initial conditions (no

prior conditions before modelling
existed).

Determine the time-domain expression for the output voltage

over the input voltage for the given circuit.

[12 marks]



Example of Electrical System Modelling

Summing the voltages around the loop, assuming zero
initial conditions, yields the integral-differential equation
for this network as:

dt

Changing variables from current to charge using i(t) =
dq(t)/dt yields:

d? d
[ e (g)uo = o

From the voltage-charge relationship for a capacitor:
CI(t) — Cvc(t)

[ ()]+R(t)+2foi(r)dr=v(t)




Example of Electrical System Modelling

e Substituting Eq. (2) into Eq. (1) yields:

- d?v,(t) dv,(t)
dt? dt

* Taking the Laplace transform assuming zero initial

+ RC [ ] + v.(t) = v(t)

conditions, rearranging terms, and simplifying yields:
(LCs? + RCs + 1)V.(s) =V (s)

* Solving for the transfer function, V-(s)/V (s), we obtain:

1
Ve (s) _ (ﬁ)
V() 24 (5) s+1/LC

L



Modelling Electromechanical System

Modelling of electromechanical system could be performed
using the standard components of the mechanical and
electrical systems.

Eyebolt

DC motor is commonly used ..
to illustrate the modelling of

End Shield

the electromechanical N

Rotor Laminations

Grease Inlet
Bearing

systems.

Modelling process divided P
into electrical system, consit ox —— S < S ™

Shaft Slinger

mechanical system and
electromechanical system. i -

To Frame To Inner



Modelling Electrical System

* The modelling components of a DC motor are illustrated
as shown in the figure below.

e (1) Armature\\l V(1)

circuit
i (1) == / B
|| G (1)

* Typically, there are two windings in the DC motor e.g.
armature winding and (fixed) field excitation winding.



Modelling Electrical System

e, (1) Armature\l V(1)

circuit
1,(1) == / B
|| G (t)

J
* Applying the KVL in the armature winding, the equation
for the circuit is:

di(t)

ea(t) — Raia(t) + La(t) [—

1t + v, (t)

* Using Laplace transform
E (s) = Ralg(s) + Lg(s)sly(s) + Vi (s) (Eq.1)



Modelling Electrical System

* Where K, is the back EMF constant and d@,,,(t)/dt = w,,,(t),
for a given motor, the back EMF of the motor is:

vp(t) = K, [ Ir t so  Vu(s) = KpsO,(s) (Eq.2)

 The torque developed by motor is proportional to armature

current: T,,,(t) = K,;i,(t) where K; is a motor torque
constant, thus, it is determined from:

Tin(s) = Kilg(s) (Eq.3)
* Thus

1
lo(s) = (;) T (s) (Eq.4)



Modelling Mechanical System

* The following figure shows the equivalent mechanical
loading that typically connected to a DC motor.

I,n(1) 8,,(1)

— FJ J m l—
W J —

m

Where:

* |, is the equivalent inertia of the motor (e.g.: both of
inertia of the armature and load).

* D, is the vicious damping (e.g.: both of vicious damping
of the armature and load).



Modelling Mechanical System

* The torque of the DC motor is calculated from:
d? 0, (1) d B, (t)
dt? dt

Tm(t) zjml +Dm[

* Thus
T () = UmS* + DpyS) 0 (5) (Eq.5)

I,n(1) 8,,(1)

O\ J

m




Modelling Mechanical System

For a DC motor connected with a mechanical load as given in
the figure below, modelling components of the system are:

Motor is used to drive a mechanical load (/;) pushing a
damper (D;).

Motor has inertia (/) and damping factors (D).

Gear ratios of the DC motor (N;) and mechanical load (N,).

Motor N,




Modelling Mechanical System

* Knowing inertia (/,;,;) and damping factor (D,,,) of the motor
are related through:

N\
Jm =Ja T/ (_>

And
N\
Dm — Da + DL N_Z
* Substituting egs. (2) and (4) into eq. (1), with L, = 0, yields:

(&> T (s) + KpsOp, (s) = Eq(s)
K¢



Modelling Mechanical System

As s6,,(s) = db,,(t)/dt = w,,(t), applying the inverse
Laplace transform, we get:

(22) n(® + Kotom(® = a®

Rearrange the equation, the equation above becomes:

1n(© = = (o) om(® + (7 eat®

When the equation above is plotted, it becomes a straight-
line graph, T,,, vs. w,,, as shown in the figure below.




Modelling Mechanical System

The torques-speed curve diagram, with the armature voltage is
set at e, , the DC motor is set at the extreme conditions.

* Stalling state when w,;, = 0 (motor stops and max current).
* No-load state when T,,, = 0 (max speed with no load).
The intercepts in the diagram = the extreme conditions.

Stall torque, Tqan: I

Ki
Tstan = (R_> €a (t) | a
a ,

No load speed, wyo—10ad:

eq(t)

Wno-load = K
b

Torqu




Modelling Mechanical System

* We could obtain the electrical constants, K; /R, and K},
from the torques-speed curve diagram given above.

TIH
ﬁ . Tstan A
R, eq(t)
i And T gt
e %
b — o
Wno-load =

= (),

®no-load

Speed



Modelling Electromechanical System

 The DC motor is typically illustrated as a block diagram
(G (s)) with armature voltage, E,(s) as input and angular
speed of the motor, 0,,,(s) as output.

E (s) 6,,(5)
G(s) pb—»

* Substitute equations (4) and (2) into equation (1), the

equation becomes:

(Ra + LaS)Tm(S)
Ky

+ K, s0,,(s) = E,(s) (Eq.6)



Modelling Electromechanical System

e Substitute equation (5) into equation (6), it is:

(Rq + LgS)(mS? + Dy 5) 63 ()
K

+ K3 560,,(s) = E,(s)

* AsL, < R,, common for a DC motor, the equation becomes:

R
[L_a (Ums + D) + Kb] 50 (s) = Eq(s)
a
* Rearrange the equation to a ratio of 8,,,(s)/E,(s), it is:

O (s) _ Ke/(RaoJm)

SN




Example of Electromechanical System Modelling

Given the DC motor connected to a mechanical load as shown in
part (a) in the figure below used as an example of electromechanical
system and torque-speed curve shown in part (b), find the transfer
function, 6, (s)/E,(s). [20 marks]

TFH

Fixed
field

500

(N-m)

Torque

N, = 1000

J,=5kg-m?

__s’éiij'r;: J =700 kg-m? ) |
D, =2 N-m s/rad

50

Dy = 800 N-m s/rad ' -
Speed (rad/s)



Example of Electromechanical System Modelling

* Begin by finding the mechanical constants, J,,, and D,,,.

* From the equation given below, the total inertia at the
armature of the motor is:

N\ 2 2
]m=]a+]L(N—;> =5+700<—> =12 (Eq.1)

* The total damping at the armature of the motor is:

N, \° 1\’
D, =D, + D, (N—z) =2+800(1—0> =10 (Eq.2)



Example of Electromechanical System Modelling

* Now we will find the electrical constants, K; = R, and K,,.

* From the torque-speed curve of the part (b) in the figure,

Tstqu = 500 (Eq.3)
Wno—load = 90 (Eq.4)
e,(t) =100 (Eq.5)

Hence, the electrical constants are:

K T 500
ot _ stall _ — (Eq.6)
R, ey (t) 100

e And

ea(t) _100 Fa 7

K, = =——
’ Wno-load 50



Example of Electromechanical System Modelling

e Substituting Egs. (1), (2), (6), and (7) into the equation below.

Kt
Hm(S) _ (Ra]m)
Eq(s) S[S_I_]i(Dm-l'Kngb)]
_ (5/12) 0417
S {S 4 1_12 [10 + (5)(2)]} s(s+ 1.667)

* Tofind 8;(s)/E,(s), we use the gear ratio, N;/N, = 1/10,
and find:

0.(s)  0.0417
E,(s) s(s+1.667)




Example of Electromechanical System Modelling

e Or, as shown as a block diagram in the figure below.

E.(s) A (s)
a (],041_7_ L1 .
s(s + 1.667)




	Slide 1: Physical System Modelling
	Slide 2
	Slide 3
	Slide 4: Modelling of Physical Systems 
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Signals
	Slide 16: Signals
	Slide 17: Constants
	Slide 18: Differentiation
	Slide 19: Differentiation
	Slide 20: Differentiation: Slopes
	Slide 21: Integration: Area
	Slide 22: Integration: Area
	Slide 23: Integration: Area
	Slide 24: Mechanical Components
	Slide 25: Mechanical Components
	Slide 26: Mechanical Components
	Slide 27: Example of Mechanical System Modelling
	Slide 28: Example of Mechanical System Modelling
	Slide 29: Electrical Components 
	Slide 30: Electrical Components 
	Slide 31: Electrical Components 
	Slide 32: Example of Electrical System Modelling 
	Slide 33: Example of Electrical System Modelling 
	Slide 34: Example of Electrical System Modelling 
	Slide 35: Modelling Electromechanical System
	Slide 36: Modelling Electrical System
	Slide 37: Modelling Electrical System
	Slide 38: Modelling Electrical System
	Slide 39: Modelling Mechanical System
	Slide 40: Modelling Mechanical System
	Slide 41: Modelling Mechanical System
	Slide 42: Modelling Mechanical System
	Slide 43: Modelling Mechanical System
	Slide 44: Modelling Mechanical System
	Slide 45: Modelling Mechanical System
	Slide 46: Modelling Electromechanical System
	Slide 47: Modelling Electromechanical System
	Slide 48: Example of Electromechanical System Modelling
	Slide 49: Example of Electromechanical System Modelling
	Slide 50: Example of Electromechanical System Modelling
	Slide 51: Example of Electromechanical System Modelling 
	Slide 52: Example of Electromechanical System Modelling

