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* First order time responses analysis (e.g. time constant,
rise time, and settling time).

« Second order time responses analysis (e.g. damping
ratio, rise time, settling time, time-to-peak, percentage
overshoot, and steady-state error).

« Damping of the systems.
« Second order system time responses.
« Trends in second order system time responses.



Time Responses

* |t is the time response of a system to an input that sets the

criteria for our control systems.
« Many quantitative criteria have been defined to characterise

the time response of a system
« The given diagrams show 12

time response of a first Al

order system (left) and
second order system
(right).
* Time response of higher
order system could be

approximated from first
and second order systems.
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Time Response of First-Order System

« Afirst order system may be written as:

C(s) k
R(s) st+1

Where: k =1 and 1 = 1

a
 Rearrange the equation:

C(S)ZR(S)(S+a) oL r '

« The time constant and system gain of a first order system are
useful in its analysis.

« But other criteria describe the time response more accurately
to an engineer.
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Time Response of First-Order System

 Foraunitstepe.g. R(s) = 1/s:
=16 (4) -5

S+a S\S+a

* Apply partial fraction:

C()—l 1
> s S+ a

« By using Laplace table, we obtain the standard response:
ct)=crt)+c(t)=1—e"*

jw
A
G(s) s-plane
R(s) a | C@»)
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Time Response of First-Order System

The time response for a first-order system depends on the
gain and time constant of the system.

Generally, the time response of a first-order system is
exponential.

Changing the gain or time constant only change the steady-

state value and time. N il slope = ——L__
- l,ﬂ / time constant
Typical parameters: 09| /
o Ti me Constant (T) . ::: : , 63% of fl'inul value
0.5 - at f = one nime constant
* Rise time (T,). o4r
e Settling time (T}). o1,
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Time Constant of First-Order System

 For a first-order system response to a unit step, time constant
(7) Is defined as the time for the step response to rise to 63%
of its final value.
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Rise Time of First-Order System

 For a first-order system response to a unit step, rise time (T;.) Is
defined as the time for the response to go from 0.1 to 0.9 of its
final value:

For c(t) =0.1, ¢(t) = (1 — e~ n) = 0.1 > T(yqy = 0.11/a
For c(t) =0.9, c(t) = (1 —e™T©9) = 0.9 - Tpg) = 2.31/a

clr)
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Settling Time of First-Order System

 For a first-order system response to a unit step, settling time
(Ts) 1s defined as the time for the response to reach steady-
state level.

 For first order systems, it is typically calculated as 4 times the
time constant (z) of the system.
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Settling Time of First-Order System

It could be also determined as time taken by the system to stay
within, 2% of its final value (typically 2% is the standard).

 For a first order system, since T = 1/a, the response of the
system is calculated from:

c(t)=1—e% =1—e7t/"
* Rearrange the equation above:
e /T =1—c(t)
 To calculate the 2% settling time:
e~ s/t =1—0.98 = 0.02
e Thus:
T, =—1In0.02 =397 = 41



Example of Time Response of First-Order System

For a first order given as the transfer function given below,
calculate the following time-domain parameters of the system.
C(s) 2.5
R(s) T s+3
a. The time constant (7).

b. The rise time (T..).
c. The settling time (7).




Example of Time Response of First-Order System

a. The time constant (7) iIs calculated from:

1 1
=—==0.33s

"Ta73

b. The rise time (T;.) Is calculated from:

22 22

- - 3 = 0.733 s

c. The settling time (T;) Is calculated from:
T, =41 =4(0.33) = 1.32s



Time Response of Second Order System

« Consider a second-order system with the following transfer
function equation:

C(s) k
R(s) a's2+b's+c
« To work out the natural frequency and damping characteristics,
convert the transfer function equation of the system to a monic
polynomial form with unity in front of the leading coefficient
(s? term) and k such that:

C(s) b
R(s) s2+4+as+0b
* Note that the constants a’, b’, and ¢’ are not equivalent to a
and b.




Natural Frequency

« Natural frequency iIs when there is no damping in the system
(a = 0 In this case).

_ c(?)
« \\e obtain: }
C(s) b
R(s) s2+b
* With poles: Undamped ~
S12 = ij\/z

* We know that: w = Vb = w,, as a complex number.

* S0, the frequency of oscillation: s = o + jw , which Is
termed the natural frequency.



Exponential Decay Frequency

. c(1)
¢ EX p O n e nt I a. I d e Ca.y fre q U e n Cy 4 Exponential decay generated by

real part of complex pole pair
IS when the exponential
function shapes up the
sinusoidal oscillation function —
of the system response. Sinusoidal oscillation gencrated by

imaginary part of complex pole pair

»

« Considering an underdamped second-order system:

C(s) b
R(s) s2+as+b
 Thereal partofs =0 + jw, iISo = —a/2, where |a]| is termed
the exponential decay frequency.




Damping Ratio

« Damping ratio (¢) is defined as a measure describing how
oscillations in a system decay after a disturbance.

|t is equated as the ratio of the exponential decay frequency
with the natural frequency.

o] _ (a/2)

Wn Wn

(:

Where:
 |o| is the exponential decay frequency:.

* w, IS the natural frequency.



Natural Frequency and Damping Ratio

Consider a second-order system with the following transfer
function equation:

C(s) C

R(s) =k (a52 + bs + c)

Written as standardised equation for second order system in
terms damping ratio and natural frequency:

C(s) wy
R(s) s2420{w,s+ w?
Consider the roots of the characteristic equation:

S12 = {wp T wp/ 72— 1

The transient response of the second-order systems depends on
based on location of poles (w,,) and the damping ratio ({).




The ¢, w,, and Step Response of System

Damping ({) Roots (w;,) Poles in the S-plane | Step Response of System
=0 tjwn jo o)
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Determining ¢ and w,, of Second Order System

« This system is with unity in front of the s? term and k such
that:

C(s) b
R(s) “s2+as+b (Eq.-1)

« Equating the transfer function of the system with the
standardized equation for second order system

C(s) w2
— 2 2 (Eq 2)
R(s) s?+4 2w,{s+ w;
« Equating equation (1) with equation (2), the natural frequency
IS:

w2 =h (Eq.3)



Determining ¢ and w,, of Second Order System

« Thus, the natural frequency is:
w,=Vb  (Eq.4)

« The damping ratio of the second order system is:
2w,{ = a (Eq.5)

 Substituting equation (4) into equation (5), the damping
ratio ({) Is:



Example of Second Order Time Response

For the following second-order system, determine the following
time-domain parameters of the system:

4

3s2+6s5s+9
a. Poles and zeros of the system.

G(s) =

b. Natural frequency (w,,).
c. Damping ratio (7).



Example of Second Order Time Response

a. Convert the transfer function equation of the system into a
monic polynomial first.

4 4 3
C) =32 T 15519~ (3)3) <sz F 55+ 3)
Notice that 4/[(3)(3)] term is becoming the gain of the
system.

To determine the poles and zeros of the system, we use the
standard equation for determining the roots of the second
order equation.

b +\/b2—4ac
12 = 2a 2a




Example of Second Order Time Response

Poles and zeros of the system are determined from:

() VB -4O®) _ . VI3

— + .

127 Tom T 2(1) 7
The poles and zeros of the system are —2.5 ++/13/2 and
— 2.5 —-+/13/2.

b. To calculate the natural frequency of the system, we use the

standardised equation for the second order system.

C(s) w2 B 3
R(s) s?2+2(w,s+w? s2+5s+3




Example of Second Order Time Response

Natural frequency (w,,) of the system is calculated from:
w2 =3

Thus, the natural frequency of the system is v/3.

c. Knowing the natural frequency of the system (w,,) from part
(b), the damping ratio (¢) of the system is calculated from:
2w, =5
Thus

As a result, the damping ratio of the system is (5/6)/3.



Time Response of Second-Order System

Second-order underdamped response specifications.

We can not use equations for first-order system.
c(t)

Consider: )
* Rise time (T.). 1“;"“ -
« Settling time (T). Of981 S f ~———
But also: poer
* Time-to-peak (T5,).
 Percentage overshoot
(%0S). 0l —»
e Steady-state error e n ~

(e(0)).



Rise Time of Second-Order System

 Like in the first order system, rise time (7,.) is defined as the
time for the response to go from 0.1 to 0.9 of its final value.

 We could use the formulae for the rise time of the first order

response — but this Is not very accurate.

c(f)
'\

* To simplify the maths

02 inal | I/ \\. required, we consider
Cfinal - 1 - e . .

098¢ /|y ’ the rise time for

0.9¢c / second order system

as the time response
from 0O to its final
value.

0.1¢final —— =




Rise Time of Second-Order System

* For an underdamped second-order system, its time
response Is:

—Jwnt
c(t) =1-— (\;1__(2> sin(wgt + ¢)

Where: wgy = w,4/1—7% and ¢ =tan~?! (—“16_52)

« The magnitude of the output signal at rise time, T, Is
approximated to 1 for easy calculation e.g. c(t) = 1.

—CwnTr
1-— <\e/1——52> sin(wyT, +¢) =1




Rise Time of Second-Order System

Thus, equating both sides:

—CwnTy
(31——52) sin(wyT, +¢) =0

Knowing that sin~1(0) = nm, then the above given equation
becomes:

wal + ¢ =nm
The rise time is calculated from (n = 1):

_r—¢

Wq

Where: wg; = w,4/1— 7% and ¢ = tan™?! ( 1;52)

I




Rise Time of Second-Order System

« ASwy = wyy1— (?, the formula for calculating rise time

(T..) of the second-order system as a function of damping
ratio (¢) and natural frequency (w,,) IS:

m—¢
w1 — 2

Where: ¢ = tan™?! (—“15_(2> (i.e.convert to rad/s)

T, =

 Alternative formulae for calculating rise time (T;) of the
second-order system:

~ (1.76¢° — 0.417¢* + 1.0397 + 1)
— o

I



Rise Time of Second-Order System

« \We can also use the graph of normalized rise time vs. damping
ratio for a second-order underdamped response (e.g. equation
of the curve below):

t,wo = 2.230¢% — 0.078¢ + 1.12
« This iIs quicker and without math process to analyse.

Damping |Normalized
A ratio rise time
3.0 0.1 1.104
| 0.2 1.203
oy 28 0.3 1.321
5 2.6 0.4 1.463
&
S o4l 0.5 1.638
i 0.6 1.854
E 221 0.7 2.126
= 20k 0.8 2.467
X 0.9 2.883
Q
£
2
2
| | | |

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Damping ratio



Settling Time of Second-Order System

 Settling time (T}) Is defined as the time for the response to
reach and stay close within its final steady-state value.

« There are several settling time standards in control system
engineering e.g. 0.1%, 0.5%, 1%, 2%, 5 %, etc., of the final

value. v

Cmax —
l.ﬂzﬁ'ﬁnul \_ /\

e ™~ J—
Cfinal 1 < |
ﬂ-ggcﬁlml ‘/_

0.9¢ final /

11

O.1¢final — o

Ll §




Settling Time of Second-Order System

* For an underdamped second-order system, its time response:

—Jwnt
c(t) =1-— (;1——52> sin(wgt + @)

Where: wg = w,4/1 =% and ¢ =tan™?! ( 1g€2)

« Thus, to find the settling time, sin(w,4t + ¢) = 1:

e_ga)nTs
©=1-(7=)

« Rearrange the equation above:

(e_zwnTs , ( )
=1—c(t
v1-— (2>




Settling Time of Second-Order System

For 2% settling time standard, therefore 1 — c(t) = 0.02:

o~ onTs
= 0.02
f=d
For underdamped second order system, ¢ lies between 0 and
1. As a result, neglect the denominator for easy calculation.
e~$@nTs = 0.02
Taking natural log on both sides:
—(w, Ty, = 1n0.02
So, the settling time of the system for 2% standard is:

_— 3.9 4
’ Cwp, (wy



Settling Time of Second-Order System

For 5% settling time standard, therefore 1 — c(t) = 0.05:

o—SwnTs
= 0.05
f=d
For underdamped second order system:
e~$@nTs = 0,05
Taking natural log on both sides:
—(w, Ty, =1n0.05
So, the settling time for 5% standard is:
_ 2.9957 N 3

Wy Cwy

S



Time-to-Peak of Second-Order System

* Time-to-peak (T}), it is the time required to reach the first,

or maximum, peak.

For an underdamped second-order system, its time
response:

—Jwnt
c(t) =1-— (\jl__52> sin(wgt + @)

Where: wy = w,/1 —7%2 and ¢ = tan™? (\/ 1(—52)

 As per definition at the peak time, the response curve

reaches to its maximum value. Hence at that point,

dc(t)
dt =0




Time-to-Peak of Second-Order System

« Now, substitute wy = w,+/1 — {2 and perform partial differentiation
(i.e. uv’ + u'v) of the equation above:

—CwnTy
dil(tt) = (e )a)m/ 1 — (% cos (wm/ 1-°T, + qb)

J1-¢2
_ —(wnT
| (i‘/)’;)f_(z “ sin (w1 = 32T, + ¢)

« Assign the dc(t)/dt to zero.

—CwnTy
(f/l——(z> w1 — (? cos (a)m/ 1-3%T, + qb)

—_ —CwnTp
( (\a/)’;)i_(z sin (w1 — (2T, + ¢p) = 0

_I_




Time-to-Peak of Second-Order System

Rearranging and equating both sides:

tan(wn\/l—CZTp +q§) = - 1(_(2 = tan ¢

The equation above becomes:

(a)m/ 1-— (2) T, =nm
The time-to-peak (T,) of the second order system Is:

nm
T, = where: n = nth peak

P w12

Note: the maximum overshoot of the given second-order system

occurs atn = 1.



Time-to-Peak of Second-Order System

« The maximum overshoot of the given second-order system
occurs at the first peak.

-




Percentage Overshoot of Second-Order System

The percentage overshoot (%0S) Is the amount that the
waveform overshoots the steady-state or final value compared
with value at the peak time.

It is typically expressed as a percentage of the steady-state value.
For an underdamped second-order system, its time response:
e—(wnt
c(t) =1-— sin(wgt + @)

J1—72

Where: w; = w,4/1— 7% and ¢ = tan™?! (—“16_52)

For the percentage overshoot, substitute w; = wy+/1 — 2




Percentage Overshoot of Second-Order System

« Put the expression of peak time in the expression of output response

c(t).

C()max=1— e_zwn<wn 1_62) sin(wy+/1 — {? - + @)
max™ i " (wm)

 Since sin(m + ¢) = —sin ¢




Percentage Overshoot of Second-Order System

__Gm __Gm
e 102 e 107
1+ singp =1+ Jv1-—27?
J1 -2 J1 -2
__¢m
=14+e V1-¢°

e Thus, maximum overshoot Is:

Mp = c(t)max—1
__qm ¢m
=14+e V1-0" —1=¢ v1-¢*




Percentage Overshoot of Second-Order System

* Thus, the percentage overshoot (%0S) of the second-order

system is:

%0S = ¢ TN1=) o« 100%

Cmax

L
™=

-

|



Percentage Overshoot and Damping Ratio

By rearranging the equation for percentage overshoot, we
could find ¢ from %0S.

%05 = e~ C™N1=3) 5« 100
Equation both sides with natural log.

(1
- = In(%0S/100)
J1 =172
Rearrange the equation.
(mt=—1—-72In(%0S/100)
Squaring both sides.

((m)*=1—{*[In(%0S/100)]?




Percentage Overshoot and Damping Ratio

Rearrange the equation:
;2 = [In(%0S/100)]?
(m)?+ [In(%0S/100)]?
The relationship between percentage overshoot (%0S) and
damping ratio ().

—In(%0S/100)
V2 + [In(%0S/100)]2
Selection of the damping ratio is a tradeoff between maximum

percentage overshoot (%0S) and time where the peak
overshoot occurs (time-to-peak).

(:

Smaller damping ratio decreases time-to-peak (desirable), but
It Increases %0S (undesirable).



Steady-State Error of Second-Order System

 Steady-state error (e(0)), is the difference between the input
(r(t)) and output (c(t)) for a prescribed test input.

e(0) = lim [ (e) = c(®)]

A « \We will look more
- closely the steady-
”’2‘ \ . f/ \x — state response and
0.98¢ g 1 - steady-state error of
0ocam the system in the
subsequent topic in
the course.
0.1¢fnal — -
A . T, I ~




Example of Time Response Analysis

For the following second-order system, determine the following

time-domain parameters of the system: . (5) = — 81
s« + 155 + 81

a. Natural frequency (w,,). 2 marks]
b. Damping ratio ({). 2 marks
c. Settling time (T). 2 marks
d. Rise time (T;.). 2 marks
e. Time-to-peak (T5,). 2 marks]
f. Percentage overshoot (%0S). 2 marks

g. Perform transient response simulation in MATLAB and
determine the parameters in parts a-f. Simulate the transient
response and comment on the result. [12 marks]



Example of Time Response Analysis

a. Equating the transfer function equation with the standardised
equation for second order system, the natural frequency (w,,)
of the given system is calculated from:

81 B w2
s2+155+81 s2 4 2{w,s + w?
Thus, the natural frequency of the system is as:

w, =V81 =9 rad/s

G(s) =

b. Damping ratio ({) is calculated from:

15 15

= = —— =0.833
¢ 20, 2(9)



Example of Time Response Analysis

c. Rise time (T;) is calculated from:

" T— ¢ m— 1(0.664) 0212
= = — V. S
wp/1—72  9,/1—(0.833)2
Where:
[1 — 72 _ 2
b = tan_1< ! ; ¢ ) = tan~ ! <\/1 0(80?;233) ) = 0.664

Using alternative equation for rise time, It is:
(1.76¢3 — 0.4177% + 1.0397 + 1)
— o
B (1.76(0.833)3 — 0.417(0.833)% + 1.039(0.833) + 1)
9

I

= 0.288 s



Example of Time Response Analysis

d. If the settling time standard is 2%, the settling time (T) Is
calculated from:

-39 4

R R (KEDIC)

e. For the first (max) peak (n = 1), the time-to-peak (T,) Is
calculated from:

= 0.533 s

nrt I3
T.. =

P w122 91— (0.833)2
Where: n = n-th peak.
f. Percentage overshoot (%0S) is calculated from:
_(qm (0.833)m

%0S = (e \/1‘52) 100% = (e_\/l‘(0-833)2) 100% = 0.88%

= 0.63s




Example of Time Response Analysis

g. The results of the simulation in MATLAB are listed below.

It seems that from the plots, the rise time and settling time

found to be 0.3 and 0.5
respectively.

Time response of system

-
[N

Amplitude
e ot
(%] co -

e
~
:

<
[N

o
o

Time (seconds)

Workspace )

Value

[1,15,81]
a1

9

08773
Tx1tf
0.6315
0.2883
0.5333
0.8333

The transient response of the
system Is underdamped and
It settles down to amplitude
of 1 in the end.



Second-Order Step Response

Step function is typically used for analysing and testing the
response of the system.

For given second-order systems, their step responses are:

_ c(@,1)
C - O — A
Undamped. 18 1 ¢=1

1.6 2
O0<{<1(small {),l )
— Underdamped.i-2 A\ [

L. 1.0 8 ——— — N\ —

{ =1 — Critically,, | /\/
damped. 06

0.4
{>1(large {) >, L
OverdamPEd' 0 i 2I 3I cll ; 6I 7I EI; £|> 1|0 1|1 1|2 1|3 1.|4 1|5 1|6 1I7 = Ot



Step Response of Second-Order System

« Underdamped second-order step responses are typically
generated by complex poles.

* Given a second order system with a pair of complex poles
as shown below.

C(s) k
R(s) (s+a+jb)(s+a—jb)
* Forastep input (R(s) = 1/s), after implementing partial
fraction expansion, the transfer function equation Is:

K, K, K.
C(s) = —+
&)=t eTarp) T Grasjp




Step Response of Second-Order System

« Taking inverse Laplace transform, the complex pair of
roots become the co-sinusoidal function.

O o
E—Ae L cos(bt — ¢°)
Where:
¢ = tan~1 ¢

J1—72
* As aresult, the time response of the underdamped second

order system is an exponentially decaying sinusoidal
oscillation.



Example of Second-Order Step Response 1

For the undamped response of a second-order given below,
determine Its roots, step response equation, and simulate its
poles and zero in the s-plane and step response:

* The transfer function equation of the system is:

C(s) 9 Gis)
=2 Ris)= 1 9 C(s)
.R(S) S +? . -
 Rootsare:s; =j3 ands, = —j3 “Undamped

e(r)

4

* Applying step input (1/s), the i
response is a constant plane ,} r

amplitude sinusoid: - 1L

c(t) =1 —cos3t ,

0 1 2 3 4 5




Step Response of Second-Order System

« Overdamped second-order step responses are typically
generated by real poles.

 Consider a second order system with real poles as shown
below.

C(s) k
R(s) (s+a)(s+Db)

* Forastep input (R(s) = 1/s), after implementing partial
fraction expansion, the transfer function equation is:

Ki K K3

) =570 G




Step Response of Second-Order System

« Taking inverse Laplace transform, the pole at origin becomes
a constant and both real terms become exponential functions.

* The time domain equation of the system is:
c(t) = K; + Kye % + Kze bt
« As aresult, the step response of the system is an exponential
Increase.



Example of Second-Order Step Response 2

For the underdamped response of a second-order given below,
determine Its roots, step response equation, and simulate its
poles and zero in the s-plane and step response:

Gis)
9 Cls)

- -

P+25+9
Underdamped

=

Ris)=

 The transfer function equation of the system is:
C(s) 9
R(s) s2+2s+9
« Consider the characteristic equation of the system to give roots:

51,2 = —1 i V_8




Example of Second-Order Step Response 2

 The real part generates: e ¢ and the complex part generates:
k cos(V8t — ¢).

* The response Is a decaying sinusoidal oscillation given by:
c(t) =1- e‘t(cos V8t +/8/8sin \/§t)
=1 —1.06e~* cos(V8t — 19.47°)

« This is also called damped oscillation response.

s-plane

14}
12l
1




Step Response of Second-Order System

« Undamped second-order step responses are typically generated
by complex poles that lie on the y-axis in the s-plane.

« Consider a second order system with complex poles on y-axis
on the s-plane as shown below.

C(s) k
R(s) (s +jb)(s —jb)
« Forastep input (R(s) = 1/s), after implementing partial
fraction expansion, the transfer function equation Is:

K K K,
C(s) = -~
&=t erm TG




Step Response of Second-Order System

 Taking the inverse Laplace transform, the pole at origin
becomes a constant and a pair of complex roots become co-
sinusoidal function.

« The time-domain equation of the system is:
c(t) = K; — cos bt

« As aresult, the step response of the system Is a constant
amplitude sinusoid.



Example of Second-Order Step Response 3

For the overdamped response of a second-order given below,
determine Its roots, step response equation, and simulate its

poles and zero in the s-plane and step response:

« The transfer function equation of the system
IS:

G5}
1
Ris)= 3 g Cis)
C(S) _ 9 hsz-l-g.s'i-ﬂ -
R(S) SZ +9s5+9 Orverdamped
* Roots are:

Sl —_ _7854‘ and SZ — _1146

* The response Is an exponential increase: 05t

c(t) =1+0.17e7 78> — 1,171~ 1146t

Jja@

s-planc

X X ']
-7.854 -1.146




Summary of Second-Order Time Response

« Undamped responses:

Poles: s;, = +jw, Response: c(t) = A cos(wyt — ¢)

« Underdamped responses (note: wy = wy+/1 — {?):

Poles: s, , = —04 * jwy Response: c(t) = Ae™ %4 cos(wgt — @)

 Critically damped responses:

Poles: s, , = —g, Response: c(t) = K;e™ %" + K,te ™!

« QOverdamped responses:
Poles: s; = —oy, s, = —o, Response: ¢(t) = K;e %1t + K,e™ %2t



Second-Order Time Response

« Responses of the second-order systems with various damping
ratios.

c(t)
A

Undamped

20
1.8 |
1.6
14
1.2 |
1.0
08 [
0.6
0.4
0.2

Critically
damped

Overdamped

0 0.5 1 1.5 2 2.5 3 35 -



Trends In Second-Order Time Response

* \We evaluate step responses of second-order systems as poles
move with:

 constant real part.
 constant imaginary part.
 constant damping ratio.




Trend In Second-Order Time Response

Moving in a vertical direction: é3
2

* Frequency increases, but the envelope
remains the same since the real part
of the pole is not changing. Pole

motion

s-plane

though the sinusoidal response is
changing frequency.

- |
« Constant exponential envelope, even %2

c(t)
e Since all curves fit under the same 4

exponential decay curve, the settling Envelope the same
time is virtually the same for all
waveforms.

e (Qvershoot increases, the rise time .
decreases. .




Trend In Second-Order Time Response

Moving the poles to the right or left:
« [maginary part is now constant.

* Frequency Is constant over the range
of variation of the real part.

« As the poles move to the left, the
response damps out more rapidly, <o
while the frequency remains the
same.

« Peak time is the same for all
waveforms because the imaginary
part remains the same.

Frequency the same




Trend In Second-Order Time Response

Moving the poles along a constant radial line:

 Percent overshoot remains the same.
« The responses look exactly alike, except for their speed.

« The farther the poles are from the origin, the more rapid
the response.

s-plane

Pole
motion

c(1)
A

»

Same overshoot

4
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