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 Introduction to Steady-state error.
 Derivation of steady-state error.
 Steady-state analysis of step input.
 Steady-state analysis of ramp input.
 Steady-state analysis of parabola input.
 Steady-state error of other types of system.

 Sensitivity of system parameters towards
steady-state errors.



Error in Control Systems

 For the following feedback control system, the system
error e(t) for a feedback control system Is given by the
difference between the demanded output r(t) and the
actual output c(t).

e(t) =r(t) —c(t)

fis) % E(s) G(s) -[{.'-.'L_




Steady-State Error

« The steady-state error is then defined as the difference between
demanded and actual output when t — oo.

R(s)< > E(S)

C(s

* In this course, the steady-state error is also defined for specific
test inputs (e.g. there are other types of input tests available in
control system engineering e.g. sinusoidal, square wave, etc.):

 Step input
« Ramp input
 Parabola input



Test Inputs for Steady-State Error Analysis

 For steady-state analysis, test inputs: step, ramp and parabola.

Name Waveform Physical Time Laplace
Interpretation Function Transform
Step 0 Constant position 1 1
— s
Ramp ' Constant velocity t
JL ?
Parabola 0 Constant 1, 1
acceleration 2t $3




Example of Steady-State Error

Figure given below shows the ramp input r(t) and the output
c(t) of a system. Assuming the output’s steady state can be
approximated by a ramp, find:

L a. Steady-state error. [2 marks]

" b, Steady-state error if the input

ar becomes r(t) = tu(t). [2 marks]

> f(sec)



Example of Steady-State Error

a. From the figure, the steady-state error of the system is:
e(0) =r(0) —c(0) =5-3=2

b. Since the system is linear, and because the original input
was r(t) = 2.5tu(t), the new steady-state error Is:

2
e(o0) =

— =0.8
2.5



Steady-State Error of Step Input

For a step input, compare the time response of different systems:
e Qutput 1: e;(o0) = 0 because Output 1 is equal to Input at t =

co and the steady-state error is thus zero.

« Qutput 2: e, () # 0 because Output 2 is NOT equal to Input
at t = oo and the steady-state error is thus non-zero.

|
Input X

- Output 1 € (oo)

c(t)

~a— Qutput 2

Y

Time



Steady-State Error of Ramp Input

For a ramp input:

« QOutput 1: e;(c0) = 0 because Output 1 = Input at t = oo and
the steady-state error Is thus zero.

A
()

< Qutput 2

Input —

c(t)

Output 1
<—— Qutput 3

Time



Steady-State Error of Ramp Input

« Output 2: Although the response has the same slope as the ramp
Input, e, (o) # 0 because there will be a finite error at t = oo
and the steady-state error Is thus non-zero.

« OQOutput 3: e3(c0) = oo because the error will increase with time

as the response has a different slope than the ramp input.

A
(o)

<+ Qutput 2

Input —-

c(t)

Output 1
“—— Qutput 3

Time



General Closed Loop (Unit Feedback System)

Ris)

+
- 7(s) ﬂ‘-éﬂﬂ. R(s) *(% ZOM P cw)_

The system error (in both cases) is then given as by the
definition as:

E(s) =R(s) — C(s)

We will now derive expressions for the steady-state error in
unit feedback systems and then expand to non-unity feedback.



Sources of Steady-State Error

« Consider steady-state errors due to system configuration. System

with pure gain element. |
Ri(s) + % £(x5) X f.'{.ﬁ']h

 System output: C(s) = KE(s)

* The steady-state error can then never be equal to zero, nor the
output of the system will be zero.

« There will thus always be a steady-state error present.

« If Cy Is the steady-state value of the output and e, Is the steady-
state value of the error, then:

Css(t) — Kess(t)
« For a unity feedback system, error will diminish as K increases.



Steady-State Error in Terms of G(s)

For the system: E(s) = R(s) — C(s) and C(s) = E(s)G(s)
Thus: E(s) = R(s) — E(s)G(s)
Rearrange, so that:

R(s) + E(s) 6ts) Cs)
R(s) _ '
E(s) =
1+ G(s)

From the final value theorem:

i E(S) — 1 SR(s)
e(e0) = lim s (S)_s‘i%1+a(s)

Above equation will thus allow us to calculate the steady-
state error given a particular input R(s).



Example of S/S Error of Closed-Loop Systems

« Determine the steady-state error of the unity feedback system
as shown below if the plant G (s) Is given a step input (1/s):
[4 marks]

fis) % E(s) G(s) -[{.'-.'L_




Example of S/S Error of Closed-Loop Systems

« The steady-state error of the unity feedback system is
determined from:

SR(s)
e(0) = hrr& SE(s) = 11rr(1) 15 G6(5)

 Entering the transfer-function equation of the plant to
the equation above, it becomes:

e(00) = lim S(l/s) _ s(s + 2)
_s—>01+[ s—>OS(S+2)+2

s(s + 2)]



Steady-State Error of Step Input

Step Input: With R(s) = 1/s, we have:

B sy 1
e(o0) = estep(oo) - LE% 14+ G(s) 1+ £1_r)% G(s)

* For zero steady-state error, we need:
limG(s) = o

s—0

 To satisfy the above equation, G (s) must have the form:

(s+2z)(s+ z,) ...

s™(s +p1)(s +p2) -
 The G(s) — o inthe limit s — 0, as the denominator will
become zero.

G(s) =

« To have a zero steady-state error, we must have at least one
pole at the origin so thatn > 1.



Steady-State Error of Step Input

The term s in the denominator of the equation for G (s) represents
an integrating element in the feedforward path.

Division by s in the frequency domain represents integration in
the time domain.

At least one integrating element must be present in the forward

path in order to ensure a zero steady-state error.
If there are no integrations, thenn = 0 and
Z1Zy ...

limG(s) =
s—0 plpz

This will be finite and will thus produce a finite steady-state error.

In order to have a zero steady-state error for a step input, we thus
need at least one integrating element in the forward path.



Steady-State Error of Ramp Input

Ramp Input: For a ramp input, we have r(t) = tu(t), where
r(t) =tfort > 0andr(t) = 0 elsewhere.

e With R(s) = 1/s% we have:

00 —_ — —_
€ sl—r>% 1+ G(s) sl—r>% s+ sG(s) lirr(l) sG(s)
S—

 In order to have zero steady-state error, we need:

limsGy(s) =
s—0

 For this condition, we need poles at origin, n = 2, I.e. we
need at least two integrators in the open-loop transfer
function.



Steady-State Error of Ramp Input

If there Is one integrator (n = 1):

_ sKz,z, .. o
limsGy(s) = = finite
50 SP1D7 ...

This will lead to a finite steady-state error.

If there are no integrators (n = 0):

sKziz- ...
limsGy(s) = 12—
s—0 plpz

So that, we have an infinite steady-state error.




Steady-State Error of Parabolic Input

Parabolic Input: For a parabolic input, we have:
r(t) = 0.5t2
Thus, R(s) = 1/s3, the steady-state error is then:

(00 = I s(1/s3) ’ 1 1

o0 ) = = =

© 501+ G(s) 55052 + s2G(s) lir% s2G(s)
S—

In order to have zero steady-state error, we need:

lim s%Gg(s) = oo
S

-0

We will thus require three integrators in the open-loop transfer
function (n = 3).

If n = 2, there will be a finite steady-state error and forn < 2
there will be an infinite steady-state error.



Summary of Steady-State Errors

Expressions for the steady-state error (for unity feedback) to
different inputs:

. . SR(s)
e(c0) = lim sE(s) = lim 7— G(s)
Where:
(c0) .
(00) =
Estep 1+ lim G(s)
s—0
(c0) :
00 o
Sramp 1+ lim sG(s)
S—

1

€parabota(®) = 1+ lin% s2G(s)
S—




Summary of Steady-State Errors

For a zero steady-state error, we need at least:

one integrator in the transfer function for a step input.

1
e() = as™ 4+ bs"1 4 ...
1+ lim[ =
s—»o0|s(as™ + bs™"1 +...)

two integrators In the transfer function for a ramp input.
1

|+ lim s |23 X DS+ -
s—0 |s?(as™ + bs"1 4 ...)

e(c0) =

three integrators in the transfer function for a parabola input.
1

. - as®™+bs* 14 ..
1+£1_r>r65 s3(as™ + bs" 1 +...)

e(o0) =




Example of Steady-State Errors & Inputs

For the unity feedback system shown in the figure below,
where:

450(s +8)(s + 12)(s + 15)
s(s + 38)(s? + 2s + 28)

Find the steady-state errors for the following test inputs:
25u(t), 37tu(t), and 47t%u(t). [6 marks]

G(s) =

R(s) + E(s)

)

(fLS{_

G(s) |




Example of Steady-State Errors & Inputs

» The steady-state error of the system is calculated from:

SR(s)
01 + G(s)

e(o0) = hm SE(s) = 11
Where:

G(s) = 450(s + 8)(s +12)(s + 15)
s(s + 38)(s? + 2s + 28)
 For step input, 25u(t), R(s) = 25/s.
Thus, the steady-state error of the system is:

SR(s)
e(e) = sl—r>r(}1 + G(s)




Example of Steady-State Errors & Inputs

i s(25/s)
= 550 | 1 450(s + 8)(s + 12)(s + 15)
s(s + 38)(s? + 2s + 28)

=0
 For ramp input, 37tu(t), R(s) = 37/s*.
Thus, the steady-state error of the system is:

e(00) = lim —> R
s=01 4+ G(s)

37
| ()
= lim

201 4 450(s + 8)(s + 12)(s + 15)
s(s + 38)(s? + 2s + 28)




Example of Steady-State Errors & Inputs

37

~ 450(8)(12)(15)
(38)(28)

= 6.075 x 1072

* For parabolic input, 47t%u(t), R(s) = 47/s3.
Thus, the steady-state error of the system is:

o(00) = lim —> R
s»0]1 + G(S)

o s(47/s°)
= 550 | 1 450(s +8)(s +12)(s + 15)
s(s +38)(s?% + 2s + 28)




Static Error Constants

Static-error constant and system type:

* The term in the denominator of the definition of the steady-state
error for each input type Is taken to limit the steady-state error.

* These are then called the static-error constants and are defined as
follows:

« Position constant: K, = lin% G(s)
S—

* \elocity constant: K,, = lir% sG(s)
S—

« Acceleration constant: K, = liné s2G(s)
S—

* These constants depend on the form of G (s) and will determine
the value of the steady-state error.

* Error decreases as the value of the static-error constant increases.



Static Error Constants

Static position error constant (K,,):

|t is associated with step input signal applied to a closed-loop
system. For a given step input signal:

R(s) =A/s (Eq.1)
 Steady-state error is given as:

_ SR(s)
s T 01 + G(s)H(s) (Eq.2)

« Putequations (1) into (2):

i —SA/9) A __A4
5201+ G(s)H(s) 1+ imG()H(s)  1+K,

Where: K, = lim G(s)H(s)
s—0



Static Error Constants

Static velocity error constant (K,,)

* It is associated with ramp input signal applied to a closed loop
system. The ramp input signal Is:

R(s) =A/s* (Eq.3)
 Steady-state error Is given as:

i SR(S)
Css T 501 + G(s)H(s) (Eq.-4)

 Put equations (3) into (4):

o S/ A _A
TSN+ GOH(s)  Im(Ds +ImsGH() K,
S— S—

Where: K, = lilr(% sG(s)H(s)
S—



Static Error Constants

Static acceleration error constant (K,)

* |t is associated with parabolic input signal applied to a closed
loop system. The parabolic input signal is:

R(s) =A/s®> (Eq.5)
 Steady-state error Is given as:

i SR(s)
s = 001 + G(s)H(s) (Eq.6)

 Put equations (5) into (6):

o S@A/sH A _A
TS0+ GH(S)  lim(1)s? + ms?G(H(s) K,
S— S—

Where: K, = lim s?2G(s)H(s)
S—



Example of Static Error Constants

For a system that has the open-loop transfer function as given
below.

20(s +1)
s(s+2)(s+5)

a. Determine the position, velocity and acceleration error

constants (K,, K, and K,) and steady-state errors.
[12 marks]

b. Comment on influence of the input on the tracking of the
output of the system. [2 marks]

G(s) =




Example of Static Error Constants

a. The steady-state error constants and steady-state errors for the
given system are:

 Step Input:
K, = lim G(5) = lim 20(s + 1) 20(1)
=G = I Y DG +5)  (02)6)
1 1
e = —~ =0

1+K, 1+
« Ramp input:
B ()20(s+1)  (20)(1)
Ky =l sG(s) = M S T DG T8 (D6)
1




Example of Static Error Constants

 Parabolic input:
(s9)20(s+1) (0)(20)(1)

K, = lims2G(s) = lim =0
s G = I T DG 15 (206
1 1

b. Since the open-loop transfer function of this system has one
Integrator, the output of the closed-loop system can perfectly
track only the unit step.



System Type

* The system type is taken to be the number of integration in the
feed-forward path.

* The value of n in s™ of the denominator. This value of n (the
system type) then determines the steady-state error of a unit
feedback system for a particular type of input.

* In general, the system transfer function can be written as:

KII. M (s +z;)
=1
G(s) = 0
ST, 2 (s + i)

Where: [] denotes a multiplication of factors.

e The index ‘n’ denotes the system type number (if n = 0, the
system type is O; If n = 1, the system type Is 1, etc.)



Steady-State Error Constant & System Type

» The relationships between types of inputs, steady-state error
constants and system types are summarised as in the following

table:
Input Steady-state Type O Type 1 Type 2
error formula Static error Error | Static error | Error | Static error | Error
constant constant constant
Step, u(t) 1 K, 1 K, = oo 0 K, = oo 0
1+ Kp = Constant | 1+ Kp

Ramp, 1 K,=0 00 K, 1 K, =0 0
tu(t) K, = Constant K,

Parabola, 1 K,=0 00 K,=0 00 K, 1
1/2t%u(t) K, = Constant | K,




Example of Steady-State Errors & System Type

Consider the second-order system whose open-loop transfer
function is given below.

+ 3
G(s) = (s +3)
(s+1)(s+2)
a. Sketch the time response of the system. [5 marks]

b. Calculate the position error constant (K;,) and steady-state
error of the system toward unit-step input. [6 marks]

c. What type of system is the system? Can you eliminate the
steady-state error of this system? [4 marks]



Example of Steady-State Errors & System Type

a. The unit-step response of the given system.

Notice the steady-state output is equal to 0.6 and hence
steady-state error is 0.4.

1

ool e, e, s SO e, SN s ] e |

o8k ST e SO S SR SR SR S SR |




Example of Steady-State Errors & System Type

b. The position-error constant for this system is:

K, = lim (s +3) = 1.5
s=0(s+1)(s+2)
So, the corresponding steady-state error of the system is:
1 1
“ST1¥K, 1+15
The unit-step response of the system is presented in the
figure in part (a), from which it can be clearly seen that the

steady-state output is equal to 0.6.

=04

Hence, the steady-state error is equal to:
e(0)=1-06=04



Example of Steady-State Errors & System Type

c. The system is a Type 0 system as It does not have any
Integral.

The steady-state error of the system can be eliminated by
Introducing an integral into the system.



Steady-State Error for Disturbances

« Feedback control systems are often used to compensate for

disturbances or unwanted inputs that enter a system.
Dis)

Controller l Plant
. 4

R(s) + E(s) = + _

—{ X }—= G(s) —~®—> G(s)

g

C(s)
-

 For a feedback control system with a disturbance, D(s),
Injected between the controller and the plant, the transform
of the output is:

C(s) =R(s) — E(s)
* Thus
C(s) = E(s)G1(s)G2(s) + D(s)G,(s)



Steady-State Error for Disturbances

« The equation for deriving steady-state error is:
1 G2 (s)
E = R(s) — D Eq.7
&) = 0660 Y T Trameae LS EED
» The first part is relating E'(s) to R(s) and the second term
relating E (s) to D(s).

« Apply final value theorem to find steady-state value of the
error:

e(0) = lim sE(s)

— 1 S R I sG,(s)
ST 6006 ) T T 6,06,0)

D(s)



Steady-State Error for Disturbances

 Equation for the steady-state error for disturbance is:
e(e) = eg() + ep()

Where:
_ S
er (@) = I e 96,6 )
And
ep(c0) = lim $G2(5) D(s)

s=201 4+ G{(s)G,(s)
* The first term ep (o0) is the steady-state error due to R(s)
and the second term ep (o) is the steady-state error due to
disturbance D(s).



Steady-State Error for Disturbances

« Assume a step disturbance D(s) = 1/s.

 Substitute this value of step disturbance into the second

term of equation (7), ep(o0), the steady-state error due to a
step disturbance Is:

1

ep(®) = —

M%) M G(s)

» The steady-state error produced by a step disturbance can

be reduced by increasing the dc gain of G;(s) or decreasing
the dc gain of G, (s).



Steady-State Error for Disturbances

 |f we want to minimize the steady-state value of E(s), (the
output), we must increase the dc gain of G;(s) so that a
lower E(s) be fed back to match the steady-state value of

D(s) or decrease the dc value of G, (s).

* This yields a smaller value of e(c), as predicted by the

feedback formula.

Plant

Dis) +

—E(s)

N — Glis)

l_ G,(s)

Controller



Example of Steady-State Error for Disturbances

Find the total steady-state error due to a unit step input and a
unit step disturbance in the system of the figure below.
[8 marks]

D(s)

R(s) + 1 ++% 100 C(s)
—_— — -
% s+3 s+ 2




Example of Steady-State Error for Disturbances

* From the given block diagram of the system, the equation
for the steady-state error of the system is:

() = lim SR(s) —sD(s)G,(s)
¢ 550 1+ G1(5)G,(s)

1 100
Gl(S) — S+—5 and GZ(S) — S+—2

e From the problem statement, the input signal is:

1
R(S) — D(S) — E



Example of Steady-State Error for Disturbances

* Hence, the steady-state error of the system is:

e(o0) = lim ) (%) — (%) (51202)

s—0 1 100
1+ (5v3) 5+ 2)

— 0 1 100\ 11
1+ (5v5) (533)



Steady-State Error for Non-Unity Feedback

« A general feedback system, showing the input transducer,

G1(s), controller and plant, G, (s), and feedback, H,(s), IS
shown in Figure (a).

 Pushing the input transducer to the right past the summing
junction yields the general non-unity feedback system shown
In Figure (b), where G(s) = G;(s)G,(s) and H(s) =

Hy1(s)/G1(s).

Ris)

—_— > V;!(

- > L Is) -
‘ﬁ ':‘S'
iix)

a)

Cls)

Ris) + Efs)
Cis) ‘

(b)

-



Steady-State Error for Non-Unity Feedback

« Unlike a unity feedback system, where H(s) = 1, the
error in non-unity feedback is not the difference between

the input and the output.

 For this case we call the signal at the output of the
summing junction the actuating signal, E,(s).

* Ifr(t) and c(t) have the same units, we can find the
steady-state error, e(o0) = r(00)- c(0).

Ris) + Es) A’ Cls)
— (Ayx) -
Cis)
Hix)

(b)




Steady-State Error for Non-Unity Feedback

 To find out the steady-state value of the actuating signal,
E_ 1 (s), in figure (a), there is no restriction that the input
and output units be the same, since we are finding the
steady-state difference between signals at the summing
junction, which do have the same units.

« The steady-state actuating signal for Figure (a) Is:

o) — iSRG E)
“ 52014 Gy(s)Hy(s)

* The first step Is to show 2 6o 3R G0 =
explicitly E(s) = R(s)-C(s) on
Hi(s) |=

the block diagram.




Steady-State Error for Non-Unity Feedback

« Then, we form an equivalent unity feedback system from a
general non-unity feedback system as illustrated below.

Ri(s) + Efs)

Gis)

Cls

Hix)

(b)

His)- |

d)

Cls)

Ris) + E (s) o
_"ﬁ (is)
\ His)

(c)

Cls)

Ri(s) + E(s) GAs)
_%g | + Cls)H(s) - Gis)

(e)



Steady-State Error for Non-Unity Feedback

 Take the non-unity feedback control system shown in Figure
(b) and form a unity feedback system by adding and
subtracting unity feedback paths, as shown in Figure (c).
This step requires that input and output units be the same.

* Next combine H(s) with the negative unity feedback, as
shown In Figure (d).

 Finally, combine the feedback system consisting of G(s)
and [H(s) — 1], leaving an equivalent forward path and a
unity feedback, as shown in Figure (e).

* Notice that the final figure shows E(s) = R(s) — C(s)
explicitly.



Steady-State Error for Non-Unity Feedback

 Let us look at the general system of the figure below which has
both a disturbance and non-unity feedback.

Dix)

R Cis)
L:?-—h— G|{.‘r"] —:%)—h GQ{.‘L"J ) -

H(s) [+——

« We will derive a general equation for the steady-state error and
then determine the parameters of the system in order to drive
the error to zero for step inputs and step disturbances.



Steady-State Error for Non-Unity Feedback

 The steady-state error for this system, e(c0) = r(c0) — c¢(o0),
IS:

e(o0) = £1_f}(1) SE(s)
Y G1(s)G(s)
= lim {[1 176,06 OHE) | TS

G, (S)
- [1 F6)6EOHE)|” (S)}




Steady-State Error for Non-Unity Feedback

« Now limiting the discussion to step inputs and step
disturbances, where R(s) = D(s) = 1/s, the above equation
becomes:

e(0) = lim sE(s)

!Si_fg G1(s)Gy(s)
_1 B ACIACLIO

lim G,(s)
s—0

_1 + .!;1—{% G1(s)G,(s)H(s)




Steady-State Error for Non-Unity Feedback

e For zero error,

y_r}(l) G1(s)G2(s) 1
1+ }gl_r)l(l) G1(s)G,(s)H(s)
* And
yg& G, (s) 0

1+1im G, ()G, ()H(s)
» The two equations above can always be satisfied if:
(1) the system is stable,
(2) G1(s) Is a Type 1 system,
(3) G,(s) Is a Type 0 system, and
(4) H(s) iIs a Type 0 system with a dc gain of unity.



Example for Steady-State Non-Unity Feedback

Given the non-unity feedback system as shown in the figure
given below, find the following:

R(s) + 8 (s+1) C(s)
-
s2(s+2)

a. The system type. [4 marks]

b. The value of K to yield 0.1% error in the steady state.
[14 marks]



Example for Steady-State Non-Unity Feedback

a. Produce a unity-feedback system of the system as shown in the

figure below. R - 61) o
] 29 s%(s+2) >
K-1 g

Thus, the unity-feedback system of the system is:

(s+1)

G.(s) = s?(s+2) B s+1

e\> T L GADE =D 422+ (K- Ds+ (K - 1)
s4(s+2)

As shown above, the system is Type 0.



Example for Steady-State Non-Unity Feedback

b. Since the system is Type 0, the appropriate static error constant
Is K,,. Thus, the steady-state error due to step Input is:

estep(2) = 0.001 = 1=

Therefore,

K, =999 = ——
b K—-1

Hence, K = 1.001001.



Example for Steady-State Non-Unity Feedback

Check stability: Using original block diagram, the closed-

loop transfer function of the system is:

(s+1)
s?(s + 2) s+1
T(s) = =— >
1+K(S+1) s3+2s“+Ks+K
s?(s+2)
Making a Routh table: 3 1 K
Therefore, system is 2 2 K
stable and steady-state
_ y s1 K 0
error calculations are —
. 2
valid. 5
S K 0




Non-Unity Feedback Steady-State & Disturbance

 Let us look at the general system of the figure below which
has both a disturbance and non-unity feedback.

(%)

+ :
R Cls
L: — G|{:;"j —:%}-—h G-;_r{.ﬁ"j ) -

Hi(s) |=

« Derive a general equation for the steady-state error and then
determine the parameters of the system in order to drive the
error to zero for step inputs and step disturbances.



Non-Unity Feedback Steady-State & Disturbance

 The steady-state error for this system, e(c0) = r(c0) — c(0), is:
e(0) = lim sE(s)
s—0
1 — G1(s)G,(s)
1+ G1(s)GL(s)H(s)

B G, (s) D(s)
1+ G1(s)G(s)H(s)

* Now limiting the discussion to step inputs and step disturbances,
where R(s) = D(s) = 1/s, the above equation becomes:

e(0) = lim sE(s)

R(s)

lirr& G,(s)

S—

1+ lir% G,(s)G,(s)H(s)
S—

!Si_{% G1(s)G,(s)
- [ T ACIACLIO)




Non-Unity Feedback Steady-State & Disturbance

e For zero error,

i G6)6(s)
1+ ?_r)% G1(s)G,(s)H(s)
« And
LE% G, (s) 0

1+ L‘l’% G1(s)Go(s)H(s) B

* The two equations above can always be satisfied if:
(1) the system is stable,
(2) G1(s)IsaType 1 system,
(3) G,(s) iIsaType 0 system, and
(4) H(s) is a Type 0 system with a dc gain of unity.



Example of Non-Unity S/S & Disturbance

Given the system shown in the figure below, do the following:

a. Derive the expression for the error, E(s) = R(s) — C(s), In
terms of R(s) and D(s). [8 marks]

b. Derive the steady-state error, e(o), If R(s) and D(s) are unit
step functions. [4 marks]

c. Determine the attributes of G, (s), G,(s), and H(s) necessary
for the steady-state error to become zero. [2 marks]

D(s)

M{T)— GI(S) — - GQ(S) —i-@ C(S) -
H(s) |=




Example of Non-Unity S/S & Disturbance

a. The error in the system is calculated from:
E(s) = R(s) — C(s)

But, considering the disturbance, the output of the system
IS:

C(s) = [R(s) = C(s)H(s)]G1(s)G2(s) + D(s)

Solving for C(s):

R(s)G1(s)G(s) D(s)

A A G AOTTO M FIACIAOTIO




Example of Non-Unity S/S & Disturbance

Substituting the above equation into E(s), the equation becomes:

G(6)6o() |
1+ 6.6 OHE)| 7~ [T+ 615G ()H(s)

E(s) =1[1-— D(s)

b. For R(s) = D(s) = 1/s, the steady-state error of the system is:

e(o0) = lim sE(s)

E_I)T(; G1(s)G2(s) 1
=77 lim Gy ()Ga (s)H (5) 1+ lim G1(5)G, (s)H (5)

c. Zeroerrorif G,(s) and/or G,(s) Is Type 1. Also, H(s) Is Type O
with unity DC gain.



Sensitivity of Parameters on Steady-State

 Sensitivity Is the degree to which changes in system parameters
affect system transfer functions, and hence performance.

« A system with zero sensitivity (that is, changes in the system
parameters have no effect on the transfer function) is ideal.

* The greater the sensitivity, the less desirable the effect of a
parameter change.



Sensitivity of Parameters on Steady-State

* For example, assume the function of:

 If K =10and a =100, then F = 0.091.
 If parameter a triples to 300, then F = 0.032.

« \We see that a fractional change in parameter a of
(300-100)/100 = 2 (e.g. 200% change) yields a change In
the function F of (0.032 — 0.091)/0.091 = 0.65 (e.g. 65%
change).

* Thus, the function F has reduced sensitivity to changes in
parameter a.



Sensitivity of Parameters on Steady-State

With feedback, It reduces sensitivity to parameter changes.

Sensitivity is ratio of the fractional change in the function to
the fractional change in the parameter as the fractional
change of the parameter approaches zero.

That is,
Fractional change in the function, F
SF:P = lim
AP-0 Fractional change in the parameter, P
AF /F ~ PAF
= lim —— = lim ——

AP-0AP/P  AP—0 FAP

Which reduces to:
o _P(oF
F:P — F SP



Example of Sensitivity of S/S Parameters

For a system as shown in the figure below, assume it Is given a

step input.

C(s) .

R(s) +® _ K
A s(s+ 1s+4)

(s +a)

a. Find the sensitivity of the steady-state error to parameter a.

[6 marks]

b. Plot the sensitivity of the system as a function of parameter

a.

[5 marks]



Example of Sensitivity of S/S Parameters

a. First, find the forward transfer function of an equivalent
unity-feedback system.

K
s(s+1)(s+4)
K(s+a—-1)
s(s+1)(s+4)
K
=S3+552+(K+4)S+K(a—1)
Thus, steady-state error of the system is:

Ge(s) -

1+

(o0) 1 1 a—1
e(00) = = =
1+K, a+K(aK 5

a




Example of Sensitivity of S/S Parameters

Finding the sensitivity of e(o), It is:

¢ ~afdée a a—(a-1f a-1
)y

a—1

b. The plot of sensitivity of the system as a function of parameter

a is as shown in the figure below.

Se:a

051

0 -

05 +

-1+

-15 +
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