
Steady-State Analysis
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Topics

• Introduction to Steady-state error.

• Derivation of steady-state error.

• Steady-state analysis of step input.

• Steady-state analysis of ramp input.

• Steady-state analysis of parabola input.

• Steady-state error of other types of system.

• Sensitivity of system parameters towards 

steady-state errors.



Error in Control Systems

• For the following feedback control system, the system 

error 𝑒(𝑡) for a feedback control system is given by the 

difference between the demanded output 𝑟(𝑡) and the 

actual output 𝑐(𝑡).

𝑒(𝑡) = 𝑟(𝑡) − 𝑐(𝑡)



Steady-State Error
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• The steady-state error is then defined as the difference between 

demanded and actual output when 𝑡 → ∞.

• In this course, the steady-state error is also defined for specific 

test inputs (e.g. there are other types of input tests available in 

control system engineering e.g. sinusoidal, square wave, etc.):

• Step input

• Ramp input

• Parabola input



Test Inputs for Steady-State Error Analysis

• For steady-state analysis, test inputs: step, ramp and parabola.

Name Waveform Physical 

Interpretation

Time 

Function

Laplace 

Transform

Step Constant position 1 1

𝑠

Ramp Constant velocity 𝑡 1

𝑠2

Parabola Constant 

acceleration

1

2
𝑡2

1

𝑠3



Example of Steady-State Error

Figure given below shows the ramp input 𝑟(𝑡) and the output 

𝑐(𝑡) of a system. Assuming the output’s steady state can be 

approximated by a ramp, find:

a. Steady-state error.   [2 marks]

b. Steady-state error if the input 

becomes 𝑟 𝑡 = 𝑡𝑢(𝑡). [2 marks]



Example of Steady-State Error

a. From the figure, the steady-state error of the system is:

𝑒 ∞ = 𝑟 ∞ − 𝑐 ∞ = 5 − 3 = 2

b. Since the system is linear, and because the original input 

was 𝑟(𝑡) = 2.5𝑡𝑢(𝑡), the new steady-state error is: 

𝑒 ∞ =
2

2.5
= 0.8



For a step input, compare the time response of different systems:

• Output 1: 𝑒1 ∞ = 0 because Output 1 is equal to Input at 𝑡 =

∞ and the steady-state error is thus zero.

• Output 2: 𝑒2 ∞ ≠ 0 because Output 2 is NOT equal to Input 

at 𝑡 = ∞ and the steady-state error is thus non-zero.

Steady-State Error of Step Input



Steady-State Error of Ramp Input

For a ramp input:

• Output 1: 𝑒1 ∞ = 0 because Output 1 = Input at 𝑡 = ∞ and 

the steady-state error is thus zero.



Steady-State Error of Ramp Input

• Output 2: Although the response has the same slope as the ramp 

input, 𝑒2 ∞ ≠ 0 because there will be a finite error at 𝑡 = ∞ 

and the steady-state error is thus non-zero.

• Output 3: 𝑒3 ∞ = ∞ because the error will increase with time 

as the response has a different slope than the ramp input.



General Closed Loop (Unit Feedback System)

• The system error (in both cases) is then given as by the 

definition as:

𝐸 𝑠 = 𝑅 𝑠 − 𝐶 𝑠

• We will now derive expressions for the steady-state error in 

unit feedback systems and then expand to non-unity feedback.



• Consider steady-state errors due to system configuration. System 

with pure gain element.

• System output: 𝐶 𝑠 = 𝐾𝐸(𝑠)

• The steady-state error can then never be equal to zero, nor the 

output of the system will be zero.

• There will thus always be a steady-state error present. 

• If 𝐶𝑠𝑠 is the steady-state value of the output and 𝑒𝑠𝑠 is the steady-

state value of the error, then:

𝑐𝑠𝑠 𝑡 = 𝐾𝑒𝑠𝑠 𝑡

• For a unity feedback system, error will diminish as 𝐾 increases.

Sources of Steady-State Error



Steady-State Error in Terms of G(s)

• For the system: 𝐸 𝑠 = 𝑅 𝑠 − 𝐶(𝑠) and 𝐶 𝑠 = 𝐸 𝑠 𝐺(𝑠) 

• Thus: 𝐸 𝑠 = 𝑅 𝑠 − 𝐸 𝑠 𝐺 𝑠

• Rearrange, so that: 

𝐸 𝑠 =
𝑅 𝑠

1 + 𝐺(𝑠)

• From the final value theorem:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)

• Above equation will thus allow us to calculate the steady-

state error given a particular input 𝑅(𝑠).



Example of S/S Error of Closed-Loop Systems

• Determine the steady-state error of the unity feedback system 

as shown below if the plant 𝐺(𝑠) is given a step input (1/𝑠):

               [4 marks]

𝐺 𝑠 =
2

𝑠(𝑠 + 2)



Example of S/S Error of Closed-Loop Systems

• The steady-state error of the unity feedback system is 

determined from:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)

• Entering the transfer-function equation of the plant to 

the equation above, it becomes:

𝑒 ∞ = lim
𝑠→0

𝑠 1/𝑠

1 +
2

𝑠(𝑠 + 2)

= lim
𝑠→0

𝑠(𝑠 + 2)

𝑠 𝑠 + 2 + 2
= 0



Steady-State Error of Step Input

Step Input: With  𝑅(𝑠) = 1/𝑠, we have:

𝑒 ∞ = 𝑒𝑠𝑡𝑒𝑝 ∞ = lim
𝑠→0

𝑠 1/𝑠

1 + 𝐺(𝑠)
=

1

1 + lim
𝑠→0

𝐺(𝑠)

• For zero steady-state error, we need:

lim
𝑠→0

𝐺 𝑠 = ∞

• To satisfy the above equation, 𝐺(𝑠) must have the form:

𝐺 𝑠 =
𝑠 + 𝑧1 𝑠 + 𝑧2 …

𝑠𝑛 𝑠 + 𝑝1 𝑠 + 𝑝2 …

• The 𝐺 𝑠 → ∞ in the limit 𝑠 → 0, as the denominator will 

become zero.

• To have a zero steady-state error, we must have at least one 

pole at the origin so that 𝑛 ≥ 1.



Steady-State Error of Step Input

• The term 𝑠 in the denominator of the equation for 𝐺(𝑠) represents 

an integrating element in the feedforward path.

• Division by 𝑠 in the frequency domain represents integration in 

the time domain.

• At least one integrating element must be present in the forward 

path in order to ensure a zero steady-state error.

• If there are no integrations, then 𝑛 = 0 and

lim
𝑠→0

𝐺 𝑠 =
𝑧1𝑧2 …

𝑝1𝑝2 …

• This will be finite and will thus produce a finite steady-state error.

• In order to have a zero steady-state error for a step input, we thus 

need at least one integrating element in the forward path.



Steady-State Error of Ramp Input

Ramp Input: For a ramp input, we have 𝑟 𝑡 = 𝑡𝑢(𝑡), where 

𝑟 𝑡 = 𝑡 for 𝑡 > 0 and 𝑟(𝑡) = 0 elsewhere.

• With 𝑅 𝑠 = 1/𝑠2 we have: 

𝑒 ∞ = lim
𝑠→0

𝑠 1/𝑠2

1 + 𝐺(𝑠)
= lim

𝑠→0

1

𝑠 + 𝑠𝐺(𝑠)
=

1

lim
𝑠→0

𝑠𝐺(𝑠)

• In order to have zero steady-state error, we need:

lim
𝑠→0

𝑠𝐺0(𝑠) = ∞

• For this condition, we need poles at origin, 𝑛 ≥ 2, i.e. we 

need at least two integrators in the open-loop transfer 

function.



• If there is one integrator (𝑛 = 1):

lim
𝑠→0

𝑠𝐺0 𝑠 =
𝑠𝐾𝑧1𝑧2 …

𝑠𝑝1𝑝2 …
= finite

• This will lead to a finite steady-state error.

• If there are no integrators (𝑛 = 0):

lim
𝑠→0

𝑠𝐺0 𝑠 =
𝑠𝐾𝑧1𝑧2 …

𝑝1𝑝2 …
= 0

• So that, we have an infinite steady-state error.

Steady-State Error of Ramp Input



Steady-State Error of Parabolic Input

Parabolic Input: For a parabolic input, we have: 

𝑟 𝑡 = 0.5𝑡2

• Thus, 𝑅 𝑠 = 1/𝑠3, the steady-state error is then:

𝑒 ∞ = lim
𝑠→0

𝑠 1/𝑠3

1 + 𝐺(𝑠)
= lim

𝑠→0

1

𝑠2 + 𝑠2𝐺(𝑠)
=

1

lim
𝑠→0

𝑠2𝐺(𝑠)

• In order to have zero steady-state error, we need:

lim
𝑠→0

𝑠2𝐺0 𝑠 = ∞

• We will thus require three integrators in the open-loop transfer 

function (𝑛 ≥ 3).

• If 𝑛 = 2, there will be a finite steady-state error and for 𝑛 < 2 

there will be an infinite steady-state error.



Expressions for the steady-state error (for unity feedback)  to 

different inputs:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸 𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)

Where:

𝑒𝑠𝑡𝑒𝑝 ∞ =
1

1 + lim
𝑠→0

𝐺(𝑠)

𝑒𝑟𝑎𝑚𝑝 ∞ =
1

1 + lim
𝑠→0

𝑠𝐺(𝑠)

𝑒𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 ∞ =
1

1 + lim
𝑠→0

𝑠2𝐺(𝑠)

Summary of Steady-State Errors 



For a zero steady-state error, we need at least:

• one integrator in the transfer function for a step input. 

𝑒 ∞ =
1

1 + lim
𝑠→0

𝑎𝑠𝑛 + 𝑏𝑠𝑛−1 + ⋯
𝑠 𝑎𝑠𝑛 + 𝑏𝑠𝑛−1 + ⋯

• two integrators in the transfer function for a ramp input.

𝑒 ∞ =
1

1 + lim
𝑠→0

𝑠
𝑎𝑠𝑛 + 𝑏𝑠𝑛−1 + ⋯

𝑠2 𝑎𝑠𝑛 + 𝑏𝑠𝑛−1 + ⋯

• three integrators in the transfer function for a parabola input. 

𝑒 ∞ =
1

1 + lim
𝑠→0

𝑠2 𝑎𝑠𝑛 + 𝑏𝑠𝑛−1 + ⋯
𝑠3 𝑎𝑠𝑛 + 𝑏𝑠𝑛−1 + ⋯

Summary of Steady-State Errors 



Example of Steady-State Errors & Inputs

For the unity feedback system shown in the figure below, 

where:

𝐺 𝑠 =
450 𝑠 + 8 𝑠 + 12 𝑠 + 15

𝑠 𝑠 + 38 𝑠2 + 2𝑠 + 28

Find the steady-state errors for the following test inputs: 

25𝑢(𝑡), 37𝑡𝑢(𝑡), and 47𝑡2𝑢(𝑡).        [6 marks]



Example of Steady-State Errors & Inputs

• The steady-state error of the system is calculated from:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)

Where:

𝐺 𝑠 =
450 𝑠 + 8 𝑠 + 12 𝑠 + 15

𝑠 𝑠 + 38 𝑠2 + 2𝑠 + 28

• For step input, 25𝑢(𝑡), 𝑅 𝑠 = 25/𝑠. 

Thus, the steady-state error of the system is:

𝑒 ∞ = lim
𝑠→0

𝑠𝑅 𝑠

1 + 𝐺 𝑠



Example of Steady-State Errors & Inputs

= lim
𝑠→0

𝑠 25/𝑠

1 +
450 𝑠 + 8 𝑠 + 12 𝑠 + 15

𝑠 𝑠 + 38 𝑠2 + 2𝑠 + 28

= 0 

• For ramp input, 37𝑡𝑢(𝑡), 𝑅 𝑠 = 37/𝑠2. 

Thus, the steady-state error of the system is:

𝑒 ∞ = lim
𝑠→0

𝑠𝑅 𝑠

1 + 𝐺 𝑠

 = lim
𝑠→0

𝑠
37
𝑠2

1 +
450 𝑠 + 8 𝑠 + 12 𝑠 + 15

𝑠 𝑠 + 38 𝑠2 + 2𝑠 + 28



Example of Steady-State Errors & Inputs

=
37

450 8 12 15
38 28

= 6.075 × 10−2

• For parabolic input, 47𝑡2𝑢(𝑡), 𝑅 𝑠 = 47/𝑠3. 

Thus, the steady-state error of the system is:

𝑒 ∞ = lim
𝑠→0

𝑠𝑅 𝑠

1 + 𝐺 𝑠

 = lim
𝑠→0

𝑠 47/𝑠3

1 +
450 𝑠 + 8 𝑠 + 12 𝑠 + 15

𝑠 𝑠 + 38 𝑠2 + 2𝑠 + 28

 = ∞



Static Error Constants

Static-error constant and system type:

• The term in the denominator of the definition of the steady-state 

error for each input type is taken to limit the steady-state error.

• These are then called the static-error constants and are defined as 

follows:

• Position constant: 𝐾𝑝 = lim
𝑠→0

𝐺(𝑠)

• Velocity constant: 𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠)

• Acceleration constant: 𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠)

• These constants depend on the form of 𝐺(𝑠) and will determine 

the value of the steady-state error.

• Error decreases as the value of the static-error constant increases.



Static Error Constants

Static position error constant (𝐾𝑝):

• It is associated with step input signal applied to a closed-loop 

system. For a given step input signal:

𝑅 𝑠 = 𝐴/𝑠 Eq. 1

• Steady-state error is given as:

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)
 (Eq. 2)

• Put equations (1) into (2):

𝑒𝑠𝑠 = lim
𝑠→0

𝑠(𝐴/𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)
=

𝐴

1 + lim
𝑠→0

𝐺 𝑠 𝐻(𝑠)
=

𝐴

1 + 𝐾𝑝

Where: 𝐾𝑝 = lim
𝑠→0

𝐺 𝑠 𝐻(𝑠)



Static Error Constants

Static velocity error constant (𝐾𝑣)

• It is associated with ramp input signal applied to a closed loop 

system. The ramp input signal is:

𝑅 𝑠 = 𝐴/𝑠2 (Eq. 3)

• Steady-state error is given as:

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)
 (Eq. 4)

• Put equations (3) into (4):

𝑒𝑠𝑠 = lim
𝑠→0

𝑠(𝐴/𝑠2)

1 + 𝐺 𝑠 𝐻(𝑠)
=

𝐴

lim
𝑠→0

(1)𝑠 + lim
𝑠→0

𝑠𝐺 𝑠 𝐻(𝑠)
=

𝐴

𝐾𝑣

Where: 𝐾𝑣 = lim
𝑠→0

𝑠𝐺 𝑠 𝐻(𝑠)



Static Error Constants

Static acceleration error constant (𝐾𝑎)

• It is associated with parabolic input signal applied to a closed 

loop system. The parabolic input signal is:

𝑅 𝑠 = 𝐴/𝑠3 (Eq. 5)

• Steady-state error is given as:

𝑒𝑠𝑠 = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺 𝑠 𝐻(𝑠)
 (Eq. 6)

• Put equations (5) into (6):

𝑒𝑠𝑠 = lim
𝑠→0

𝑠(𝐴/𝑠3)

1 + 𝐺 𝑠 𝐻(𝑠)
=

𝐴

lim
𝑠→0

(1)𝑠2 + lim
𝑠→0

𝑠2𝐺 𝑠 𝐻(𝑠)
=

𝐴

𝐾𝑎

Where: 𝐾𝑎 = lim
𝑠→0

𝑠2𝐺 𝑠 𝐻(𝑠)



Example of Static Error Constants

For a system that has the open-loop transfer function as given 

below.

𝐺 𝑠 =
20(𝑠 + 1)

𝑠(𝑠 + 2)(𝑠 + 5)

a. Determine the position, velocity and acceleration error 

constants (𝐾𝑝, 𝐾𝑣, and 𝐾𝑎) and steady-state errors.   

            [12 marks]

b. Comment on influence of the input on the tracking of the 

output of the system.       [2  marks]



Example of Static Error Constants

a. The steady-state error constants and steady-state errors for the 

given system are:

• Step input: 

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠) = lim
𝑠→0

20(𝑠 + 1)

𝑠(𝑠 + 2)(𝑠 + 5)
=

20(1)

(0)(2)(5)
= ∞

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
=

1

1 + ∞
= 0

• Ramp input:

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) = lim
𝑠→0

𝑠 20 𝑠 + 1

𝑠 𝑠 + 2 𝑠 + 5
=

(20)(1)

(2)(5)
= 2

𝑒𝑠𝑠 =
1

𝐾𝑣
=

1

2
= 0.5



Example of Static Error Constants

• Parabolic input: 

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠) = lim
𝑠→0

𝑠2 20 𝑠 + 1

𝑠 𝑠 + 2 𝑠 + 5
=

(0)(20)(1)

(2)(5)
= 0

𝑒𝑠𝑠 =
1

𝐾𝑎
=

1

0
= ∞

b. Since the open-loop transfer function of this system has one 

integrator, the output of the closed-loop system can perfectly 

track only the unit step.



System Type 

• The system type is taken to be the number of integration in the 

feed-forward path.

• The value of 𝑛 in 𝑠𝑛 of the denominator. This value of 𝑛 (the 

system type) then determines the steady-state error of a unit 

feedback system for a particular type of input.

• In general, the system transfer function can be written as:

𝐺 𝑠 =
𝐾∏

𝑀
𝑖 = 1

(𝑠 + 𝑧𝑖)

𝑠𝑛∏
𝑄

𝑘 = 1
(𝑠 + 𝑝𝑘)

Where: ∏ denotes a multiplication of factors.

• The index ‘𝑛’ denotes the system type number (if 𝑛 = 0, the 

system type is 0; if 𝑛 = 1, the system type is 1, etc.)



Steady-State Error Constant & System Type 

• The relationships between types of inputs, steady-state error 

constants and system types are summarised as in the following 

table:

Input Steady-state 

error formula

Type 0 Type 1 Type 2

Static error 

constant

Error Static error 

constant

Error Static error 

constant

Error

Step, 𝑢(𝑡) 1

1 + 𝐾𝑝

𝐾𝑝

= Constant

1

1 + 𝐾𝑝

𝐾𝑝 = ∞ 0 𝐾𝑝 = ∞ 0

Ramp, 

𝑡𝑢(𝑡)

1

𝐾𝑣

𝐾𝑣 = 0 ∞ 𝐾𝑣

= Constant

1

𝐾𝑣

𝐾𝑣 = ∞ 0

Parabola, 

1/2𝑡2𝑢(𝑡)

1

𝐾a

𝐾𝑎 = 0 ∞ 𝐾𝑎 = 0 ∞ 𝐾𝑎

= Constant

1

𝐾𝑎



Example of Steady-State Errors & System Type

Consider the second-order system whose open-loop transfer 

function is given below. 

𝐺 𝑠 =
(𝑠 + 3)

(𝑠 + 1)(𝑠 + 2)

a. Sketch the time response of the system.   [5 marks]

b. Calculate the position error constant (𝐾𝑝) and steady-state 

error of the system toward unit-step input.  [6 marks]

c. What type of system is the system? Can you eliminate the 

steady-state error of this system?     [4 marks]



Example of Steady-State Errors & System Type

a. The unit-step response of the given system. 

Notice the steady-state output is equal to 0.6 and hence 

steady-state error is 0.4. 



Example of Steady-State Errors & System Type

b. The position-error constant for this system is: 

𝐾𝑝 = lim
𝑠→0

(𝑠 + 3)

(𝑠 + 1)(𝑠 + 2)
= 1.5

So, the corresponding steady-state error of the system is:

𝑒𝑠𝑠 =
1

1 + 𝐾𝑝
=

1

1 + 1.5
= 0.4

The unit-step response of the system is presented in the 

figure in part (a), from which it can be clearly seen that the 

steady-state output is equal to 0.6. 

Hence, the steady-state error is equal to: 

𝑒(∞) = 1 - 0.6 = 0.4



Example of Steady-State Errors & System Type

c. The system is a Type 0 system as it does not have any 

integral. 

The steady-state error of the system can be eliminated by 

introducing an integral into the system. 



Steady-State Error for Disturbances

• Feedback control systems are often used to compensate for 

disturbances or unwanted inputs that enter a system.

• For a feedback control system with a disturbance, 𝐷(𝑠), 

injected between the controller and the plant, the transform 

of the output is:

𝐶 𝑠 = 𝑅 𝑠 − 𝐸 𝑠

• Thus

𝐶 𝑠 = 𝐸 𝑠 𝐺1(𝑠)𝐺2(𝑠) + 𝐷(𝑠)𝐺2(𝑠)



Steady-State Error for Disturbances

• The equation for deriving steady-state error is:

𝐸 𝑠 =
1

1 + 𝐺1(𝑠)𝐺2(𝑠)
𝑅 𝑠 −

𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠
𝐷 𝑠  (Eq. 7)

• The first part is relating 𝐸(𝑠) to 𝑅(𝑠) and the second term 

relating 𝐸(𝑠) to 𝐷(𝑠).

• Apply final value theorem to find steady-state value of the 

error:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸 𝑠

 = lim
𝑠→0

𝑠

1 + 𝐺1(𝑠)𝐺2(𝑠)
𝑅(𝑠) − lim

𝑠→0

𝑠𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠
𝐷(𝑠)



Steady-State Error for Disturbances

• Equation for the steady-state error for disturbance is:

𝑒 ∞ = 𝑒𝑅 ∞ + 𝑒𝐷(∞)

Where:

𝑒𝑅 ∞ = lim
𝑠→0

𝑠

1 + 𝐺1(𝑠)𝐺2(𝑠)
𝑅(𝑠)

And

𝑒𝐷 ∞ = lim
𝑠→0

𝑠𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠
𝐷(𝑠)

• The first term 𝑒𝑅 ∞  is the steady-state error due to 𝑅(𝑠) 

and the second term 𝑒𝐷 ∞  is the steady-state error due to 

disturbance 𝐷(𝑠).



Steady-State Error for Disturbances

• Assume a step disturbance 𝐷 𝑠 = 1/𝑠. 

• Substitute this value of step disturbance into the second 

term of equation (7), 𝑒𝐷 ∞ , the steady-state error due to a 

step disturbance is:

𝑒𝐷 ∞ = −
1

lim
𝑠→0

1
𝐺2(𝑠)

+ lim
𝑠→0

𝐺1(𝑠)

• The steady-state error produced by a step disturbance can 

be reduced by increasing the dc gain of 𝐺1(𝑠) or decreasing 

the dc gain of 𝐺2(𝑠).



Steady-State Error for Disturbances

• If we want to minimize the steady-state value of 𝐸(𝑠), (the 

output), we must increase the dc gain of 𝐺1(𝑠) so that a 

lower 𝐸(𝑠) be fed back to match the steady-state value of 

𝐷(𝑠) or decrease the dc value of 𝐺2(𝑠). 

• This yields a smaller value of 𝑒(∞), as predicted by the 

feedback formula.



Example of Steady-State Error for Disturbances

Find the total steady-state error due to a unit step input and a 

unit step disturbance in the system of the figure below.   

              [8 marks]



Example of Steady-State Error for Disturbances

• From the given block diagram of the system, the equation 

for the steady-state error of the system is:

𝑒 ∞ = lim
𝑠→0

𝑠𝑅 𝑠 − 𝑠𝐷 𝑠 𝐺2(𝑠)

1 + 𝐺1 𝑠 𝐺2(𝑠)

Where:

𝐺1 𝑠 =
1

𝑠 + 5
 and 𝐺2 𝑠 =

100

𝑠 + 2

• From the problem statement, the input signal is:

𝑅 𝑠 = 𝐷 𝑠 =
1

𝑠



Example of Steady-State Error for Disturbances

• Hence, the steady-state error of the system is:

𝑒 ∞ = lim
𝑠→0

𝑠
1
𝑠 − 𝑠

1
𝑠

100
𝑠 + 2

1 +
1

𝑠 + 5
100

𝑠 + 2

 = lim
𝑠→0

1 −
100

𝑠 + 2

1 +
1

𝑠 + 5
100

𝑠 + 2

= −
49

11



Steady-State Error for Non-Unity Feedback

• A general feedback system, showing the input transducer, 

𝐺1(𝑠), controller and plant, 𝐺2(𝑠), and feedback, 𝐻1(𝑠), is 

shown in Figure (a). 

• Pushing the input transducer to the right past the summing 

junction yields the general non-unity feedback system shown 

in Figure (b), where 𝐺 𝑠 = 𝐺1(𝑠)𝐺2(𝑠) and 𝐻 𝑠 =

𝐻1(𝑠)/𝐺1(𝑠).



Steady-State Error for Non-Unity Feedback

• Unlike a unity feedback system, where 𝐻(𝑠) = 1, the 

error in non-unity feedback is not the difference between 

the input and the output. 

• For this case we call the signal at the output of the 

summing junction the actuating signal, 𝐸𝑎(𝑠). 

• If 𝑟(𝑡) and 𝑐(𝑡) have the same units, we can find the 

steady-state error, 𝑒(∞) = 𝑟(∞)– 𝑐(∞). 



Steady-State Error for Non-Unity Feedback

• To find out the steady-state value of the actuating signal, 

𝐸𝑎1(𝑠), in figure (a), there is no restriction that the input 

and output units be the same, since we are finding the 

steady-state difference between signals at the summing 

junction, which do have the same units. 

• The steady-state actuating signal for Figure (a) is:

𝑒𝑎1 ∞ = lim
𝑠→0

𝑠𝑅(𝑠)𝐺1(𝑠)

1 + 𝐺2(𝑠)𝐻1(𝑠)

• The first step is to show 

explicitly 𝐸(𝑠) = 𝑅(𝑠)– 𝐶(𝑠) on 

the block diagram.



Steady-State Error for Non-Unity Feedback

• Then, we form an equivalent unity feedback system from a 

general non-unity feedback system as illustrated below.



Steady-State Error for Non-Unity Feedback

• Take the non-unity feedback control system shown in Figure 

(b) and form a unity feedback system by adding and 

subtracting unity feedback paths, as shown in Figure (c). 

This step requires that input and output units be the same. 

• Next combine 𝐻(𝑠) with the negative unity feedback, as 

shown in Figure (d). 

• Finally, combine the feedback system consisting of 𝐺(𝑠) 

and [𝐻(𝑠) − 1], leaving an equivalent forward path and a 

unity feedback, as shown in Figure (e). 

• Notice that the final figure shows 𝐸(𝑠) = 𝑅(𝑠) − 𝐶(𝑠) 

explicitly.



Steady-State Error for Non-Unity Feedback

• Let us look at the general system of the figure below which has 

both a disturbance and non-unity feedback.

• We will derive a general equation for the steady-state error and 

then determine the parameters of the system in order to drive 

the error to zero for step inputs and step disturbances.



Steady-State Error for Non-Unity Feedback

• The steady-state error for this system, 𝑒 ∞ = 𝑟 ∞ − 𝑐(∞), 

is:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸(𝑠)

= lim
𝑠→0

ቊ

ቋ

1 −
𝐺1 𝑠 𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
𝑅(𝑠)

−
𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
𝐷(𝑠)



Steady-State Error for Non-Unity Feedback

• Now limiting the discussion to step inputs and step 

disturbances, where 𝑅 𝑠 = 𝐷 𝑠 = 1/𝑠, the above equation 

becomes:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸(𝑠)

= 1 −
lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠

−
lim
𝑠→0

𝐺2 𝑠

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠



Steady-State Error for Non-Unity Feedback

• For zero error,

lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
= 1

• And

lim
𝑠→0

𝐺2 𝑠

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
= 0

• The two equations above can always be satisfied if: 

(1) the system is stable, 

(2) 𝐺1(𝑠) is a Type 1 system, 

(3) 𝐺2(𝑠) is a Type 0 system, and 

(4) 𝐻(𝑠) is a Type 0 system with a dc gain of unity.



Example for Steady-State Non-Unity Feedback

Given the non-unity feedback system as shown in the figure 

given below, find the following:

a. The system type.        [4 marks]

b. The value of 𝐾 to yield 0.1% error in the steady state. 

             [14 marks] 



Example for Steady-State Non-Unity Feedback

a. Produce a unity-feedback system of the system as shown in the 

figure below.

Thus, the unity-feedback system of the system is:

𝐺𝑒 𝑠 =

𝑠 + 1
𝑠2 𝑠 + 2

1 +
𝑠 + 1 𝐾 − 1

𝑠2 𝑠 + 2

=
𝑠 + 1

𝑠3 + 2𝑠2 + 𝐾 − 1 𝑠 + 𝐾 − 1

As shown above, the system is Type 0.



Example for Steady-State Non-Unity Feedback

b. Since the system is Type 0, the appropriate static error constant 

is 𝐾𝑝. Thus, the steady-state error due to step input is:

𝑒𝑠𝑡𝑒𝑝 ∞ = 0.001 =
1

1 + 𝐾𝑝

Therefore,

𝐾𝑝 = 999 =
1

𝐾 − 1

Hence, 𝐾 = 1.001001.



Example for Steady-State Non-Unity Feedback

Check stability: Using original block diagram, the closed-

loop transfer function of the system is:

𝑇 𝑠 =

𝑠 + 1
𝑠2 𝑠 + 2

1 +
𝐾 𝑠 + 1
𝑠2 𝑠 + 2

=
𝑠 + 1

𝑠3 + 2𝑠2 + 𝐾𝑠 + 𝐾

Making a Routh table:

Therefore, system is 

stable and steady-state 

error calculations are 

valid.

𝑠3 1 𝐾

𝑠2 2 𝐾

𝑠1 𝐾

2

0

𝑠0 𝐾 0



Non-Unity Feedback Steady-State & Disturbance

• Let us look at the general system of the figure below which 

has both a disturbance and non-unity feedback.

• Derive a general equation for the steady-state error and then 

determine the parameters of the system in order to drive the 

error to zero for step inputs and step disturbances.



Non-Unity Feedback Steady-State & Disturbance

• The steady-state error for this system, 𝑒 ∞ = 𝑟 ∞ − 𝑐(∞), is:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸(𝑠)

= lim
𝑠→0

ቊ

ቋ

1 −
𝐺1 𝑠 𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
𝑅(𝑠)

−
𝐺2 𝑠

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
𝐷(𝑠)

• Now limiting the discussion to step inputs and step disturbances, 

where 𝑅 𝑠 = 𝐷 𝑠 = 1/𝑠, the above equation becomes:

𝑒 ∞ = lim
𝑠→0

𝑠𝐸(𝑠)

 = 1 −
lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
−

lim
𝑠→0

𝐺2 𝑠

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠



Non-Unity Feedback Steady-State & Disturbance

• For zero error,

lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
= 1

• And

lim
𝑠→0

𝐺2 𝑠

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
= 0

• The two equations above can always be satisfied if:

(1) the system is stable, 

(2)  𝐺1(𝑠) is a Type 1 system, 

(3)  𝐺2(𝑠) is a Type 0 system, and 

(4)  𝐻(𝑠) is a Type 0 system with a dc gain of unity.



Example of Non-Unity S/S & Disturbance

Given the system shown in the figure below, do the following:

a. Derive the expression for the error, 𝐸(𝑠) = 𝑅(𝑠) − 𝐶(𝑠), in 

terms of 𝑅(𝑠) and 𝐷(𝑠).              [8 marks]

b. Derive the steady-state error, 𝑒(∞), if 𝑅(𝑠) and 𝐷(𝑠) are unit 

step functions.          [4 marks]

c. Determine the attributes of 𝐺1(𝑠), 𝐺2(𝑠), and 𝐻(𝑠) necessary 

for the steady-state error to become zero.   [2 marks]



Example of Non-Unity S/S & Disturbance

a. The error in the system is calculated from:

𝐸 𝑠 = 𝑅 𝑠 − 𝐶(𝑠)

But, considering the disturbance, the output of the system 

is:

𝐶 𝑠 = 𝑅 𝑠 − 𝐶 𝑠 𝐻 𝑠 𝐺1 𝑠 𝐺2 𝑠 + 𝐷(𝑠)

Solving for 𝐶(𝑠):

𝐶 𝑠 =
𝑅 𝑠 𝐺1 𝑠 𝐺2 𝑠

1 + 𝐺1 𝑆 𝐺2 𝑠 𝐻 𝑠
+

𝐷(𝑠)

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠



Example of Non-Unity S/S & Disturbance

Substituting the above equation into 𝐸(𝑠), the equation becomes:

𝐸 𝑠 = 1 −
𝐺1 𝑠 𝐺2 𝑠

1 + 𝐺1 𝑆 𝐺2 𝑠 𝐻 𝑠
𝑅 𝑠 −

1

1 + 𝐺1 𝑠 𝐺2 𝑠 𝐻 𝑠
𝐷(𝑠)

b. For 𝑅 𝑠 = 𝐷 𝑠 = 1/𝑠, the steady-state error of the system is:

 𝑒 ∞ = lim
𝑠→0

𝑠𝐸 𝑠

 = 1 −
lim
𝑠→0

𝐺1 𝑠 𝐺2(𝑠)

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2(𝑠)𝐻(𝑠)
−

1

1 + lim
𝑠→0

𝐺1 𝑠 𝐺2 𝑠 𝐻(𝑠)

c. Zero error if 𝐺1(𝑠) and/or 𝐺2(𝑠) is Type 1. Also, 𝐻(𝑠) is Type 0 

with unity DC gain.



Sensitivity of Parameters on Steady-State

• Sensitivity is the degree to which changes in system parameters 

affect system transfer functions, and hence performance. 

• A system with zero sensitivity (that is, changes in the system 

parameters have no effect on the transfer function) is ideal. 

• The greater the sensitivity, the less desirable the effect of a 

parameter change.



Sensitivity of Parameters on Steady-State

• For example, assume the function of:

𝐹 =
𝐾

(𝐾 + 𝑎)

• If 𝐾 = 10 and 𝑎 = 100, then 𝐹 = 0.091. 

• If parameter 𝑎 triples to 300, then 𝐹 = 0.032. 

• We see that a fractional change in parameter 𝑎 of 

(300– 100)/100 = 2 (e.g. 200% change) yields a change in 

the function 𝐹 of (0.032 − 0.091)/0.091 = 0.65 (e.g. 65% 

change).  

• Thus, the function 𝐹 has reduced sensitivity to changes in 

parameter 𝑎. 



Sensitivity of Parameters on Steady-State

• With feedback, it reduces sensitivity to parameter changes. 

• Sensitivity is ratio of the fractional change in the function to 

the fractional change in the parameter as the fractional 

change of the parameter approaches zero. 

• That is,

𝑆𝐹:𝑃 = lim
Δ𝑃→0

Fractional change in the function, 𝐹

Fractional change in the parameter, 𝑃

 = lim
Δ𝑃→0

Δ𝐹/𝐹

Δ𝑃/𝑃
= lim

Δ𝑃→0

𝑃Δ𝐹

𝐹Δ𝑃

• Which reduces to:

𝑆𝐹:𝑃 =
𝑃

𝐹

𝛿𝐹

𝛿𝑃



Example of Sensitivity of S/S Parameters

For a system as shown in the figure below, assume it is given a 

step input.

a. Find the sensitivity of the steady-state error to parameter 𝑎. 

              [6 marks] 

b. Plot the sensitivity of the system as a function of parameter 

𝑎.             [5 marks]



Example of Sensitivity of S/S Parameters

a. First, find the forward transfer function of an equivalent 

unity-feedback system.

𝐺𝑒 𝑠 =

𝐾
𝑠 𝑠 + 1 𝑠 + 4

1 +
𝐾 𝑠 + 𝑎 − 1

𝑠 𝑠 + 1 𝑠 + 4

 =
𝐾

𝑠3 + 5𝑠2 + 𝐾 + 4 𝑠 + 𝐾 𝑎 − 1

Thus, steady-state error of the system is:

𝑒 ∞ =
1

1 + 𝐾𝑝
=

1

𝑎 +
𝐾

𝐾 𝑎 − 1

=
𝑎 − 1

𝑎



Example of Sensitivity of S/S Parameters

Finding the sensitivity of 𝑒(∞), it is:

𝑆𝑒:𝑎 =
𝑎

𝑒

𝛿𝑒

𝛿𝑎
=

𝑎
𝑎

𝑎 − 1

𝑎 − 𝑎 − 1

𝑎2
=

𝑎 − 1

𝑎2
 

b. The plot of sensitivity of the system as a function of parameter 

𝑎 is as shown in the figure below.
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