
Time-Response Analysis

XMUT315 Control Systems Engineering



• First order time responses analysis (e.g. time constant, 

rise time, and settling time).

• Second order time responses analysis (e.g. damping 

ratio, rise time, settling time, time-to-peak, percentage 

overshoot, and steady-state error).

• Damping of the systems.

• Second order system time responses.

• Trends in second order system time responses.

Topics



• It is the time response of a system to an input that sets the 

criteria for our control systems.

• Many quantitative criteria have been defined to characterise 

the time response of a system.

 

Time Responses

• The given diagrams show 

time response of a first 

order system (left) and 

second order system 

(right).

• Time response of higher 

order system could be 

approximated from first 

and second order systems.



• A first order system may be written as:

𝐶 𝑠

𝑅 𝑠
=

𝑘

𝑠𝜏 + 1
 or 

𝐶 𝑠

𝑅 𝑠
=

𝑎

𝑠 + 𝑎

Time Response of First-Order System

Where: 𝑘 = 1 and 𝜏 =
1

𝑎

• Rearrange the equation:

𝐶 𝑠 = 𝑅 𝑠
𝑎

𝑠 + 𝑎

• The time constant and system gain of a first order system are 

useful in its analysis. 

• But other criteria describe the time response more accurately 

to an engineer.



Time Response of First-Order System

• For a unit step e.g. 𝑅(𝑠) = 1/𝑠:

𝐶 𝑠 = 𝑅 𝑠
𝑎

𝑠 + 𝑎
=

1

𝑠

𝑎

𝑠 + 𝑎

• Apply partial fraction:

𝐶 𝑠 =
1

𝑠
−

1

𝑠 + 𝑎

• By using Laplace table, we obtain the standard response:

𝑐 𝑡 = 𝑐𝑓 𝑡 + 𝑐𝑛 𝑡 = 1 − 𝑒−𝑎𝑡



Time Response of First-Order System

• The time response for a first-order system depends on the 

gain and time constant of the system.

• Generally, the time response of a first-order system is 

exponential. 

• Changing the gain or time constant only change the steady-

state value and time.

• Typical parameters:

• Time constant (𝜏).

• Rise time (𝑇𝑟).

• Settling time (𝑇𝑠).



Time Constant of First-Order System

• It is derived from the time 

for 𝑒−𝑎𝑡 to decay to 37% 

of its final value.

ቚ𝑒−𝑎𝑡

𝑡=1/𝑎
= 𝑒−1 = 0.37

• So

ቚ𝑐(𝑡)
𝑡=1/𝑎

= ቚ1 − 𝑒−𝑎𝑡

𝑡=1/𝑎

= 1 − 0.37 = 0.63

• For a first-order system response to a unit step, time constant 

(𝜏) is defined as the time for the step response to rise to 63% 

of its final value.



Rise Time of First-Order System

• For a first-order system response to a unit step, rise time (𝑇𝑟) is 

defined as the time for the response to go from 0.1 to 0.9 of its 

final value:

For 𝑐(𝑡) = 0.1, 𝑐(𝑡) = 1 − 𝑒−𝑎𝑇(0.1) = 0.1 → 𝑇(0.1) = 0.11/𝑎

For c(𝑡) = 0.9, 𝑐 𝑡 = 1 − 𝑒−𝑎𝑇(0.9) = 0.9 → 𝑇(0.9) = 2.31/𝑎

• So, the rise time is:

𝑇𝑟 = 𝑇(0.9) − 𝑇(0.1)

=
2.31

𝑎
−

0.11

𝑎

=
2.2

𝑎



Settling Time of First-Order System

• For a first-order system response to a unit step, settling time 

(𝑇𝑠) is defined as the time for the response to reach steady-

state level.

• For first order systems, it is typically calculated as 4 times the 

time constant (𝜏) of the system.

𝑇𝑠 = 4𝜏 =
4

a



Settling Time of First-Order System

• It could be also determined as time taken by the system to stay 

within, 2% of its final value (typically 2% is the standard).

• For a first order system, since 𝜏 = 1/𝑎, the response of the 

system is calculated from:

𝑐 𝑡 = 1 − 𝑒𝑎𝑡 = 1 − 𝑒−𝑡/𝜏

• Rearrange the equation above:

𝑒−𝑡/𝜏 = 1 − 𝑐(𝑡)

• To calculate the 2% settling time:

𝑒−𝑇𝑠/𝜏 = 1 − 0.98 = 0.02

• Thus:

𝑇𝑠 = −𝜏 ln 0.02 = 3.9𝜏 ≈ 4𝜏



Example of Time Response of First-Order System

For a first order given as the transfer function given below, 

calculate the following time-domain parameters of the system.

𝐶 𝑠

𝑅 𝑠
=

2.5

𝑠 + 3

a. The time constant (𝜏).

b. The rise time (𝑇𝑟).

c. The settling time (𝑇𝑠). 



Example of Time Response of First-Order System

a. The time constant (𝜏) is calculated from:

𝜏 =
1

𝑎
=

1

3
= 0.33 s

b. The rise time (𝑇𝑟) is calculated from:

𝑇𝑟 =
2.2

𝑎
=

2.2

3
= 0.733 s

c. The settling time (𝑇𝑠) is calculated from: 

𝑇𝑠 = 4𝜏 = 4 0.33 = 1.32 s



Time Response of Second Order System

• Consider a second-order system with the following transfer 

function equation:

𝐶 𝑠

𝑅 𝑠
=

𝑘

𝑎′𝑠2 + 𝑏′𝑠 + 𝑐′

• To work out the natural frequency and damping characteristics, 

convert the transfer function equation of the system to a monic 

polynomial form with unity in front of the leading coefficient 

(𝑠2 term) and 𝑘 such that: 

𝐶 𝑠

𝑅 𝑠
=

𝑏

𝑠2 + 𝑎𝑠 + 𝑏

• Note that the constants 𝑎′, 𝑏′, and 𝑐′ are not equivalent to 𝑎 

and 𝑏.



Natural Frequency

• We obtain: 

𝐶 𝑠

𝑅 𝑠
=

𝑏

𝑠2 + 𝑏

• With poles: 

𝑠1,2 = ±𝑗 𝑏

• We know that: 𝜔 = 𝑏 = 𝜔𝑛 as a complex number.

• So, the frequency of oscillation: 𝑠 = 𝜎 + 𝑗𝜔 , which is 

termed the natural frequency.

• Natural frequency is when there is no damping in the system 

(𝑎 = 0 in this case).



Exponential Decay Frequency

• Considering an underdamped second-order system: 

𝐶 𝑠

𝑅 𝑠
=

𝑏

𝑠2 + 𝑎𝑠 + 𝑏

• The real part of 𝑠 = 𝜎 + 𝑗𝜔,  is 𝜎 = −𝑎/2, where 𝜎  is termed 

the exponential decay frequency.

• Exponential decay frequency 

is when the exponential 

function shapes up the 

sinusoidal oscillation function 

of the system response.



Damping Ratio

• Damping ratio (𝜁) is defined as a measure describing how 

oscillations in a system decay after a disturbance. 

• It is equated as the ratio of the exponential decay frequency 

with the natural frequency.

𝜁 =
𝜎

𝜔𝑛
=

𝑎/2

𝜔𝑛

Where:

• 𝜎  is the exponential decay frequency.

• 𝜔𝑛 is the natural frequency.



Natural Frequency and Damping Ratio

• Consider a second-order system with the following transfer 

function equation:

𝐶 𝑠

𝑅 𝑠
= 𝑘

𝑐

𝑎𝑠2 + 𝑏𝑠 + 𝑐

• Written as standardised equation for second order system in 

terms damping ratio and natural frequency:

𝐶 𝑠

𝑅 𝑠
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

• Consider the roots of the characteristic equation:

𝑠1,2 = 𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1

• The transient response of the second-order systems depends on 

based on location of poles (𝜔𝑛) and the damping ratio (𝜁).



The 𝜁, 𝜔𝑛 and Step Response of System

Damping (𝜁) Roots (𝜔𝑛) Poles in the S-plane Step Response of System

𝜁 = 0
±𝑗𝜔𝑛

0 < 𝜁 < 1 −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2

𝜁 = 1
𝜁𝜔𝑛

𝜁 > 1 −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1



Determining 𝜁 and 𝜔𝑛 of Second Order System

• This system is with unity in front of the 𝑠2 term and 𝑘 such 

that: 

𝐶 𝑠

𝑅 𝑠
=

𝑏

𝑠2 + 𝑎𝑠 + 𝑏
 (𝐸𝑞. 1)

• Equating the transfer function of the system with the 

standardized equation for second order system 

𝐶 𝑠

𝑅 𝑠
=

𝜔𝑛
2

𝑠2 + 2𝜔𝑛𝜁𝑠 + 𝜔𝑛
2  (𝐸𝑞. 2)

• Equating equation (1) with equation (2), the natural frequency 

is:

𝜔𝑛
2 = 𝑏 (𝐸𝑞. 3)



Determining 𝜁 and 𝜔𝑛 of Second Order System

• Thus, the natural frequency is: 

𝜔𝑛 = 𝑏 (𝐸𝑞. 4)

• The damping ratio of the second order system is:     

2𝜔𝑛𝜁 = 𝑎 (𝐸𝑞. 5)

• Substituting equation (4) into equation (5), the damping 

ratio (𝜁) is:

𝜁 =
𝑎

2 𝑏



Example of Second Order Time Response

For the following second-order system, determine the following 

time-domain parameters of the system:

𝐺 𝑠 =
4

3𝑠2 + 6𝑠 + 9

a. Poles and zeros of the system.

b. Natural frequency (𝜔𝑛).

c. Damping ratio (𝜁).



Example of Second Order Time Response

a. Convert the transfer function equation of the system into a 

monic polynomial first.

𝐺 𝑠 =
4

3𝑠2 + 15𝑠 + 9
=

4

(3) 3

3

𝑠2 + 5𝑠 + 3

Notice that 4/[(3)(3)] term is becoming the gain of the 

system.

To determine the poles and zeros of the system, we use the 

standard equation for determining the roots of the second 

order equation.

𝑠1,2 = −
𝑏

2𝑎
±

𝑏2 − 4𝑎𝑐

2𝑎



Example of Second Order Time Response

Poles and zeros of the system are determined from:

𝑠1,2 = −
5

2 1
±

5 2 − 4 1 3

2 1
= −2.5 ±

13

2

The poles and zeros of the system are −2.5 + 13/2 and 

− 2.5 − 13/2.

b. To calculate the natural frequency of the system, we use the 

standardised equation for the second order system.

𝐶 𝑠

𝑅 𝑠
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 =

3

𝑠2 + 5𝑠 + 3



Example of Second Order Time Response

Natural frequency (𝜔𝑛) of the system is calculated from:

𝜔𝑛
2 = 3

Thus, the natural frequency of the system is 3.

c. Knowing the natural frequency of the system (𝜔𝑛) from part 

(b), the damping ratio (𝜁) of the system is calculated from:

2𝜁𝜔𝑛 = 5

Thus

𝜁 =
5

2𝜔𝑛
=

5

2 3
=

5

6
3

As a result, the damping ratio of the system is (5/6) 3.



• Consider:

• Rise time (𝑇𝑟).

• Settling time (𝑇𝑠).

• But also:

• Time-to-peak (𝑇𝑝).

• Percentage overshoot 

(%𝑂𝑆).

• Steady-state error 

(𝑒(∞)).

Time Response of Second-Order System

• Second-order underdamped response specifications.

• We can not use equations for first-order system.



Rise Time of Second-Order System

• Like in the first order system, rise time (𝑇𝑟) is defined as the 

time for the response to go from 0.1 to 0.9 of its final value.

• We could use the formulae for the rise time of the first order 

response – but this is not very accurate. 

• To simplify the maths 

required, we consider 

the rise time for 

second order system 

as the time response 

from 0 to its final 

value.



Rise Time of Second-Order System

• For an underdamped second-order system, its time 

response is:

𝑐 𝑡 = 1 −
𝑒−𝜁𝜔𝑛𝑡

1 − 𝜁2
sin(𝜔𝑑𝑡 + 𝜙)

Where: 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2    and  𝜙 = tan−1 1−𝜁2

𝜁

• The magnitude of the output signal at rise time, 𝑇𝑟 is 

approximated to 1 for easy calculation e.g. 𝑐 𝑡 = 1.

1 −
𝑒−𝜁𝜔𝑛𝑇𝑟

1 − 𝜁2
sin 𝜔𝑑𝑇𝑟 + 𝜙 = 1



Rise Time of Second-Order System

• Thus, equating both sides:

𝑒−𝜁𝜔𝑛𝑇𝑟

1 − 𝜁2
sin 𝜔𝑑𝑇𝑟 + 𝜙 = 0

• Knowing that sin−1(0) = 𝑛𝜋, then the above given equation 

becomes:

𝜔𝑑𝑇𝑟 + 𝜙 = 𝑛𝜋

• The rise time is calculated from (𝑛 = 1):

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑑

Where: 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2    and  𝜙 = tan−1 1−𝜁2

𝜁



• As 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2, the formula for calculating rise time 

(𝑇𝑟) of the second-order system as a function of damping 

ratio (𝜁) and natural frequency (𝜔𝑛) is:

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑛 1 − 𝜁2

Where: 𝜙 = tan−1 1−𝜁2

𝜁
 (i. e. convert to rad/s)

• Alternative formulae for calculating rise time (𝑇𝑟) of the 

second-order system:

𝑇𝑟 =
1.76𝜁3 − 0.417𝜁2 + 1.039𝜁 + 1

𝜔𝑛

Rise Time of Second-Order System



• We can also use the graph of normalized rise time vs. damping 

ratio for a second-order underdamped response (e.g. equation 

of the curve below): 

𝑡𝑟𝜔0 = 2.230𝜁2 − 0.078𝜁 + 1.12

• This is quicker and without math process to analyse.

Rise Time of Second-Order System



• Settling time (𝑇𝑠) is defined as the time for the response to 

reach and stay close within its final steady-state value.

• There are several settling time standards in control system 

engineering e.g. 0.1%, 0.5%, 1%, 2%, 5 %, etc., of the final 

value. 

Settling Time of Second-Order System



• For an underdamped second-order system, its time response:

𝑐 𝑡 = 1 −
𝑒−𝜁𝜔𝑛𝑡

1 − 𝜁2
sin(𝜔𝑑𝑡 + 𝜙)

Where: 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2    and  𝜙 = tan−1 1−𝜁2

𝜁

• Thus, to find the settling time, sin(𝜔𝑑𝑡 + 𝜙) = 1:

𝑐 𝑡 = 1 −
𝑒−𝜁𝜔𝑛𝑇𝑠

1 − 𝜁2

• Rearrange the equation above:

𝑒−𝜁𝜔𝑛𝑇𝑠

1 − 𝜁2
= 1 − 𝑐 𝑡

Settling Time of Second-Order System



• For 2% settling time standard, therefore 1 − 𝑐 𝑡 = 0.02:

𝑒−𝜁𝜔𝑛𝑇𝑠

1 − 𝜁2
= 0.02

• For underdamped second order system, 𝜁 lies between 0 and 

1. As a result, neglect the denominator for easy calculation.

𝑒−𝜁𝜔𝑛𝑇𝑠 = 0.02

• Taking natural log on both sides:

−𝜁𝜔𝑛𝑇𝑠 = ln 0.02

• So, the settling time of the system for 2% standard is:

𝑇𝑠 =
3.9

𝜁𝜔𝑛
≈

4

𝜁𝜔𝑛

Settling Time of Second-Order System



• For 5% settling time standard, therefore 1 − 𝑐 𝑡 = 0.05:

𝑒−𝜁𝜔𝑛𝑇𝑠

1 − 𝜁2
= 0.05

• For underdamped second order system: 

𝑒−𝜁𝜔𝑛𝑇𝑠 = 0.05

• Taking natural log on both sides:

−𝜁𝜔𝑛𝑇𝑠 = ln 0.05

• So, the settling time for 5% standard is:

𝑇𝑠 =
2.9957

𝜁𝜔𝑛
≈

3

𝜁𝜔𝑛

Settling Time of Second-Order System



• Time-to-peak (𝑇𝑝), it is the time required to reach the first, 

or maximum, peak.

• For an underdamped second-order system, its time 

response:

𝑐 𝑡 = 1 −
𝑒−𝜁𝜔𝑛𝑡

1 − 𝜁2
sin(𝜔𝑑𝑡 + 𝜙)

Where: 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2    and  𝜙 = tan−1 1−𝜁2

𝜁

• As per definition at the peak time, the response curve 

reaches to its maximum value. Hence at that point, 

𝑑𝑐 𝑡

𝑑𝑡
= 0

Time-to-Peak of Second-Order System



Time-to-Peak of Second-Order System

• Now, substitute 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2 and perform partial differentiation 

(i.e. 𝑢𝑣′ + 𝑢′𝑣) of the equation above:

𝑑𝑐 𝑡

𝑑𝑡
=

𝑒−𝜁𝜔𝑛𝑇𝑝

1 − 𝜁2
𝜔𝑛 1 − 𝜁2 cos 𝜔𝑛 1 − 𝜁2𝑇𝑝 + 𝜙

+
(−𝜁𝜔𝑛)𝑒−𝜁𝜔𝑛𝑇𝑝

1 − 𝜁2
sin 𝜔𝑛 1 − 𝜁2𝑇𝑝 + 𝜙

• Assign the 𝑑𝑐(𝑡)/𝑑𝑡 to zero.

𝑒−𝜁𝜔𝑛𝑇𝑝

1 − 𝜁2
𝜔𝑛 1 − 𝜁2 cos 𝜔𝑛 1 − 𝜁2𝑇𝑝 + 𝜙

+
−𝜁𝜔𝑛 𝑒−𝜁𝜔𝑛𝑇𝑝

1 − 𝜁2
sin 𝜔𝑛 1 − 𝜁2𝑇𝑝 + 𝜙 = 0



Time-to-Peak of Second-Order System

• Rearranging and equating both sides:

tan 𝜔𝑛 1 − 𝜁2𝑇𝑝 + 𝜙 =
1 − 𝜁2

𝜁
= tan 𝜙 

• The equation above becomes:

𝜔𝑛 1 − 𝜁2 𝑇𝑝 = 𝑛𝜋

• The time-to-peak (𝑇𝑝) of the second order system is:

𝑇𝑝 =
𝑛𝜋

𝜔𝑛 1 − 𝜁2
 where:  𝑛 = 𝑛th peak

• Note: the maximum overshoot of the given second–order system 

occurs at 𝑛 = 1.



Time-to-Peak of Second-Order System

• The maximum overshoot of the given second–order system 

occurs at the first peak.



• The percentage overshoot (%𝑂𝑆) is the amount that the 

waveform overshoots the steady-state or final value compared 

with value at the peak time.

• It is typically expressed as a percentage of the steady-state value.

• For an underdamped second-order system, its time response:

𝑐 𝑡 = 1 −
𝑒−𝜁𝜔𝑛𝑡

1 − 𝜁2
sin(𝜔𝑑𝑡 + 𝜙)

Where: 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2    and  𝜙 = tan−1 1−𝜁2

𝜁

• For the percentage overshoot, substitute 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2

𝑐(𝑡)𝑚𝑎𝑥= 1 −
𝑒−𝜁𝜔𝑛𝑇𝑝

1 − 𝜁2
sin(𝜔𝑛 1 − 𝜁2𝑇𝑝 + 𝜙)

Percentage Overshoot of Second-Order System



Percentage Overshoot of Second-Order System

• Put the expression of peak time in the expression of output response 

𝑐(𝑡).

𝑐(𝑡)𝑚𝑎𝑥= 1 −
𝑒

−𝜁𝜔𝑛
𝜋

𝜔𝑛 1−𝜁2

1 − 𝜁2
sin(𝜔𝑛 1 − 𝜁2

𝜋

𝜔𝑛 1 − 𝜁2
+ 𝜙)

• Since sin 𝜋 + 𝜙 = −sin 𝜙

𝑐(𝑡)𝑚𝑎𝑥= 1 −
𝑒

−
𝜁𝜋

1−𝜁2

1 − 𝜁2
sin 𝜋 + 𝜙

 = 1 −
𝑒

−
𝜁𝜋

1−𝜁2

1 − 𝜁2
(−sin 𝜙)



Percentage Overshoot of Second-Order System

• We know that sin 𝜙 = 1 − 𝜁2, so:

1 +
𝑒

−
𝜁𝜋

1−𝜁2

1 − 𝜁2
sin 𝜙 = 1 +

𝑒
−

𝜁𝜋

1−𝜁2

1 − 𝜁2
1 − 𝜁2

 = 1 + 𝑒
−

𝜁𝜋

1−𝜁2

• Thus, maximum overshoot is:

𝑀𝑝 = 𝑐(𝑡)𝑚𝑎𝑥−1

 = 1 + 𝑒
−

𝜁𝜋

1−𝜁2
− 1 = 𝑒

−
𝜁𝜋

1−𝜁2



• Thus, the percentage overshoot (%𝑂𝑆) of the second-order 

system is:

%𝑂𝑆 = 𝑒
− 𝜁𝜋/ 1−𝜁2

× 100%

Percentage Overshoot of Second-Order System



Percentage Overshoot and Damping Ratio

• By rearranging the equation for percentage overshoot, we 

could find 𝜁 from %𝑂𝑆.

%𝑂𝑆 = 𝑒
− 𝜁𝜋/ 1−𝜁2

× 100%

• Equation both sides with natural log.

−
𝜁𝜋

1 − 𝜁2
= ln(%𝑂𝑆/100)

• Rearrange the equation.

𝜁𝜋 = − 1 − 𝜁2 ln(%𝑂𝑆/100)

• Squaring both sides.

(𝜁𝜋)2= 1 − 𝜁2 [ln(%𝑂𝑆/100)]2



Percentage Overshoot and Damping Ratio

• Rearrange the equation:

𝜁2 =
[ln(%𝑂𝑆/100)]2

(𝜋)2+ [ln(%𝑂𝑆/100)]2

• The relationship between percentage overshoot (%𝑂𝑆) and 

damping ratio (𝜁).

𝜁 = −
−ln %𝑂𝑆/100

𝜋2 + ln %𝑂𝑆/100 2

• Selection of the damping ratio is a tradeoff between maximum 

percentage overshoot (%𝑂𝑆) and time where the peak 

overshoot occurs (time-to-peak).

• Smaller damping ratio decreases time-to-peak (desirable), but 

it increases %𝑂𝑆 (undesirable).



• Steady-state error (𝑒(∞)), is the difference between the input 

(𝑟(𝑡)) and output (𝑐(𝑡)) for a prescribed test input.

𝑒 ∞ = lim
𝑡→∞

𝑟 𝑡 − 𝑐(𝑡)

Steady-State Error of Second-Order System

• We will look more 

closely the steady-

state response and 

steady-state error of 

the system in the 

subsequent topic in 

the course.



Example of Time Response Analysis

For the following second-order system, determine the following 

time-domain parameters of the system:

a. Natural frequency (𝜔𝑛).    [2 marks]

b. Damping ratio (𝜁).     [2 marks]

c. Settling time (𝑇𝑠).     [2 marks]

d. Rise time (𝑇𝑟).     [2 marks]

e. Time-to-peak (𝑇𝑝).     [2 marks]

f. Percentage overshoot (%𝑂𝑆).   [2 marks]

g. Perform transient response simulation in MATLAB and 

determine the parameters in parts a-f. Simulate the transient 

response and comment on the result.  [12 marks]

𝐺 𝑠 =
81

𝑠2 + 15𝑠 + 81



Example of Time Response Analysis

a. Equating the transfer function equation with the standardised 

equation for second order system, the natural frequency (𝜔𝑛) 

of the given system is calculated from:

𝐺 𝑠 =
81

𝑠2 + 15𝑠 + 81
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

Thus, the natural frequency of the system is as:

𝜔𝑛 = 81 = 9 rad/s

b. Damping ratio (𝜁) is calculated from:

𝜁 =
15

2𝜔𝑛
=

15

2 9
= 0.833



Example of Time Response Analysis

c. Rise time (𝑇𝑟) is calculated from:

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑛 1 − 𝜁2
=

𝜋 − 𝜋(0.664)

9 1 − (0.833)2
= 0.212 s

Where: 

𝜙 = tan−1
1 − 𝜁2

𝜁
= tan−1

1 − (0.833)2

0.833
 = 0.664

Using alternative equation for rise time, it is:

𝑇𝑟 =
1.76𝜁3 − 0.417𝜁2 + 1.039𝜁 + 1

𝜔𝑛

 =
1.76 0.833 3 − 0.417 0.833 2 + 1.039 0.833 + 1

9
 = 0.288 s



Example of Time Response Analysis

d. If the settling time standard is 2%, the settling time (𝑇𝑠) is 

calculated from:

𝑇𝑠 =
3.9

𝜁𝜔𝑛
≈

4

𝜁𝜔𝑛
=

4

0.833 9
= 0.533 s

e. For the first (max) peak (𝑛 = 1), the time-to-peak (𝑇𝑝) is 

calculated from:

𝑇𝑝 =
𝑛𝜋

𝜔𝑛 1 − 𝜁2
=

𝜋

9 1 − (0.833)2
= 0.63 s

Where: 𝑛 = 𝑛-th peak.

f. Percentage overshoot (%𝑂𝑆) is calculated from:

%𝑂𝑆 = 𝑒
−

𝜁𝜋

1−𝜁2
100% = 𝑒

−
0.833 𝜋

1− 0.833 2
100% = 0.88%



Example of Time Response Analysis

g. The results of the simulation in MATLAB are listed below.

found to be 0.3 and 0.5 

respectively. 

The transient response of the 

system is underdamped and 

it settles down to amplitude 

of 1 in the end.

It seems that from the plots, the rise time and settling time 



• 𝜁 = 0 → 

Undamped.

• 0 < 𝜁 < 1 (small 𝜁) 

→ Underdamped.

• 𝜁 = 1 → Critically 

damped.

• 𝜁 > 1 (large 𝜁) → 

Overdamped.

Second-Order Step Response

• Step function is typically used for analysing and testing the 

response of the system.

• For given second-order systems, their step responses are:



Step Response of Second-Order System

• Underdamped second-order step responses are typically 

generated by complex poles. 

• Given a second order system with a pair of complex poles 

as shown below.

𝐶 𝑠

𝑅 𝑠
=

𝑘

𝑠 + 𝑎 + 𝑗𝑏 𝑠 + 𝑎 − 𝑗𝑏

• For a step input (𝑅(𝑠) = 1/𝑠), after implementing partial 

fraction expansion, the transfer function equation is:

𝐶 𝑠 =
𝐾1

𝑠
+

𝐾2

𝑠 + 𝑎 + 𝑗𝑏
+

𝐾3

𝑠 + 𝑎 − 𝑗𝑏



Step Response of Second-Order System

• Taking inverse Laplace transform, the complex pair of 

roots become the co-sinusoidal function.

𝑐 𝑡

𝑟(𝑡)
= 𝐴𝑒−𝑡 cos 𝑏𝑡 − 𝜙°

Where:

𝜙 = tan−1
𝜁

1 − 𝜁2

• As a result, the time response of the underdamped second 

order system is an exponentially decaying sinusoidal 

oscillation.



Example of Second-Order Step Response 1

For the undamped response of a second-order given below, 

determine its roots, step response equation, and simulate its 

poles and zero in the s-plane and step response:

• Applying step input (1/𝑠), the 

response is a constant 

amplitude sinusoid:

𝑐 𝑡 = 1 − cos 3𝑡

• The transfer function equation of the system is:

𝐶 𝑠

𝑅 𝑠
=

9

𝑠2 + 9

• Roots are: 𝑠1 = 𝑗3 and 𝑠2 = −𝑗3 



Step Response of Second-Order System

• Overdamped second-order step responses are typically 

generated by real poles. 

• Consider a second order system with real poles as shown 

below.

𝐶 𝑠

𝑅 𝑠
=

𝑘

𝑠 + 𝑎 𝑠 + 𝑏

• For a step input (𝑅(𝑠) = 1/𝑠), after implementing partial 

fraction expansion, the transfer function equation is:

𝐶 𝑠 =
𝐾1

𝑠
+

𝐾2

𝑠 + 𝑎
+

𝐾3

𝑠 + 𝑏



Step Response of Second-Order System

• Taking inverse Laplace transform, the pole at origin becomes 

a constant and both real terms become exponential functions. 

• The time domain equation of the system is:

𝑐 𝑡 = 𝐾1 + 𝐾2𝑒−𝑎𝑡 + 𝐾3𝑒−𝑏𝑡

• As a result, the step response of the system is an exponential 

increase.



Example of Second-Order Step Response 2

• The transfer function equation of the system is:

𝐶 𝑠

𝑅 𝑠
=

9

𝑠2 + 2𝑠 + 9

• Consider the characteristic equation of the system to give roots:

𝑠1,2 = −1 ± −8

For the underdamped response of a second-order given below, 

determine its roots, step response equation, and simulate its 

poles and zero in the s-plane and step response:



Example of Second-Order Step Response 2

• The real part generates: 𝑒−𝑡 and the complex part generates: 

𝑘 cos 8𝑡 − 𝜙 .

• The response is a decaying sinusoidal oscillation given by:

𝑐 𝑡 = 1 − 𝑒−𝑡 cos 8𝑡 + 8/8 sin 8𝑡

= 1 − 1.06𝑒−𝑡 cos 8𝑡 − 19.47°

• This is also called damped oscillation response.



Step Response of Second-Order System

• Undamped second-order step responses are typically generated 

by complex poles that lie on the y-axis in the s-plane.

• Consider a second order system with complex poles on y-axis 

on the s-plane as shown below.

𝐶 𝑠

𝑅 𝑠
=

𝑘

𝑠 + 𝑗𝑏 𝑠 − 𝑗𝑏

• For a step input (𝑅(𝑠) = 1/𝑠), after implementing partial 

fraction expansion, the transfer function equation is:

𝐶 𝑠 =
𝐾1

𝑠
+

𝐾1

𝑠 + 𝑗𝑏
+

𝐾2

𝑠 − 𝑗𝑏



Step Response of Second-Order System

• Taking the inverse Laplace transform, the pole at origin 

becomes a constant and a pair of complex roots become co-

sinusoidal function. 

• The time-domain equation of the system is:

𝑐 𝑡 = 𝐾1 − cos 𝑏𝑡

• As a result, the step response of the system is a constant 

amplitude sinusoid.



Example of Second-Order Step Response 3

• The transfer function equation of the system 

is:

𝐶 𝑠

𝑅 𝑠
=

9

𝑠2 + 9𝑠 + 9

• Roots are:

𝑠1 = −7.854 and 𝑠2 = −1.146 

• The response is an exponential increase:

𝑐 𝑡 = 1 + 0.17𝑒−7.854𝑡 − 1.171𝑒−1.146𝑡

For the overdamped response of a second-order given below, 

determine its roots, step response equation, and simulate its 

poles and zero in the s-plane and step response:



Summary of Second-Order Time Response

• Undamped responses: 

Poles: 𝑠1,2 = ±𝑗𝜔0  Response: 𝑐 𝑡 = 𝐴 cos 𝜔0𝑡 − 𝜙

• Underdamped responses (note: 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2): 

Poles: s1,2 = −𝜎𝑑 ± 𝑗𝜔𝑑  Response: 𝑐 𝑡 = 𝐴𝑒−𝜎𝑑𝑡 cos 𝜔𝑑𝑡 − 𝜙

• Critically damped responses: 

Poles: 𝑠1,2 = −𝜎0  Response: 𝑐 𝑡 = 𝐾1𝑒−𝜎0𝑡 + 𝐾2𝑡𝑒−𝜎0𝑡

• Overdamped responses:

Poles: 𝑠1 = −𝜎1, 𝑠2 = −𝜎2  Response: 𝑐 𝑡 = 𝐾1𝑒−𝜎1𝑡 + 𝐾2𝑒−𝜎2𝑡



Second-Order Time Response

• Responses of the second-order systems with various damping 

ratios.



• We evaluate step responses of second-order systems as poles 

move with:

• constant real part.

• constant imaginary part.

• constant damping ratio.

Trends in Second-Order Time Response



Trend in Second-Order Time Response

Moving in a vertical direction: 

• Frequency increases, but the envelope 

remains the same since the real part 

of the pole is not changing. 

• Constant exponential envelope, even 

though the sinusoidal response is 

changing frequency. 

• Since all curves fit under the same 

exponential decay curve, the settling 

time is virtually the same for all 

waveforms. 

• Overshoot increases, the rise time 

decreases. 



Trend in Second-Order Time Response

Moving the poles to the right or left:

• Imaginary part is now constant.

• Frequency is constant over the range 

of variation of the real part. 

• As the poles move to the left, the 

response damps out more rapidly, 

while the frequency remains the 

same. 

• Peak time is the same for all 

waveforms because the imaginary 

part remains the same.



Trend in Second-Order Time Response

Moving the poles along a constant radial line:

• Percent overshoot remains the same. 

• The responses look exactly alike, except for their speed. 

• The farther the poles are from the origin, the more rapid 

the response. 
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