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« Stability and system responses.

« Stability of the systems and stability analysis.
« Methods of stability analysis.
 Routh-Hurwitz criterion.

« Construction of the criterion.
 Special cases of Routh-Hurwitz criterion.

 Zero in asingle column.

e Zerosinarow.



Stability

« A linear system is where the principles of supposition do
apply (e.g. no saturation or hysteresis effects)

« A time-invariant system is where its characteristics do not
vary with respect to time (e.g. no ageing)

* In LTI systems, we often approximate systems over a
specific range or time-period.

« \We want to build up a relationship between the response
of the system and stability:

o If Input Is bounded and output (c(t)) does not
approach oo as t approaches oo (e.g. natural response
IS not approaching o).

« If input is unbounded, we cannot conclude stability.



Stability

« Asystem is stable if every bounded input yields a bounded
output or it is bounded-input bounded-output (BIBO).

boundedz —f h |— bounded y

* \We want to build up a relationship between the total
response and instability:

« If the input Is bounded, but the output (c(t)) Is
unbounded, the system is unstable.

o If Input Is unbounded, we can not conclude instability.

« Asystem is unstable if any bounded input yields an
unbounded output.



Stability and System Response

« A linear, time-invariant system is stable if: the natural
response approaches zero as time approaches infinity.

« Alinear, time-invariant system is unstable if: the natural
response grows without bound as time approaches
Infinity.

* A linear, time-invariant system is marginally stable if: the

natural response neither decays nor grows but remains
constant or oscillates as time approaches infinity.

NPT STABLE STABLE MARGINALLY UNSTABLE UNSTABLE
STABLE




Stability and System Response

« Stable, a linear, time-invariant system is stable if the natural
response approaches zero as time approaches infinity
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Stability and System Response

« Unstable, if the natural response grows without bound
as time approaches infinity.
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System Damping (Indicator of Stability)

« Consider a control system described as:
as®+bs +c
 Find roots of a quadratic equation:

Root, , = L Vb2 — 4ac
’ 2a
Equation Roots Transient Response
b? —4ac >0 |Real, different Overdamped
b? —4ac =0 Real, same Critically damped
b? —4ac <0 |Complex, Underdamped
different
b=20 Complex, same | Undamped




e ‘s’ Laplace operator or Laplace transform variable.
* ‘s’ can be considered as a differentiator (df (t)/dt).

* ‘s’ can be considered as a gradient.

f(tﬁ/yA(t)
dt

t
e A variable at an instance i1s a number:

« Numbers can be real or imaginary.
s=a or Ss=a+bj
 Usually given in control systems as:

S=0 or S=0+jw



‘s’ Domain

« \We can plot the s variable on a s-domain diagram:

« Consider the systems given below:
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Zeros (0) cause
system to be zero in
the s-domain



System Response

Time Response
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Example of Stability of Systems

Consider the following two control systems:

I. System 1.
“) =T DG+ 2)
ll. System 2:
s+5
G2(s) = S+ 2
What happens when:
a. Roots =-17
b. Roots =-2?

c. Roots =-5?

4 marks]
4 marks]

4 marks]



Zeros (0) and Poles (o)

What happens when the following conditions existed:
a. Whens=-1?

1 1
G+DG+2) (A-D2-1
s+5 5—1 4
GO =TT o1
Notice that the output of system 1, G, (s) IS o when s =-1
that indicates its response is a growing. The system is

unstable.

On the other hand, the output of system 2, G, (s) IS 1 when
s = -1 that indicates its response settles at 1. The system is

stable.

G1(s) =




Zeros (0) and Poles (o)

b. Whens=-27
o 1 1
1) = T DG 2) NENON
5 3

Both systems 1 and 2 are growing. Both systems are unstable.

c. Whens=-5?

. 1 11

1(8) = s+D(s+2) (—4)(-3) 12
5 0

2(5)—S+2 _—3=0

Both systems settle to 1/12 and 0. Both systems are stable.



Time Domain

« \We are worried when system is infinite or 0 in TIME domain.
« System response often contains an exponential component:
G(t) = ke®

* When a > 0, the output will reach infinity! We MUST avoid
right half of plane poles.

B (s+5)
)= G376 -2
Jo
G(t)=Ke™ G(t)= Ke*
6—X X—
5 -2 2

All poles must be in left Any poles in right half plane will
half plane for stability cause the system to be UNSTABLE



Stability

« |If the poles of a system transfer function all lie in the left
half of the s-plane, then that system is stable.

(s+5)
(s+2)(s—1)(s—2)

G(s) =

jo

O
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Stability

 Itis only the poles of a system transfer function which are
Important as far as stability is concerned (non-cancelling
Zeros can be ignored)

1

G(s) =5 (s — 1)(s — 2)

jo

UNSTABLE y




Stability

» The poles of a system are the polynomial roots obtained when

the system denominator is equated with O.

(s +5)
(s+2)(s—1)(s—2)
The system denominator is known as the characteristic
polynomial.

G(s) =

(s+5)
(s+2)(s—1)(s—2)
The system denominator equated to zero is the characteristic
equation.

G(s) =

(s+2)(s—1)(s—2)
Open-loop stable may/may not be closed-loop stable
Open-loop unstable, may/may not be closed-loop unstable!



Unstable System Response

e Transfer function:

(s+4)
G(s) = - >
s° —4s4 4+ 21s — 34
_ X
. jo
 s-Domain i
4 +2 o
X

« Time response




Forced and Natural Responses

 Natural response: output
due to the response of the
system itself, without
external input.

 Forced response: output
due to intentional input,
external to the system.

« Stability of the system
mainly depends on the
natural response of the
system.

G(s)
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Input pole

Output
time
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transform

s-plane

System zero System pole

Forced response  Natural response



Forced Response

Input

Impulse

Step

Ramp

Sinusoid

Function

5(t)

u(t)

tu(t)

sin t
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* Negative feedback can reduce effects of disturbances and

Improvements to Stability of System

changes to input parameters -> stability of the system.

[nput
or —W

Reference

Input

transducer

Summing
junction

Error
or

Actuating

signal

Disturbance 1

Disturbance 2

Controller

4%)#

Summing
junction

Process
or Plant

« Negative feedback is when:

Output
transducer |-
or Sensor

Summing
junction

+
+
-

Iclosed loop gain| < |open loop gain|
« This reduces the steady-state error by making the output closer
to the Input.

« To improve the stability of the system further, we could add a
controller or compensator.

Output
or
Controlled
variable



Improvements to Stability of System

Controllers or compensators change the natural response of
the system.

They adjust the poles of the system.
They help achieve the desired output from a given input.

Controllers or compensators can be mechanical, natural or
electrical (used in industry).

Three main types of controller or compensator:
e (Gain (proportional).
« Lead or lag (lead, lag, and lead-lag).

* PID (proportional, integral, derivative, or any of their
combinations).



Stability Analysis

« Various type of stability analysis in control systems:

« Analytical (i.e. requiring model of the physical system and
maths to solve differential equations — mostly approximation
for complex system).

« Experimentation (i.e. running a set of trials and observation
or measurement).

» Approaches used in the course:
* Routh-Hurwitz criterion — mathematical process.
« Nyquist plot — graphical tool.
« Nichols chart — graphical tool.
« Bode plot — graphical tool.
* Root locus diagram — graphical tool.



Routh-Hurwitz Criterion

 Analyse stability of a system through mathematical analysis
of characteristic equation.

G(s) N(s) N(s)
S) = =
D(s) aus*+ azs3+a,s?+ast+ ags?
s* Ay a, a,
s3 as a, 0
s A Qp as Qo a, 0
laz a a; O - 0
3 1] _ b, 3 = b, as — 0
a3 a3 a3
Sl asz a, as 0 as 0
-0 _
1 D3 = ¢, by O — 0 by O — 0
bl b1 bl
s | |by by by 0 by O
cg O _d ¢, O —0 ¢, O —0
€1 ' €1 €1




Nyquist Plot

« Analyse stability of a system through use of polar plot of
system equation.

 In Cartesian coordinates, the real part of the transfer
function is plotted on the x-axis.

« The imaginary part is plotted on the y-axis. The frequency
IS swept as a parameter, resulting in a plot per frequency.

Myquist Diagram

 Alternatively, in polar
coordinates, the gain of the
transfer function is plotted as
the radial coordinate, while
the phase of the transfer /
function is plotted as the :
angular coordinate.

Imaginary Axis
g

Real Axis



Nyquist Plot

« System is stable if the plot does not encircle the unity gain
point (-1, 0) in the Nyquist plot.

« The system below on the left is deemed to be stable as the
plot is not encircling the Nyquist stability node (-1, 0).

« The system on the right is not stable as the plot is encircling
the Nyquist stability node (-1, 0).

Nyquist Diagram

Imaginary Axis
e
Imaginary axis

L L 1 1 1
60 &0 100 =2 -1.5 -1 -0.5 0 0.5 1
Real axis



Nichols Chart

« Analyse stability of a system through use of gain and phase
plot of the system.

* A Nichols chart displays the magnitude (in dB) plotted
against the phase (in degrees) of the system response.

Nichols Chart

« lItis used further to analyse
stability of a system beyond

the Nyquist plot. % ° S, \
« System is considered to be ‘go )
stable if the value of gainat 7
180° in the Nichols chartis & / ~R=005
40} / R=0.2

positive.

“315 270 225 180 135 90 45 0

Open-Loop Phase (deg)



Nichols Chart

* The system below is deemed to be stable as the curve of the
plot is at the gain > 0 dB whenever phase = 180° in the
Nichols chart.

 Contrast with the unstable system when its gain <0 dB at

o
180 . Nichols Chart
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Routh-Hurwitz Criterion

This stability analysis technique is based on the works of
Edward Routh with his algorithm proposed in 1876 and Adolf
Hurwitz who independently proposed contribution in 1895.

Edward Routh Adolf Hurwitz



Routh-Hurwitz Criterion

Any system that has closed-loop poles in the right-half of
the s-plane will be unstable.

The Routh Hurwitz table is a simple method that
allows us to determine the number of poles in the left-
and right-halves of the s-plane and the number of
poles on the imaginary axis.

It tells us nothing about where those poles are, so it is not
generally sufficient to design a control system.

It is just a specialised tool to tell us about system stability.



Routh-Hurwitz Criterion

 Using this method, we can tell how many closed-loop system
poles are in the left half-plane, in the right half-plane, and on
the jw-axis.

* \We can not tell where, but only how many are in each plane
determining the system’s stability.

« The method requires two steps:

 Generate a data table called a Routh table.

* Interpret the Routh tableto =
tell how many closed-loop e o af:
system poles are in the left =
half-plane, the right half- < gilbﬂ
plane, and on the jw -axis.
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Construction of the Routh Array

« Consider a closed loop transfer function having form:

NGs)

G(s) =

D(s) aus*+ass3+a,s?+a;st+aps’

« When considering stability, we are interested only in the
poles of G (s), therefore we examine the denominator

polynomial of G (s).

« To form the Routh array, start

by writing powers of s down
the left-hand side and then fill
In the coefficients of the
denominator polynomial.
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Construction of the Routh Array

Note that in the first row, we start with the coefficient of
the highest power of s and then write every second
coefficient.

In the second row, we write in the coefficients that were not
Included in the top row.

Include a zero at the end of row two if necessary to fill out
the array.

To complete the array, we fill

out successive rows as a

Il
o
=
=}
=]

=
et 2o |f |8
) (SN
|
o

2|2
o o S
o
[=N=

function of the two rows above. [~

o o =] 2 8
K‘)»—\p—n'_.»—-wu?w-p-

See the table for the required S ;1

o
=
)

o
==

pattern.




Filling in the Array

 The Routh table:

G(s) = Yo
C asst+ axs3 + a,s? + ast + a,s®
4 3 2 1 0
s* a, a, a
s3 as a, 0
s? a, a, a, ag a, 0
_ _ 0 _
az 4| _ b, as = b, az; 0 —0
a3 a3 a3
sl _ as daq _ as 0 _ as 0
by bz_c1 b4 O—O by O—O
b by by
s | |by by by O by O
C1 0 _ dl C1 0 —0 C1 0 0
C1 C1 C1




« The Routh criterion states that the number of closed loop
poles in the right half of the s-plane is equal to the number
of sign changes in the first column of the Routh table.

 For stability, we therefore require zero sign changes in the

first column.

« Any change of sign indicates that the system is unstable.

Filling in the Array

s* a, a, a, +/-
s3 as a, 0 +/-
s? b, b 0 +/-
st o3} 0 0 +/-
s dq 0 0 +/-




Interpreting a Routh Table

 If the closed-loop transfer function has all poles in the
left-half of the s-plane, the system is stable.

« Thus, a system is stable if there are no sign changes In
the first column of the Routh table.

Sign change | Interpretation

0 No right-hand side pole
1 1 right-hand side pole
2 2 right-hand side poles

\ Nth right-hand side poles




Example of Routh Array Construction

Consider a system with a transfer function of:

1000
(s+2)(s+3)(s+5)
Determine whether this system is stable when closed in a

G(s) =

unity gain feedback loop. [14 marks]
R(s) + E(s) 1000 C(s)
8 (s+2)(s+3)(s+5) g

A




Find Closed Loop Transfer Function

* \We first need to find the closed loop transfer function:

G(s) 1000

1+ G(s) s3+10s2 + 31s + 1030

* Notice that we have completely expanded the denominator
rather than leaving it as the product of poles as we normally do.

T(s) =

R(s) 1000 C(s) _
s34+ 1052+ 31s + 1030

« The characteristic equation of the system is:
s34+ 10s% + 31s + 1030



Scaling in the Rows In the Table

« Now write the powers of s down the left side and fill in the
coefficients from the denominator polynomial of the

closed loop transfer function.

1

31

10

1030

 We are allowed to divide any row of the array through by a
positive number if it will simplify the calculation.

« We will divide the second row though by ten.

1

31

10/10=1

1030/10 = 103




Filling in the Array

* \We see that the first column changes from positive to
negative after the second row and then from negative to

positive after the third row.

* \We therefore have two sign changes.

The Routh criterion tells us that the transfer function has two
poles in the right half of the s-plane.

s3 1 31 0
s? 1 103 0
st |t 31 _‘1 0‘ _‘1 0‘
1 103 1 0 1 0
1 1 0 1 0
s |1 103‘ 11 0 11 0
-72 0| _ —72 0l _ —72 0| _
—72 =103 —72 =0 —72 =0




Interpreting a Routh Table

Simply stated, the Routh-Hurwitz criterion declares that the
number of roots of the polynomial that are in the right hand-

plane is equal to the number of sign changes in the first

column.

1 31 0

1 103 0

1 31 _|1 0 _‘1 0

1 103 1 0 1 0
= —72 =0 =0

1 1 1

1 103| 11 0 11 0
-72 0| _ ~72 0f _ —72 0f _
—72 =103 —72 =0 —72 =0




Special Cases of the Routh Array

A couple of special situations can arise when constructing
a Routh array.

While constructing the array we might find that we end
up with:

« A zero In the first column.
 Arow of zeros.

Either of these occurrences will “break” the procedure
outlines above.

However, there are simple tricks to deal with such situations
- consult any control text for further information.



Special Cases of the Routh Array

A zero iIn the first column.

s* ay a, ay
3 as a, 0
s? a, a as Qg a, 0|
“lag a “lag O -
= b = (0) =, % 2o
3 3
st |4 @ _|as 0| _|as 0|
bz b, = ¢ = oo blj 0=oo bl; 0=oo
1 1 1
s° b1 by |1 0| b1 0|
C1 0—d1—0 C1 0=0 C1 0=0
] ] G
s* a, a, ay
s3 as a, 0
s? ag a _ |44 Qo a, 0
as; a a; O “la. 0
o h=© i k=0 2= (0)
3
st a a; a; 0 a; 0
bz b, —¢ = o b}; 0 _ bg 0 _
1 1 1
s0 b, b, bt 0| _|b1 O
c1 0—d1= C1 0=0 c1 0_0
Cq 1 a




Routh-Hurwitz Special Cases

Zero In the first row/column:

 |In this case, the zero is replaced with epsilon (e).

s* ay, a, a,
s3 as a, 0
SZ a4 az |a4 aO
az aq a; 0 B a3 0
= b, = (0) — =D, —
as a3 a3
st as a | |
b, b, by 0 by 0
b =c = — - — -
1 b1 b1
s b, b, |
cqg 0 d 0 c1 O 01 0
=d, =
€ € &1

 Evaluate the sign change in the first column. Interpret stability
of the system.—

as a (400 +/-
s3 as a, 0 +/-
s? b; = (€) _ ay CI)O |4 0 +/-
a3 = b2 LO =0
a3 a3
st e _las 0 _las 0O +/-
bl bZ — C1 b1 0 — 0 bl 0 — 0
by b b,
s0 _|b1 by _|b1 0 |y O +/-
Cq1 0 _ d1 Cq1 0 -0 Cq1 0 -0
(&1 1 (&1




Example of Routh-Hurwitz Special Cases 1

Given the following transfer function of a control system, we
perform stability analysis of the system using Routh-Hurwitz
method. [6 marks]

1

T(s) =
(s) 2s° +3s* +2s3 +3s2+2s+1

« The characteristic equation of the system is:
25°> +3s* + 253+ 352+ 25 +1
« Create Routh table based on the equation given above.



» This example shows an example of zero in the first row or

Example of Routh-Hurwitz Special Cases 1

column.
In this case, zero iIs replaced with epsilon (¢) and will tend
to zero.
s 2 2 2
s* 3 3 1
s? |2 2| |2 2 |2 2
3 3 3 1] _ 3 11 _
© | B | il
s? 3 3 2 1 2 1
o 4/31_ 1o 4731 _ o 4731 _
0 B 0 0
st _|o 4/3| _|o 4/3| _|o 4/3|
(00} (00} (00} (0] (00} (00} _ 0




Example of Routh-Hurwitz Special Cases 1

» There are two sign changes in the first row of the Routh table.

« System has two unstable poles located on the right-hand side
of the s-plane.

s5 2 2 2 +
s* 3 3 1 +
53 ((®) 413 0 +
s? 36— 4 1 0
€
s' [12e — 16 — 3¢2 0 0 +
9¢ — 12
50 1 0 0 +




Routh-Hurwitz Special Cases

Entire row of zeros:

Ay ap Qo
as a, 0

a, O

az; 0

as = b, = (0) as = b, = (0) s =(0)
st as a; a; 0 a; 0
" |by by o by 0] by 0| _
—b1 =C = b—1 = o0 b—1 = o0
50 b, b, 2 b1 0|
Cq1 0 _ dl —0 Cq1 0 -0 Cq1 0 -0

C1 1 1

* There is an even polynomial that is a factor of the original
polynomial.

« This case have to be handled differently from the case with a
zero in the first column of a row.



Routh-Hurwitz Special Cases

Entire row of zeros in the s-plane:

« Real and symmetrical about the origin (A).
* Imaginary and symmetrical about the origin (B).

« Quadrantal and symmetrical about the origin (C).

JW )

A: Real and symmetrical about the origin —
B: Imaginary and symmetrical about the Origin e
C: Quadrantal and symmetrical about the origin ==—=——-



Routh-Hurwitz Special Cases

The row of zeros tells us of the existence of an even
polynomial whose roots are symmetric about the origin.

Some of these roots could be on the jw-axis.

On the other hand, since jw roots are symmetric about the
origin, if we do not have a row of zeros, we cannot possibly
have jw roots.

Another characteristic of the Routh table for the case in
qguestion is that the row previous to the row of zeros contains
the even polynomial that is a factor of the original polynomial.

Finally, everything from the row containing the even
polynomial down to the end of the Routh table is a test of only
the even polynomial.



Routh-Hurwitz Special Cases

 For entire row of zeros, in the Routh-Hurwitz table, go

up a row above the row with all zero coefficients.

)

0

Ay

0
O —_—

as
as

0)

as
by

O|
0
— =00

by

by
C1

o
“le ol _

1

 Create an equation that is made up of the coefficients of

the given row.

P=a3s3+a;st+0




Routh-Hurwitz Special Cases

* Differentiate the respected equation with regard to the ‘s’

function.

dP_3 2
75 = 3a3s” +ay

* Replace the row with all zero coefficients with the coefficients
of the resulting function after the differentiation.

4

S ay a, ay +/-

s3 as a, 0 +/-

s? b, = (3a3s?) b, = (a1) +/-
1

s

+/-

as a4 az 0 a; 0

by by by 0 by 0
—_— —_— —:0
b, 1 b, 0 b,
s° b, b, by 0 b, 0 +/-

1 0=d1 010:0 cg O
C1 C1 C1

=0

 Evaluate the sign change in the first column of the table.
Interpret the stability of the system.



Example of Routh-Hurwitz Special Cases 2

For the transfer function equation of a fifth order system,
perform stability analysis using Routh-Hurwitz method.
[10 marks]

10
s° + 7s* + 653 + 4252 4+ 8s + 56

T(s) =

The characteristic equation of the system is:
s° + 7s* + 653 + 425% + 8s + 56
Create Routh table based on the equation above.



Example of Routh-Hurwitz Special Cases 2

* The Routh-Hurwitz table of the control system given above is
shown in the figure below.

. i s° 1 6 8
« Row s*is multiply [ - =) )
- 7 7 7
through with 1/7 I _|1 6 _|1 8 _|1 8
_ 1 el_ _l1o8l_, _lo8l_
for convenience. ~ L - L
. _‘0 o‘zoo _|o ol _ _‘0 0|:oo
* Notice that row 0 0 0
st _|0 0 _|0 0 _|0 0
with s3 is all zero. —e o0 | =g | 2 2ag
- SO _|oo oo| _|OO OO| _|OO OO|
« The Routh table is e | = | =
summarised as 1 : :
shown below. L 6 8

ulolulala |«
ol =] N Wl Al »n
Py
8 [
N
Py
S
N
~~~
S
N




Example of Routh-Hurwitz Special Cases 2

In the Routh-Hurwitz table, go up a row above the row with all
zero coefficients.

Create an equation that is made up of the coefficients of the
given row.

At the row of s*, the equation below is constructed from the
coefficients in this row.

P=s*+6s*+8
Differentiate the respected equation with regard to the ‘s’
function.

The first derivate of the equation above is calculated as follow:

dP
— =453+ 125+ 0
ds



Example of Routh-Hurwitz Special Cases 2

* Replace the row with all zero coefficients with the coefficients
of the resulting function after the differentiation.

* As aresult, the Routh table becomes as shown in the table
below.

[o20 Nep]

—~

O|O|O|S|00| 0
N
+++]+]+]+

hlulawa|a|lyv|lwu
o ~| N w| & w

—~

~

—

~~

o

N

~—

[EY
S~
w

oO|Oo|

* From the result of the analysis, with all zeros in a given row,
It seems that there is no change of sign in the first column of
the Routh table.

» As aresult, the given system has real and symmetrical poles
about the origin.



Example of Routh-Hurwitz Special Cases 2

* As indicted in the s-plane diagram of the system as shown
In the figure below, the poles for this system are real and
symmetrical about the origin.

Jo

A: Real and symmetrical about the origin

B: Imaginary and symmetrical about the Origin — se—
C: Quadrantal and symmetrical about the origin ————-

-1.5 |

Imaginary Axis {seconds'1)

2

1571

—
T

S
()
T

o
T

o
o

1
=2
T

Pole-Zero Map

-5 -4 -3

Real Axis (seconds‘1)

-2




Example of Routh-Hurwitz Special Cases 2

- Evaluating the even polynomial P = s* + 6s2 + 8, no
change of sign in the first column from row with s* to the
last row. So, the four poles of the polynomial are located

on the y-axis.

* No change of sign
from row with s° to
row with s*, so the
remaining fifth pole
IS located on the left
half-side of the s-
plane.
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