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Topics

• Stability and system responses.

• Stability of the systems and stability analysis.

• Methods of stability analysis.

• Routh-Hurwitz criterion.

• Construction of the criterion.

• Special cases of Routh-Hurwitz criterion.

• Zero in a single column.

• Zeros in a row.



• A linear system is where the principles of supposition do 

apply (e.g. no saturation or hysteresis effects)

• A time-invariant system is where its characteristics do not 

vary with respect to time (e.g. no ageing)

• In LTI systems, we often approximate systems over a 

specific range or time-period. 

• We want to build up a relationship between the response 

of the system and stability:

• if input is bounded and output (𝑐(𝑡)) does not 

approach ∞ as 𝑡 approaches ∞ (e.g. natural response 

is not approaching ∞).

• if input is unbounded, we cannot conclude stability. 

Stability



Stability

• A system is stable if every bounded input yields a bounded 

output or it is bounded-input bounded-output (BIBO).

• We want to build up a relationship between the total 

response and instability:

• if the input is bounded, but the output (𝑐(𝑡)) is 

unbounded, the system is unstable.

• if input is unbounded, we can not conclude instability.

• A system is unstable if any bounded input yields an 

unbounded output.



Stability and System Response

• A linear, time-invariant system is stable if: the natural 

response approaches zero as time  approaches infinity.

• A linear, time-invariant system is unstable if: the natural 

response grows without bound as  time approaches 

infinity.

• A linear, time-invariant system is marginally stable if: the 

natural response neither decays nor grows but remains 

constant or oscillates as time approaches infinity.



• Stable, a linear, time-invariant system is stable if the natural 

response approaches zero as time approaches infinity

Stability and System Response



• Unstable, if the natural response grows without bound 

as time approaches infinity.

Stability and System Response



• Consider a control system described as: 

𝑎𝑠2 + 𝑏𝑠 + 𝑐

• Find roots of a quadratic equation:

Root1,2 = −
𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

     

System Damping (Indicator of Stability)

Equation Roots Transient Response

𝑏2 − 4𝑎𝑐 > 0 Real, different Overdamped

𝑏2 − 4𝑎𝑐 = 0 Real, same Critically damped

𝑏2 − 4𝑎𝑐 < 0 Complex, 

different

Underdamped

𝑏 = 0 Complex, same Undamped



• ‘𝑠’ Laplace operator or Laplace transform variable.

• ‘𝑠’ can be considered as a differentiator (𝑑𝑓(𝑡)/𝑑𝑡).

• ‘𝑠’ can be considered as a gradient.

• A variable at an instance is a number:

• Numbers can be real or imaginary.

𝑠 = 𝑎 or 𝑠 = 𝑎 + 𝑏𝑗

• Usually given in control systems as:

𝑠 = 𝜎 or 𝑠 = 𝜎 + 𝑗𝜔

‘𝑠’ Variable

f(t)

               t

( )tdf
dt



• We can plot the 𝑠 variable on a s-domain diagram:

• Consider the systems given below:

‘𝑠’ Domain

Poles (x) cause 

system to be infinity 

in the s-domain

j

        0

Zeros (o) cause 

system to be zero in 

the s-domain

j

        

j

        

x   x 

-2    -1

o       x

-5          -2



Transfer Function     𝑠-Domain  Time Response

   

System Response
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042 − acb

042 =− acb

042 − acb

j

 
𝐺1(𝑠) =

10

1 + 0.25𝑠

𝐺2(𝑠) =
3

𝑠2 + 7s + 12

𝐺3(𝑠)  =
3

𝑠2 + 8𝑠 + 20

𝐺4(𝑠) =
1

𝑠2 + 4𝑠 + 4



Consider the following two control systems:

i. System 1:

𝐺1(𝑠) =
1

𝑠 + 1 𝑠 + 2

ii. System 2:

𝐺2(𝑠) =
𝑠 + 5

𝑠 + 2

What happens when:

a. Root 𝑠 = -1?     [4 marks]

b. Root 𝑠 = -2?     [4 marks]

c. Root 𝑠 = -5?     [4 marks]

Example of Stability of Systems



What happens when the following conditions existed:

a. When s = -1?

𝐺1 𝑠 =
1

𝑠 + 1 𝑠 + 2
=

1

(1 − 1)(2 − 1)
= ∞

𝐺2 𝑠 =
𝑠 + 5

𝑠 + 2
==

5 − 1

2 − 1
=

4

1
= 1

Notice that the output of system 1, 𝐺1(𝑠) is ∞ when s = -1 

that indicates its response is a growing. The system is 

unstable.

On the other hand, the output of system 2, 𝐺2(𝑠) is 1 when 

s = -1 that indicates its response settles at 1. The system is 

stable.

Zeros (0) and Poles (∞)



b. When s = -2?

𝐺1 𝑠 =
1

𝑠 + 1 𝑠 + 2
=

1

(−1)(0)
= ∞

𝐺2 𝑠 =
𝑠 + 5

𝑠 + 2
=

3

0
= ∞

Both systems 1 and 2 are growing. Both systems are unstable.

c. When s = -5?

𝐺1 𝑠 =
1

𝑠 + 1 𝑠 + 2
=

1

(−4)(−3)
=

1

12

𝐺2 𝑠 =
𝑠 + 5

𝑠 + 2
=

0

−3
= 0

Both systems settle to 1/12 and 0. Both systems are stable.

Zeros (0) and Poles (∞)



• We are worried when system is infinite or 0 in TIME domain.

• System response often contains an exponential component:

𝐺 𝑡 = 𝑘𝑒𝑎𝑡

• When 𝑎 > 0, the output will reach infinity!  We MUST avoid 

right half of plane poles.

𝐺 𝑠 =
𝑠 + 5

𝑠 + 2 𝑠 − 2

Time Domain

o      x       x

-5          -2           2

All poles must be in left 

half plane for stability

Any poles in right half plane will 

cause the system to be UNSTABLE

j

        

( ) tKetG 2=( ) tKetG 2−=



• If the poles of a system transfer function all lie in the left 

half of the 𝑠-plane, then that system is stable.

𝐺 𝑠 =
𝑠 + 5

𝑠 + 2 (𝑠 − 1) 𝑠 − 2

Stability

o      x   x    x

-5          -2     1       2

j

        



• It is only the poles of a system transfer function which are 

important as far as stability is concerned (non-cancelling 

zeros can be ignored)

𝐺 𝑠 =
1

𝑠 + 2 (𝑠 − 1) 𝑠 − 2

Stability

x   x    x

          -2     1      2

j

        
UNSTABLE



• The poles of a system are the polynomial roots obtained when 

the system denominator is equated with 0.

𝐺 𝑠 =
𝑠 + 5

𝑠 + 2 𝑠 − 1 𝑠 − 2

• The system denominator is known as the characteristic 

polynomial.

𝐺 𝑠 =
𝑠 + 5

𝑠 + 2 𝑠 − 1 𝑠 − 2

• The system denominator equated to zero is the characteristic 

equation.

𝑠 + 2 𝑠 − 1 𝑠 − 2

• Open-loop stable may/may not be closed-loop stable

• Open-loop unstable, may/may not be closed-loop unstable!

Stability



• Transfer function: 

𝐺 𝑠 =
𝑠 + 4

𝑠3 − 4𝑠2 + 21𝑠 − 34

Unstable System Response

  x 

o     x 

-4        +2

   x

j

                

• s-Domain

• Time response



Forced and Natural Responses

• Natural response: output 

due to the response of the 

system itself, without 

external input.

• Forced response: output 

due to intentional input, 

external to the system.

• Stability of the system 

mainly depends on the 

natural response of the 

system.



Forced Response

Input    Function   Sketch            s-domain

Impulse (𝑡)      

Step   𝑢(𝑡)      

Ramp   𝑡𝑢(𝑡)   

Sinusoid  sin 𝑡  

1

1

𝑠

1

𝑠2

𝜔

𝑠2 + 𝜔2

f(t)

       t

f(t)

       t

f(t)

       t

f(t)

       t



• Negative feedback can reduce effects of disturbances and 

changes to input parameters -> stability of the system.

• Negative feedback is when:

|closed loop gain| < |open loop gain|

• This reduces the steady-state error by making the output closer 

to the input.

• To improve the stability of the system further, we could add a 

controller or compensator.

Improvements to Stability of System



• Controllers or compensators change the natural response of 

the system.

• They adjust the poles of the system.

• They help achieve the desired output from a given input.

• Controllers or compensators can be mechanical, natural or 

electrical (used in industry).

• Three main types of controller or compensator:

• Gain (proportional).

• Lead or lag (lead, lag, and lead-lag).

• PID (proportional, integral, derivative, or any of their 

combinations).

Improvements to Stability of System



• Various type of stability analysis in control systems:

• Analytical (i.e. requiring model of the physical system and 

maths to solve differential equations – mostly approximation 

for complex system).

• Experimentation (i.e. running a set of trials and observation 

or measurement).

• Approaches used in the course:

• Routh-Hurwitz criterion – mathematical process.

• Nyquist plot – graphical tool.  

• Nichols chart – graphical tool.

• Bode plot – graphical tool.

• Root locus diagram – graphical tool.

Stability Analysis



• Analyse stability of a system through mathematical analysis 

of characteristic equation.

𝐺 𝑠 =
𝑁 𝑠

𝐷 𝑠
=

𝑁(𝑠)

𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠1 + 𝑎0𝑠0

Routh-Hurwitz Criterion

𝑠4 𝑎4 𝑎2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠2

−
𝑎4 𝑎2

𝑎3 𝑎1

𝑎3
= 𝑏1

−
𝑎4 𝑎0

𝑎3 0

𝑎3
= 𝑏2

−
𝑎4 0
𝑎3 0

𝑎3
= 0

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1

−
𝑎3 0
𝑏1 0

𝑏1
= 0

−
𝑎3 0
𝑏1 0

𝑏1
= 0

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0



Nyquist Plot

• Analyse stability of a system through use of polar plot of 

system equation.

• In Cartesian coordinates, the real part of the transfer 

function is plotted on the x-axis. 

• The imaginary part is plotted on the y-axis. The frequency 

is swept as a parameter, resulting in a plot per frequency.

• Alternatively, in polar 

coordinates, the gain of the 

transfer function is plotted as 

the radial coordinate, while 

the phase of the transfer 

function is plotted as the 

angular coordinate.



Nyquist Plot

• System is stable if the plot does not encircle the unity gain 

point (-1, 0) in the Nyquist plot.

• The system below on the left is deemed to be stable as the 

plot is not encircling the Nyquist stability node (-1, 0). 

• The system on the right is not stable as the plot is encircling 

the Nyquist stability node (-1, 0).



• Analyse stability of a system through use of gain and phase 

plot of the system.

• A Nichols chart displays the magnitude (in dB) plotted 

against the phase (in degrees) of the system response.

Nichols Chart

• It is used further to analyse 

stability of a system beyond 

the Nyquist plot.

• System is considered to be 

stable if the value of gain at 

180° in the Nichols chart is 

positive. 



Nichols Chart

• The system below is deemed to be stable as the curve of the 

plot is at the gain > 0 dB whenever phase = 180° in the 

Nichols chart. 

• Contrast with the unstable system when its gain < 0 dB at 

180°.



Routh-Hurwitz Criterion

Edward Routh Adolf Hurwitz

This stability analysis technique is based on the works of 

Edward Routh with his algorithm proposed in 1876 and Adolf 

Hurwitz who independently proposed contribution in 1895.



Routh-Hurwitz Criterion

• Any system that has closed-loop poles in the right-half of 

the s-plane will be unstable.

• The Routh Hurwitz table is a simple method that 

allows us to determine the number of poles in the left-

and right-halves of the s-plane and the number of 

poles on the imaginary axis.

• It tells us nothing about where those poles are, so it is not 

generally sufficient to design a control system. 

• It is just a specialised tool to tell us about system stability.



Routh-Hurwitz Criterion

• Using this method, we can tell how many closed-loop system 

poles are in the left half-plane, in the right half-plane, and on 

the j⍵-axis.

• We can not tell where, but only how many are in each plane 

determining the system’s stability.

• The method requires two steps:

• Generate a data table called a Routh table.

• Interpret the Routh table to 

tell how many closed-loop 

system poles are in the left 

half-plane, the right half-

plane, and on the j⍵ -axis.



Construction of the Routh Array

• Consider a closed loop transfer function having form:

𝐺 𝑠 =
𝑁 𝑠

𝐷(𝑠)
=

𝑁(𝑠)

𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠1 + 𝑎0𝑠0

• When considering stability, we are interested only in the 

poles of 𝐺(𝑠), therefore we examine the denominator 

polynomial of 𝐺(𝑠).

• To form the Routh array, start 

by writing powers of 𝑠 down 

the left-hand side and then fill 

in the coefficients of the 

denominator polynomial. 



Construction of the Routh Array

• Note that in the first row, we start with the coefficient of  

the highest power of 𝑠 and then write every second 

coefficient. 

• In the second row, we write in the coefficients that were not 

included in the top row. 

• Include a zero at the end of row two if necessary to fill out  

the array.

• To complete the array, we fill 

out successive rows as a 

function of the two rows above. 

• See the table for the required 

pattern.



Filling in the Array

• The Routh table:

𝐺 𝑠 =
𝑁(𝑠)

𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠1 + 𝑎0𝑠0

𝑠4 𝑎4 𝑎2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠2

−
𝑎4 𝑎2

𝑎3 𝑎1

𝑎3
= 𝑏1

−
𝑎4 𝑎0

𝑎3 0

𝑎3
= 𝑏2

−
𝑎4 0
𝑎3 0

𝑎3
= 0

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1

−
𝑎3 0
𝑏1 0

𝑏1
= 0

−
𝑎3 0
𝑏1 0

𝑏1
= 0

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0



The Routh Criterion

• The Routh criterion states that the number of closed loop 

poles in the right half of the s-plane is equal to the number 

of sign changes in the first column of the Routh table.

• For stability, we therefore require zero sign changes in the 

first column.

• Any change of sign indicates that the system is unstable.

Filling in the Array

𝑠4 𝑎4 𝑎2 𝑎0 +/-

𝑠3 𝑎3 𝑎1 0 +/-

𝑠2 𝑏1 𝑏2 0 +/-

𝑠1 𝑐1 0 0 +/-

𝑠0 𝑑1 0 0 +/-



• If the closed-loop transfer function has all poles in the 

left-half of the s-plane, the system is stable. 

• Thus, a system is stable if there are no sign changes in 

the first column of the Routh table.

Interpreting a Routh Table

Sign change Interpretation

0 No right-hand side pole

1 1 right-hand side pole

2 2 right-hand side poles

…

N Nth right-hand side poles



Example of Routh Array Construction

• Consider a system with a transfer function of:

𝐺 𝑠 =
1000

𝑠 + 2 𝑠 + 3 𝑠 + 5

• Determine whether this system is stable when closed in a 

unity gain feedback loop.    [14 marks]



Find Closed Loop Transfer Function

• We first need to find the closed loop transfer function:

𝑇 𝑠 =
𝐺 𝑠

1 + 𝐺(𝑠)
=

1000

𝑠3 + 10𝑠2 + 31𝑠 + 1030

• Notice that we have completely expanded the denominator 

rather than leaving it as the product of poles as we normally do.

• The characteristic equation of the system is:

𝑠3 + 10𝑠2 + 31𝑠 + 1030



Scaling in the Rows in the Table

• Now write the powers of s down the left side and fill in the 

coefficients from the denominator polynomial of the 

closed loop transfer function.

• We are allowed to divide any row of the array through by a 

positive  number if it will simplify the calculation. 

• We will divide the second row though by ten.

𝑠3 1 31

𝑠2 10 1030

𝑠1

𝑠0

𝑠3 1 31

𝑠2 10/10 = 1 1030/10 = 103

𝑠1

𝑠0



Filling in the Array 

• We see that the first column changes from positive to 

negative after the second row and then from negative to 

positive after the third row. 

• We therefore have two sign changes.

• The Routh criterion tells us that the transfer function has two 

poles in the right half of the s-plane.

𝑠3 1 31 0

𝑠2 1 103 0

𝑠1

−
1 31
1 103

1
= −72

−
1 0
1 0
1

= 0
−

1 0
1 0
1

= 0

𝑠0

−
1 103

−72 0
−72

= 103
−

1 0
−72 0
−72

= 0
−

1 0
−72 0
−72

= 0



• Simply stated, the Routh-Hurwitz criterion declares that the 

number of roots of the polynomial that are in the right hand-

plane is equal to the number of sign changes in the first 

column.

Interpreting a Routh Table

𝑠3 1 31 0 +

𝑠2 1 103 0 +

𝑠1

−
1 31
1 103

1
= −72

−
1 0
1 0
1

= 0
−

1 0
1 0
1

= 0

-

𝑠0

−
1 103

−72 0
−72

= 103
−

1 0
−72 0
−72

= 0
−

1 0
−72 0
−72

= 0

+



Special Cases of the Routh Array

• A couple of special situations can arise when constructing 

a Routh array. 

• While constructing the array we might find that we end 

up with:

• A zero in the first column.

• A row of zeros.

• Either of these occurrences will “break” the procedure 

outlines above.  

• However, there are simple tricks to deal with such situations

- consult any control text for further information.



Special Cases of the Routh Array

• A zero in the first column.

• A row of zeros.

𝑠4 𝑎4 𝑎2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠2

−
𝑎4 𝑎2

𝑎3 𝑎1

𝑎3
= 𝑏1 = (𝟎)

−
𝑎4 𝑎0

𝑎3 0

𝑎3
= 𝑏2

−
𝑎4 0
𝑎3 0

𝑎3
= 0

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1 = ∞

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1 = 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

𝑠4 𝑎4 𝑎2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠2

−
𝑎4 𝑎2

𝑎3 𝑎1

𝑎3
= 𝑏1 = (𝟎)

−
𝑎4 𝑎0

𝑎3 0

𝑎3
= 𝑏2 = (𝟎)

−
𝑎4 0
𝑎3 0

𝑎3
= (𝟎)

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1 = ∞ 

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1 = 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0



Routh-Hurwitz Special Cases

Zero in the first row/column:

• In this case, the zero is replaced with epsilon (𝜖).

• Evaluate the sign change in the first column. Interpret stability 

of the system. 𝑠4 𝑎4 𝑎2 𝑎0 +/-

𝑠3 𝑎3 𝑎1 0 +/-

𝑠2 𝑏1 = (𝝐)
−

𝑎4 𝑎0

𝑎3 0

𝑎3
= 𝑏2

−
𝑎4 0
𝑎3 0

𝑎3
= 0

+/-

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1

−
𝑎3 0
𝑏1 0

𝑏1
= 0

−
𝑎3 0
𝑏1 0

𝑏1
= 0

+/-

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

+/-

𝑠4 𝑎4 𝑎2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠2

−
𝑎4 𝑎2

𝑎3 𝑎1

𝑎3
= 𝑏1 = (𝟎)

−
𝑎4 𝑎0

𝑎3 0

𝑎3
= 𝑏2

−
𝑎4 0
𝑎3 0

𝑎3
= 0

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1 = ∞

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1 = 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0



Example of Routh-Hurwitz Special Cases 1

Given the following transfer function of a control system, we 

perform stability analysis of the system using Routh-Hurwitz 

method.      [6 marks]

𝑇 𝑠 =
1

2𝑠5 + 3𝑠4 + 2𝑠3 + 3𝑠2 + 2𝑠 + 1

• The characteristic equation of the system is:

2𝑠5 + 3𝑠4 + 2𝑠3 + 3𝑠2 + 2𝑠 + 1

• Create Routh table based on the equation given above.



𝑠5 2 2 2

𝑠4 3 3 1

𝑠3

−
2 2
3 3
3

= 0
−

2 2
3 1
3

= 4/3
−

2 2
3 1
3

= 4/3

𝑠2

−
3 3
0 4/3

0
= ∞

−
2 1
0 4/3

0
= ∞

−
2 1
0 4/3

0
= ∞

𝑠1

−
0 4/3
∞ ∞

∞
= 0

−
0 4/3
∞ ∞

∞
= 0

−
0 4/3
∞ ∞

∞
= 0

𝑠0
−

∞ ∞
0 0

0
= ∞

−
∞ ∞
0 0

0
= ∞

−
∞ ∞
0 0

0
= ∞

Example of Routh-Hurwitz Special Cases 1

• This example shows an example of zero in the first row or 

column.

• In this case, zero is replaced with epsilon (𝜖) and will tend 

to zero.



𝑠5 2 2 2 +

𝑠4 3 3 1 +

𝑠3 (𝝐) 4/3 0 +

𝑠2 3𝜖 − 4

𝜖

1 0 -

𝑠1
12𝜖 − 16 − 3𝜖2

9𝜖 − 12

0 0 +

𝑠0 1 0 0 +

Example of Routh-Hurwitz Special Cases 1

• There are two sign changes in the first row of the Routh table.

• System has two unstable poles located on the right-hand side 

of the s-plane. 



Routh-Hurwitz Special Cases

Entire row of zeros:

𝑠4 𝑎4 𝑎2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠2

−
𝑎4 𝑎2

𝑎3 𝑎1

𝑎3
= 𝑏1 = (𝟎)

−
𝑎4 𝑎0

𝑎3 0

𝑎3
= 𝑏2 = (𝟎)

−
𝑎4 0
𝑎3 0

𝑎3
= (𝟎)

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1 = ∞ 

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1 = 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

• There is an even polynomial that is a factor of the original 

polynomial.

• This case have to be handled differently from the case with a 

zero in the first column of a row.



Routh-Hurwitz Special Cases

Entire row of zeros in the s-plane:

• Real and symmetrical about the origin (A).

• Imaginary and symmetrical about the origin (B).  

• Quadrantal and symmetrical about the origin (C).



Routh-Hurwitz Special Cases

• The row of zeros tells us of the existence of an even 

polynomial whose roots are symmetric about the origin.

• Some of these roots could be on the 𝑗𝜔-axis. 

• On the other hand, since 𝑗𝜔 roots are symmetric about the 

origin, if we do not have a row of zeros, we cannot possibly 

have 𝑗𝜔 roots.

• Another characteristic of the Routh table for the case in 

question is that the row previous to the row of zeros contains 

the even polynomial that is a factor of the original polynomial. 

• Finally, everything from the row containing the even 

polynomial down to the end of the Routh table is a test of only 

the even polynomial.



Routh-Hurwitz Special Cases

• For entire row of zeros, in the Routh-Hurwitz table, go 

up a row above the row with all zero coefficients.

• Create an equation that is made up of the coefficients of 

the given row.

𝑃 = 𝑎3𝑠3 + 𝑎1𝑠1 + 0

𝑠4 𝑎4 𝑎2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠2

−
𝑎4 𝑎2

𝑎3 𝑎1

𝑎3
= 𝑏1 = (𝟎)

−
𝑎4 𝑎0

𝑎3 0

𝑎3
= 𝑏2 = (𝟎)

−
𝑎4 0
𝑎3 0

𝑎3
= (𝟎)

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1 = ∞ 

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

−
𝑎3 0
𝑏1 0

𝑏1
= ∞

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1 = 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0



Routh-Hurwitz Special Cases

• Differentiate the respected equation with regard to the ‘s’ 

function.
𝑑𝑃

𝑑𝑠
= 3𝑎3𝑠2 + 𝑎1

• Replace the row with all zero coefficients with the coefficients 

of the resulting function after the differentiation.

• Evaluate the sign change in the first column of the table. 

Interpret the stability of the system.

𝑠4 𝑎4 𝑎2 𝑎0 +/-

𝑠3 𝑎3 𝑎1 0 +/-

𝑠2 𝑏1 = (𝟑𝒂𝟑𝒔𝟐) 𝑏2 = (𝒂𝟏) +/-

𝑠1

−
𝑎3 𝑎1

𝑏1 𝑏2

𝑏1
= 𝑐1 

−
𝑎3 0
𝑏1 0

𝑏1
= 0

−
𝑎3 0
𝑏1 0

𝑏1
= 0

+/-

𝑠0

−
𝑏1 𝑏2

𝑐1 0

𝑐1
= 𝑑1

−
𝑏1 0
𝑐1 0

𝑐1
= 0

−
𝑏1 0
𝑐1 0

𝑐1
= 0

+/-



Example of Routh-Hurwitz Special Cases 2

For the transfer function equation of a fifth order system, 

perform stability analysis using Routh-Hurwitz method. 

       [10 marks]

𝑇 𝑠 =
10

𝑠5 + 7𝑠4 + 6𝑠3 + 42𝑠2 + 8𝑠 + 56

The characteristic equation of the system is:

𝑠5 + 7𝑠4 + 6𝑠3 + 42𝑠2 + 8𝑠 + 56

Create Routh table based on the equation above.



Example of Routh-Hurwitz Special Cases 2

• The Routh-Hurwitz table of the control system given above is 

shown in the figure below. 

𝑠5 1 6 8

𝑠4
7

7
= 1

42

7
= 6

56

7
= 8

𝑠3

−
1 6
1 6
1

= 0
−

1 8
1 8
1

= 0
−

1 8
1 8
1

= 0

𝑠2

−
1 6
0 0
0

= ∞
−

1 8
0 0
0

= ∞
−

1 8
0 0
0

= ∞

𝑠1

−
0 0
∞ ∞

∞
= 0

−
0 0
∞ ∞

∞
= 0

−
0 0
∞ ∞

∞
= 0

𝑠0
−

∞ ∞
0 0

0
= ∞

−
∞ ∞
0 0

0
= ∞

−
∞ ∞
0 0

0
= ∞

𝑠5 1 6 8

𝑠4 1 6 8

𝑠3 (0) (0) (0)

𝑠2 ∞ ∞ ∞

𝑠1 0 0 0

𝑠0 ∞ ∞ ∞

• Row 𝑠4 is multiply 

through with 1/7 

for convenience.

• Notice that row 

with 𝑠3 is all zero. 

• The Routh table is 

summarised as 

shown below.



Example of Routh-Hurwitz Special Cases 2

• In the Routh-Hurwitz table, go up a row above the row with all 

zero coefficients. 

• Create an equation that is made up of the coefficients of the 

given row. 

• At the row of 𝑠4, the equation below is constructed from the 

coefficients in this row.

𝑃 = 𝑠4 + 6𝑠2 + 8

• Differentiate the respected equation with regard to the ‘𝑠’ 

function. 

• The first derivate of the equation above is calculated as follow:

𝑑𝑃

𝑑𝑠
= 4𝑠3 + 12𝑠 + 0



Example of Routh-Hurwitz Special Cases 2

• Replace the row with all zero coefficients with the coefficients 

of the resulting function after the differentiation. 

• As a result, the Routh table becomes as shown in the table 

below.
𝑠5 1 6 8 +

𝑠4 1 6 8 +

𝑠3 (4) (12) (0) +

𝑠2 3 8 0 +

𝑠1 1/3 0 0 +

𝑠0 8 0 0 +

• From the result of the analysis, with all zeros in a given row, 

it seems that there is no change of sign in the first column of 

the Routh table. 

• As a result, the given system has real and symmetrical poles 

about the origin. 



Example of Routh-Hurwitz Special Cases 2

• As indicted in the s-plane diagram of the system as shown 

in the figure below, the poles for this system are real and 

symmetrical about the origin.



Example of Routh-Hurwitz Special Cases 2

• Evaluating the even polynomial 𝑃 = 𝑠4 + 6𝑠2 + 8, no 

change of sign in the first column from row with 𝑠4 to the 

last row. So, the four poles of the polynomial are located 

on the y-axis.

• No change of sign 

from row with 𝑠5 to 

row with 𝑠4, so the 

remaining fifth pole 

is located on the left 

half-side of the s-

plane.
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