

Steady-State Analysis

XMUT315 Control Systems Engineering

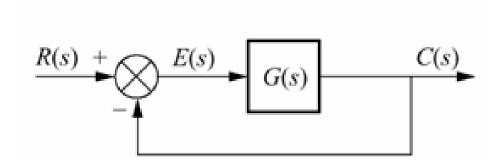
Topics

- Introduction to Steady-state error.
- Derivation of steady-state error.
- Steady-state analysis of step input.
- Steady-state analysis of ramp input.
- Steady-state analysis of parabola input.
- Steady-state error of other types of system.
- Sensitivity of system parameters towards steady-state errors.

Error in Control Systems

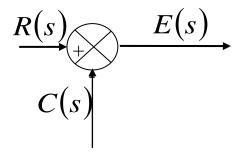
• For the following feedback control system, the system error e(t) for a feedback control system is given by the difference between the demanded output r(t) and the actual output c(t).

$$e(t) = r(t) - c(t)$$



Steady-State Error

• The steady-state error is then defined as the difference between demanded and actual output when $t \to \infty$.



- In this course, the steady-state error is also defined for specific test inputs (e.g. there are other types of input tests available in control system engineering e.g. sinusoidal, square wave, etc.):
 - Step input
 - Ramp input
 - Parabola input

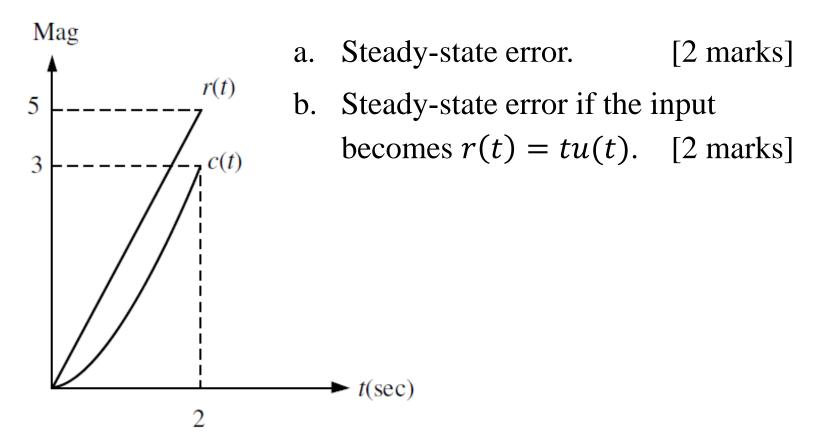
Test Inputs for Steady-State Error Analysis

• For steady-state analysis, test inputs: step, ramp and parabola.

Name	Waveform	Physical	Time	Laplace	
		Interpretation	Function	Transform	
Step	r(t)	Constant position	1	$\frac{1}{s}$	
Ramp	r(t)	Constant velocity	t	$\frac{1}{s^2}$	
Parabola	r(t)	Constant acceleration	$\frac{1}{2}t^2$	$\frac{1}{s^3}$	

Example of Steady-State Error

Figure given below shows the ramp input r(t) and the output c(t) of a system. Assuming the output's steady state can be approximated by a ramp, find:



Example of Steady-State Error

a. From the figure, the steady-state error of the system is:

$$e(\infty) = r(\infty) - c(\infty) = 5 - 3 = 2$$

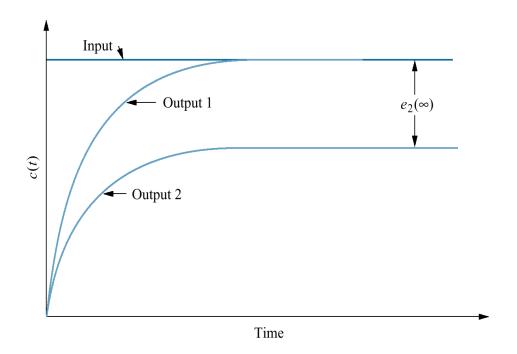
b. Since the system is linear, and because the original input was r(t) = 2.5tu(t), the new steady-state error is:

$$e(\infty) = \frac{2}{2.5} = 0.8$$

Steady-State Error of Step Input

For a step input, compare the time response of different systems:

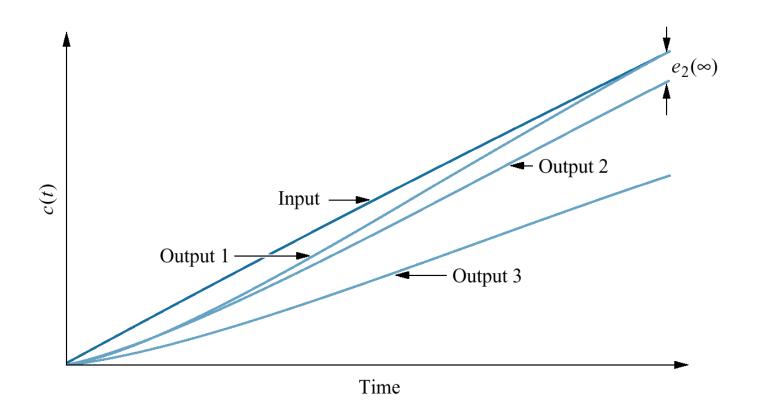
- Output 1: $e_1(\infty) = 0$ because Output 1 is equal to Input at $t = \infty$ and the steady-state error is thus zero.
- Output 2: $e_2(\infty) \neq 0$ because Output 2 is NOT equal to Input at $t = \infty$ and the steady-state error is thus non-zero.



Steady-State Error of Ramp Input

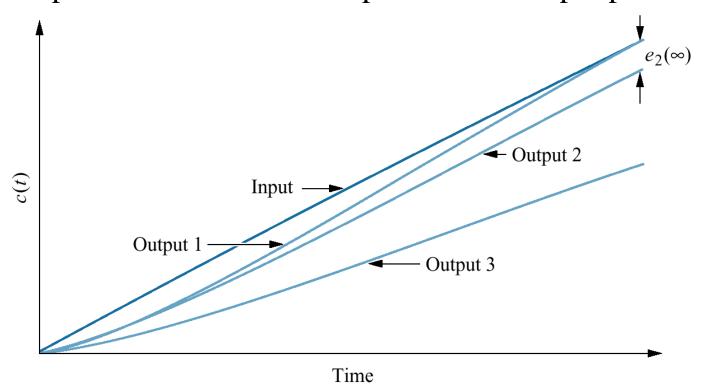
For a ramp input:

• Output 1: $e_1(\infty) = 0$ because Output $1 = \text{Input at } t = \infty$ and the steady-state error is thus zero.

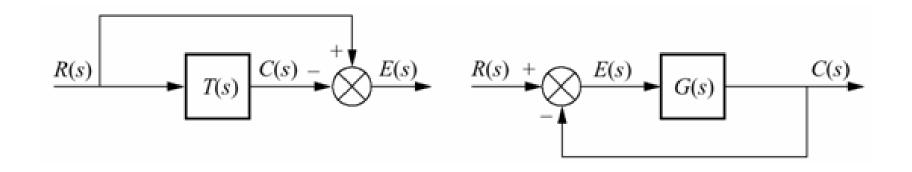


Steady-State Error of Ramp Input

- Output 2: Although the response has the same slope as the ramp input, $e_2(\infty) \neq 0$ because there will be a finite error at $t = \infty$ and the steady-state error is thus non-zero.
- Output 3: $e_3(\infty) = \infty$ because the error will increase with time as the response has a different slope than the ramp input.



General Closed Loop (Unit Feedback System)



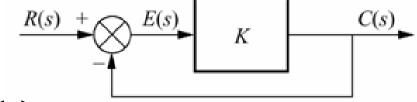
• The system error (in both cases) is then given as by the definition as:

$$E(s) = R(s) - C(s)$$

• We will now derive expressions for the steady-state error in unit feedback systems and then expand to non-unity feedback.

Sources of Steady-State Error

• Consider steady-state errors due to system configuration. System with pure gain element.



- System output: C(s) = KE(s)
- The steady-state error can then never be equal to zero, nor the output of the system will be zero.
- There will thus always be a steady-state error present.
- If C_{SS} is the steady-state value of the output and e_{SS} is the steady-state value of the error, then:

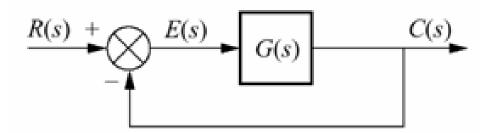
$$c_{ss}(t) = Ke_{ss}(t)$$

• For a unity feedback system, error will diminish as *K* increases.

Steady-State Error in Terms of G(s)

- For the system: E(s) = R(s) C(s) and C(s) = E(s)G(s)
- Thus: E(s) = R(s) E(s)G(s)
- Rearrange, so that:

$$E(s) = \frac{R(s)}{1 + G(s)}$$



From the final value theorem:

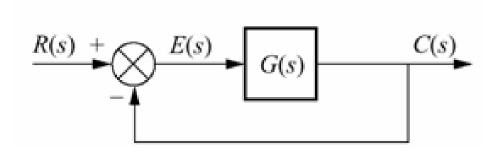
$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

• Above equation will thus allow us to calculate the steadystate error given a particular input R(s).

Example of S/S Error of Closed-Loop Systems

• Determine the steady-state error of the unity feedback system as shown below if the plant G(s) is given a step input (1/s): [4 marks]

$$G(s) = \frac{2}{s(s+2)}$$



Example of S/S Error of Closed-Loop Systems

• The steady-state error of the unity feedback system is determined from:

$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

• Entering the transfer-function equation of the plant to the equation above, it becomes:

$$e(\infty) = \lim_{s \to 0} \frac{s(1/s)}{1 + \left[\frac{2}{s(s+2)}\right]} = \lim_{s \to 0} \frac{s(s+2)}{s(s+2) + 2} = 0$$

Steady-State Error of Step Input

Step Input: With R(s) = 1/s, we have:

$$e(\infty) = e_{step}(\infty) = \lim_{s \to 0} \frac{s(1/s)}{1 + G(s)} = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

• For zero steady-state error, we need:

$$\lim_{s\to 0}G(s)=\infty$$

• To satisfy the above equation, G(s) must have the form:

$$G(s) = \frac{(s+z_1)(s+z_2) \dots}{s^n(s+p_1)(s+p_2) \dots}$$

- The $G(s) \to \infty$ in the limit $s \to 0$, as the denominator will become zero.
- To have a zero steady-state error, we must have at least one pole at the origin so that $n \ge 1$.

Steady-State Error of Step Input

- The term s in the denominator of the equation for G(s) represents an integrating element in the feedforward path.
- Division by *s* in the frequency domain represents integration in the time domain.
- At least one integrating element must be present in the forward path in order to ensure a zero steady-state error.
- If there are no integrations, then n = 0 and

$$\lim_{s \to 0} G(s) = \frac{z_1 z_2 \dots}{p_1 p_2 \dots}$$

- This will be finite and will thus produce a finite steady-state error.
- In order to have a zero steady-state error for a step input, we thus need at least one integrating element in the forward path.

Steady-State Error of Ramp Input

Ramp Input: For a ramp input, we have r(t) = tu(t), where r(t) = t for t > 0 and r(t) = 0 elsewhere.

• With $R(s) = 1/s^2$ we have:

$$e(\infty) = \lim_{s \to 0} \frac{s(1/s^2)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$$

• In order to have zero steady-state error, we need:

$$\lim_{s\to 0} sG_0(s) = \infty$$

• For this condition, we need poles at origin, $n \ge 2$, i.e. we need at least two integrators in the open-loop transfer function.

Steady-State Error of Ramp Input

• If there is one integrator (n = 1):

$$\lim_{s \to 0} sG_0(s) = \frac{sKz_1z_2 ...}{sp_1p_2 ...} = \text{finite}$$

- This will lead to a finite steady-state error.
- If there are no integrators (n = 0):

$$\lim_{s \to 0} sG_0(s) = \frac{sKz_1z_2 \dots}{p_1p_2 \dots} = 0$$

• So that, we have an infinite steady-state error.

Steady-State Error of Parabolic Input

Parabolic Input: For a parabolic input, we have:

$$r(t) = 0.5t^2$$

• Thus, $R(s) = 1/s^3$, the steady-state error is then:

$$e(\infty) = \lim_{s \to 0} \frac{s(1/s^3)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

• In order to have zero steady-state error, we need:

$$\lim_{s\to 0} s^2 G_0(s) = \infty$$

- We will thus require three integrators in the open-loop transfer function $(n \ge 3)$.
- If n = 2, there will be a finite steady-state error and for n < 2 there will be an infinite steady-state error.

Summary of Steady-State Errors

Expressions for the steady-state error (for unity feedback) to different inputs:

$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Where:

where.
$$e_{step}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

$$e_{ramp}(\infty) = \frac{1}{1 + \lim_{s \to 0} sG(s)}$$

$$e_{parabola}(\infty) = \frac{1}{1 + \lim_{s \to 0} sG(s)}$$

Summary of Steady-State Errors

For a zero steady-state error, we need at least:

• one integrator in the transfer function for a step input.

$$e(\infty) = \frac{1}{1 + \lim_{s \to 0} \left[\frac{as^n + bs^{n-1} + \cdots}{s(as^n + bs^{n-1} + \cdots)} \right]}$$

• two integrators in the transfer function for a ramp input.

$$e(\infty) = \frac{1}{1 + \lim_{s \to 0} s \left[\frac{as^n + bs^{n-1} + \cdots}{s^2 (as^n + bs^{n-1} + \cdots)} \right]}$$

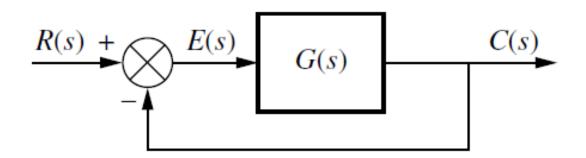
three integrators in the transfer function for a parabola input.

$$e(\infty) = \frac{1}{1 + \lim_{s \to 0} s^2 \left[\frac{as^n + bs^{n-1} + \cdots}{s^3 (as^n + bs^{n-1} + \cdots)} \right]}$$

For the unity feedback system shown in the figure below, where:

$$G(s) = \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}$$

Find the steady-state errors for the following test inputs: 25u(t), 37tu(t), and $47t^2u(t)$. [6 marks]



• The steady-state error of the system is calculated from:

$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Where:

$$G(s) = \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}$$

• For step input, 25u(t), R(s) = 25/s.

Thus, the steady-state error of the system is:

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$$= \lim_{s \to 0} \frac{s(25/s)}{1 + \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}}$$

= 0

• For ramp input, 37tu(t), $R(s) = 37/s^2$.

Thus, the steady-state error of the system is:

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$$= \lim_{s \to 0} \frac{s\left(\frac{37}{s^2}\right)}{1 + \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}}$$

$$=\frac{37}{\frac{450(8)(12)(15)}{(38)(28)}}=6.075\times10^{-2}$$

• For parabolic input, $47t^2u(t)$, $R(s) = 47/s^3$. Thus, the steady-state error of the system is:

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$$= \lim_{s \to 0} \frac{s(47/s^3)}{1 + \frac{450(s+8)(s+12)(s+15)}{s(s+38)(s^2+2s+28)}}$$

$$= \infty$$

Static-error constant and system type:

- The term in the denominator of the definition of the steady-state error for each input type is taken to limit the steady-state error.
- These are then called the static-error constants and are defined as follows:
 - Position constant: $K_p = \lim_{s \to 0} G(s)$
 - Velocity constant: $K_v = \lim_{s \to 0} sG(s)$
 - Acceleration constant: $K_a = \lim_{s \to 0} s^2 G(s)$
- These constants depend on the form of G(s) and will determine the value of the steady-state error.
- Error decreases as the value of the static-error constant increases.

Static position error constant (K_p) :

• It is associated with step input signal applied to a closed-loop system. For a given step input signal:

$$R(s) = A/s$$
 (Eq. 1)

• Steady-state error is given as:

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)}$$
 (Eq. 2)

• Put equations (1) into (2):

$$e_{ss} = \lim_{s \to 0} \frac{s(A/s)}{1 + G(s)H(s)} = \frac{A}{1 + \lim_{s \to 0} G(s)H(s)} = \frac{A}{1 + K_p}$$

Where:
$$K_p = \lim_{s \to 0} G(s)H(s)$$

Static velocity error constant (K_v)

• It is associated with ramp input signal applied to a closed loop system. The ramp input signal is:

$$R(s) = A/s^2 \qquad \text{(Eq. 3)}$$

• Steady-state error is given as:

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)}$$
 (Eq. 4)

• Put equations (3) into (4):

$$e_{ss} = \lim_{s \to 0} \frac{s(A/s^2)}{1 + G(s)H(s)} = \frac{A}{\lim_{s \to 0} (1)s + \lim_{s \to 0} sG(s)H(s)} = \frac{A}{K_v}$$

Where:
$$K_v = \lim_{s \to 0} sG(s)H(s)$$

Static acceleration error constant (K_a)

• It is associated with parabolic input signal applied to a closed loop system. The parabolic input signal is:

$$R(s) = A/s^3$$
 (Eq. 5)

• Steady-state error is given as:

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)}$$
 (Eq. 6)

• Put equations (5) into (6):

$$e_{ss} = \lim_{s \to 0} \frac{s(A/s^3)}{1 + G(s)H(s)} = \frac{A}{\lim_{s \to 0} (1)s^2 + \lim_{s \to 0} s^2 G(s)H(s)} = \frac{A}{K_a}$$
Where: $K_a = \lim_{s \to 0} s^2 G(s)H(s)$

Example of Static Error Constants

For a system that has the open-loop transfer function as given below.

$$G(s) = \frac{20(s+1)}{s(s+2)(s+5)}$$

a. Determine the position, velocity and acceleration error constants (K_p , K_v , and K_a) and steady-state errors.

[12 marks]

b. Comment on influence of the input on the tracking of the output of the system. [2 marks]

Example of Static Error Constants

- a. The steady-state error constants and steady-state errors for the given system are:
 - Step input:

$$K_p = \lim_{s \to 0} G(s) = \lim_{s \to 0} \frac{20(s+1)}{s(s+2)(s+5)} = \frac{20(1)}{(0)(2)(5)} = \infty$$
1 1

$$e_{SS} = \frac{1}{1 + K_p} = \frac{1}{1 + \infty} = 0$$

• Ramp input:

$$K_v = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{(s)20(s+1)}{s(s+2)(s+5)} = \frac{(20)(1)}{(2)(5)} = 2$$

$$e_{ss} = \frac{1}{K_v} = \frac{1}{2} = 0.5$$

Example of Static Error Constants

• Parabolic input:

$$K_a = \lim_{s \to 0} s^2 G(s) = \lim_{s \to 0} \frac{(s^2)20(s+1)}{s(s+2)(s+5)} = \frac{(0)(20)(1)}{(2)(5)} = 0$$

$$e_{ss} = \frac{1}{K_a} = \frac{1}{0} = \infty$$

b. Since the open-loop transfer function of this system has one integrator, the output of the closed-loop system can perfectly track only the unit step.

System Type

- The system type is taken to be the number of integration in the feed-forward path.
- The value of n in s^n of the denominator. This value of n (the system type) then determines the steady-state error of a unit feedback system for a particular type of input.
- In general, the system transfer function can be written as:

$$G(s) = \frac{K \prod_{i=1}^{M} (s + z_i)}{s^n \prod_{k=1}^{Q} (s + p_k)}$$

Where: \prod denotes a multiplication of factors.

• The index 'n' denotes the system type number (if n = 0, the system type is 0; if n = 1, the system type is 1, etc.)

Steady-State Error Constant & System Type

• The relationships between types of inputs, steady-state error constants and system types are summarised as in the following table:

Input Steady-star error formu	Steady-state	Type 0		Type 1		Type 2	
	error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	K_p = Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_v}$	$K_v=0$	8	K_v = Constant	$\frac{1}{K_v}$	$K_v = \infty$	0
Parabola, $1/2t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	8	$K_a = 0$	8	K_a = Constant	$\frac{1}{K_a}$

Example of Steady-State Errors & System Type

Consider the second-order system whose open-loop transfer function is given below.

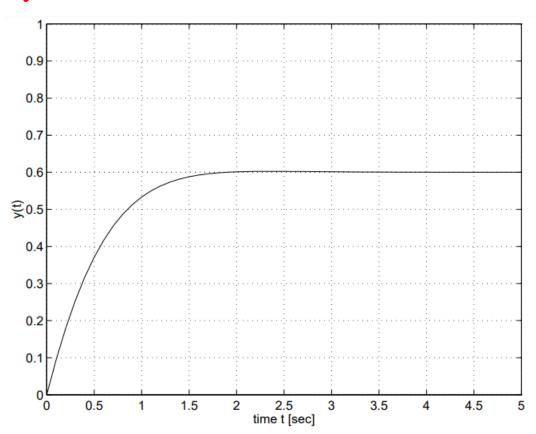
$$G(s) = \frac{(s+3)}{(s+1)(s+2)}$$

- a. Sketch the time response of the system. [5 marks]
- b. Calculate the position error constant (K_p) and steady-state error of the system toward unit-step input. [6 marks]
- c. What type of system is the system? Can you eliminate the steady-state error of this system? [4 marks]

Example of Steady-State Errors & System Type

a. The unit-step response of the given system.

Notice the steady-state output is equal to 0.6 and hence steady-state error is 0.4.



Example of Steady-State Errors & System Type

b. The position-error constant for this system is:

$$K_p = \lim_{s \to 0} \frac{(s+3)}{(s+1)(s+2)} = 1.5$$

So, the corresponding steady-state error of the system is:

$$e_{ss} = \frac{1}{1 + K_p} = \frac{1}{1 + 1.5} = 0.4$$

The unit-step response of the system is presented in the figure in part (a), from which it can be clearly seen that the steady-state output is equal to 0.6.

Hence, the steady-state error is equal to:

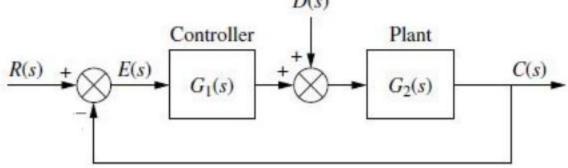
$$e(\infty) = 1 - 0.6 = 0.4$$

Example of Steady-State Errors & System Type

c. The system is a Type 0 system as it does not have any integral.

The steady-state error of the system can be eliminated by introducing an integral into the system.

• Feedback control systems are often used to compensate for disturbances or unwanted inputs that enter a system.



• For a feedback control system with a disturbance, D(s), injected between the controller and the plant, the transform of the output is:

$$C(s) = R(s) - E(s)$$

Thus

$$C(s) = E(s)G_1(s)G_2(s) + D(s)G_2(s)$$

• The equation for deriving steady-state error is:

$$E(s) = \frac{1}{1 + G_1(s)G_2(s)}R(s) - \frac{G_2(s)}{1 + G_1(s)G_2(s)}D(s) \quad \text{(Eq. 7)}$$

- The first part is relating E(s) to R(s) and the second term relating E(s) to D(s).
- Apply final value theorem to find steady-state value of the error:

$$e(\infty) = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s) - \lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

• Equation for the steady-state error for disturbance is:

$$e(\infty) = e_R(\infty) + e_D(\infty)$$

Where:

$$e_R(\infty) = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s)$$

And

$$e_D(\infty) = \lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

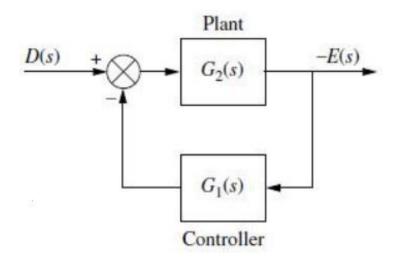
• The first term $e_R(\infty)$ is the steady-state error due to R(s) and the second term $e_D(\infty)$ is the steady-state error due to disturbance D(s).

- Assume a step disturbance D(s) = 1/s.
- Substitute this value of step disturbance into the second term of equation (7), $e_D(\infty)$, the steady-state error due to a step disturbance is:

$$e_D(\infty) = -\frac{1}{\lim_{s \to 0} \frac{1}{G_2(s)} + \lim_{s \to 0} G_1(s)}$$

• The steady-state error produced by a step disturbance can be reduced by increasing the dc gain of $G_1(s)$ or decreasing the dc gain of $G_2(s)$.

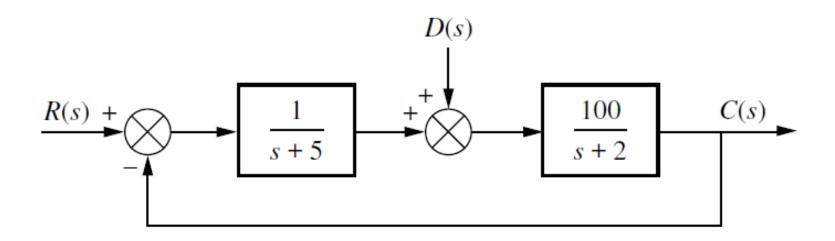
- If we want to minimize the steady-state value of E(s), (the output), we must increase the dc gain of $G_1(s)$ so that a lower E(s) be fed back to match the steady-state value of D(s) or decrease the dc value of $G_2(s)$.
- This yields a smaller value of $e(\infty)$, as predicted by the feedback formula.



Example of Steady-State Error for Disturbances

Find the total steady-state error due to a unit step input and a unit step disturbance in the system of the figure below.

[8 marks]



Example of Steady-State Error for Disturbances

 From the given block diagram of the system, the equation for the steady-state error of the system is:

$$e(\infty) = \lim_{s \to 0} \frac{sR(s) - sD(s)G_2(s)}{1 + G_1(s)G_2(s)}$$

Where:

$$G_1(s) = \frac{1}{s+5}$$
 and $G_2(s) = \frac{100}{s+2}$

• From the problem statement, the input signal is:

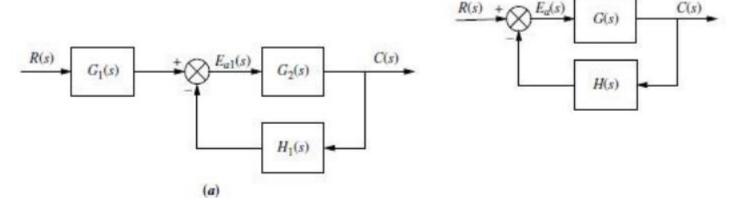
$$R(s) = D(s) = \frac{1}{s}$$

Example of Steady-State Error for Disturbances

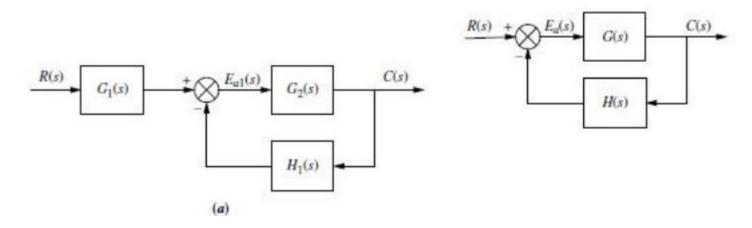
Hence, the steady-state error of the system is:

$$e(\infty) = \lim_{s \to 0} \frac{s\left(\frac{1}{s}\right) - s\left(\frac{1}{s}\right)\left(\frac{100}{s+2}\right)}{1 + \left(\frac{1}{s+5}\right)\left(\frac{100}{s+2}\right)}$$
$$= \lim_{s \to 0} \frac{1 - \left(\frac{100}{s+2}\right)}{1 + \left(\frac{1}{s+5}\right)\left(\frac{100}{s+2}\right)} = -\frac{49}{11}$$

- A general feedback system, showing the input transducer, $G_1(s)$, controller and plant, $G_2(s)$, and feedback, $H_1(s)$, is shown in Figure (a).
- Pushing the input transducer to the right past the summing junction yields the general non-unity feedback system shown in Figure (b), where $G(s) = G_1(s)G_2(s)$ and $H(s) = H_1(s)/G_1(s)$.



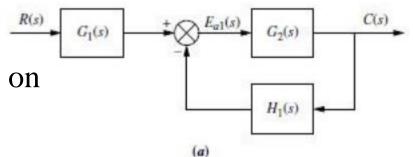
- Unlike a unity feedback system, where H(s) = 1, the error in non-unity feedback is not the difference between the input and the output.
- For this case we call the signal at the output of the summing junction the actuating signal, $E_a(s)$.
- If r(t) and c(t) have the same units, we can find the steady-state error, $e(\infty) = r(\infty) c(\infty)$.



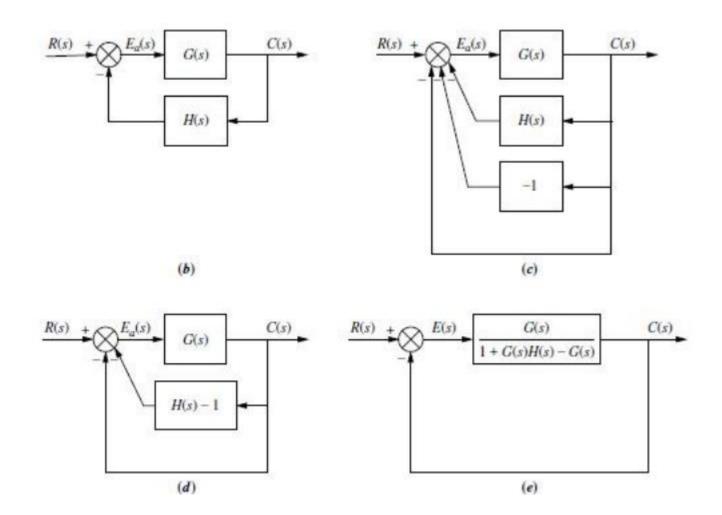
- To find out the steady-state value of the actuating signal, $E_{a1}(s)$, in figure (a), there is no restriction that the input and output units be the same, since we are finding the steady-state difference between signals at the summing junction, which do have the same units.
- The steady-state actuating signal for Figure (a) is:

$$e_{a1}(\infty) = \lim_{s \to 0} \frac{sR(s)G_1(s)}{1 + G_2(s)H_1(s)}$$

• The first step is to show explicitly E(s) = R(s) - C(s) on the block diagram.



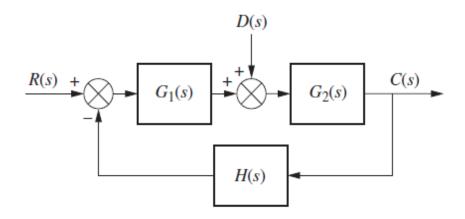
• Then, we form an equivalent unity feedback system from a general non-unity feedback system as illustrated below.



- Take the non-unity feedback control system shown in Figure

 (b) and form a unity feedback system by adding and subtracting unity feedback paths, as shown in Figure (c).
 This step requires that input and output units be the same.
- Next combine H(s) with the negative unity feedback, as shown in Figure (d).
- Finally, combine the feedback system consisting of G(s) and [H(s) 1], leaving an equivalent forward path and a unity feedback, as shown in Figure (e).
- Notice that the final figure shows E(s) = R(s) C(s) explicitly.

• Let us look at the general system of the figure below which has both a disturbance and non-unity feedback.



• We will derive a general equation for the steady-state error and then determine the parameters of the system in order to drive the error to zero for step inputs and step disturbances.

• The steady-state error for this system, $e(\infty) = r(\infty) - c(\infty)$, is:

$$e(\infty) = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} \left\{ \left[1 - \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)} \right] R(s) - \left[\frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)} \right] D(s) \right\}$$

• Now limiting the discussion to step inputs and step disturbances, where R(s) = D(s) = 1/s, the above equation becomes:

$$e(\infty) = \lim_{s \to 0} sE(s)$$

$$= \left[1 - \frac{\lim_{s \to 0} G_1(s)G_2(s)}{1 + \lim_{s \to 0} G_1(s)G_2(s)H(s)} \right]$$

$$- \left[\frac{\lim_{s \to 0} G_2(s)}{1 + \lim_{s \to 0} G_1(s)G_2(s)H(s)} \right]$$

For zero error,

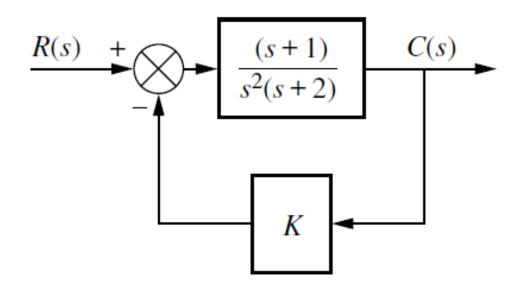
$$\frac{\lim_{s \to 0} G_1(s) G_2(s)}{1 + \lim_{s \to 0} G_1(s) G_2(s) H(s)} = 1$$

And

$$\frac{\lim_{s \to 0} G_2(s)}{1 + \lim_{s \to 0} G_1(s) G_2(s) H(s)} = 0$$

- The two equations above can always be satisfied if:
 - (1) the system is stable,
 - (2) $G_1(s)$ is a Type 1 system,
 - (3) $G_2(s)$ is a Type 0 system, and
 - (4) H(s) is a Type 0 system with a dc gain of unity.

Given the non-unity feedback system as shown in the figure given below, find the following:

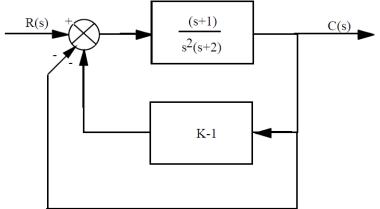


a. The system type.

- [4 marks]
- b. The value of *K* to yield 0.1% error in the steady state.

[14 marks]

a. Produce a unity-feedback system of the system as shown in the figure below.



Thus, the unity-feedback system of the system is:

$$G_e(s) = \frac{\frac{(s+1)}{s^2(s+2)}}{1 + \frac{(s+1)(K-1)}{s^2(s+2)}} = \frac{s+1}{s^3 + 2s^2 + (K-1)s + (K-1)}$$

As shown above, the system is Type 0.

b. Since the system is Type 0, the appropriate static error constant is K_p . Thus, the steady-state error due to step input is:

$$e_{step}(\infty) = 0.001 = \frac{1}{1 + K_p}$$

Therefore,

$$K_p = 999 = \frac{1}{K - 1}$$

Hence, K = 1.001001.

Check stability: Using original block diagram, the closed-loop transfer function of the system is:

$$T(s) = \frac{\frac{(s+1)}{s^2(s+2)}}{1 + \frac{K(s+1)}{s^2(s+2)}} = \frac{s+1}{s^3 + 2s^2 + Ks + K}$$

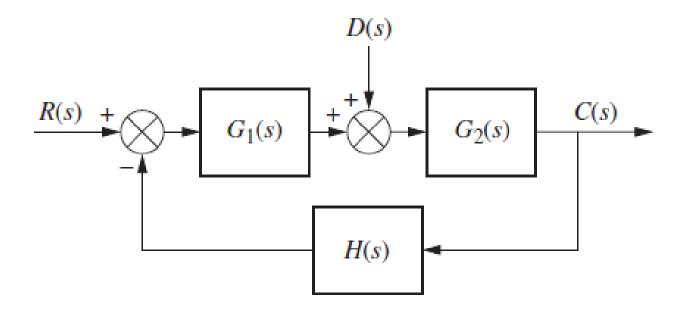
Making a Routh table:

Therefore, system is stable and steady-state error calculations are valid.

s^3	1	K
s^2	2	K
s^1	K	0
	$\frac{\overline{2}}{2}$	
s^0	K	0

Non-Unity Feedback Steady-State & Disturbance

• Let us look at the general system of the figure below which has both a disturbance and non-unity feedback.



• Derive a general equation for the steady-state error and then determine the parameters of the system in order to drive the error to zero for step inputs and step disturbances.

Non-Unity Feedback Steady-State & Disturbance

• The steady-state error for this system, $e(\infty) = r(\infty) - c(\infty)$, is:

$$e(\infty) = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} \left\{ \left[1 - \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)} \right] R(s) - \left[\frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)} \right] D(s) \right\}$$

• Now limiting the discussion to step inputs and step disturbances, where R(s) = D(s) = 1/s, the above equation becomes:

$$e(\infty) = \lim_{s \to 0} sE(s)$$

$$= \left[1 - \frac{\lim_{s \to 0} G_1(s) G_2(s)}{1 + \lim_{s \to 0} G_1(s) G_2(s) H(s)}\right] - \left[\frac{\lim_{s \to 0} G_2(s)}{1 + \lim_{s \to 0} G_1(s) G_2(s) H(s)}\right]$$

Non-Unity Feedback Steady-State & Disturbance

• For zero error,

$$\frac{\lim_{s \to 0} G_1(s) G_2(s)}{1 + \lim_{s \to 0} G_1(s) G_2(s) H(s)} = 1$$

And

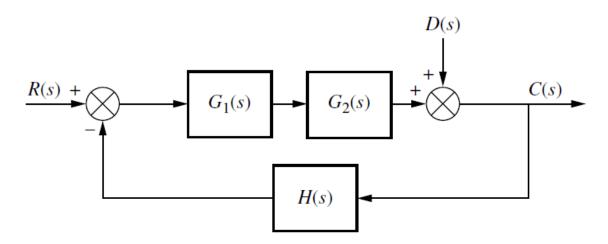
$$\frac{\lim_{s \to 0} G_2(s)}{1 + \lim_{s \to 0} G_1(s) G_2(s) H(s)} = 0$$

- The two equations above can always be satisfied if:
 - (1) the system is stable,
 - (2) $G_1(s)$ is a Type 1 system,
 - (3) $G_2(s)$ is a Type 0 system, and
 - (4) H(s) is a Type 0 system with a dc gain of unity.

Example of Non-Unity S/S & Disturbance

Given the system shown in the figure below, do the following:

- a. Derive the expression for the error, E(s) = R(s) C(s), in terms of R(s) and D(s). [8 marks]
- b. Derive the steady-state error, $e(\infty)$, if R(s) and D(s) are unit step functions. [4 marks]
- c. Determine the attributes of $G_1(s)$, $G_2(s)$, and H(s) necessary for the steady-state error to become zero. [2 marks]



Example of Non-Unity S/S & Disturbance

a. The error in the system is calculated from:

$$E(s) = R(s) - C(s)$$

But, considering the disturbance, the output of the system is:

$$C(s) = [R(s) - C(s)H(s)]G_1(s)G_2(s) + D(s)$$

Solving for C(s):

$$C(s) = \frac{R(s)G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)} + \frac{D(s)}{1 + G_1(s)G_2(s)H(s)}$$

Example of Non-Unity S/S & Disturbance

Substituting the above equation into E(s), the equation becomes:

$$E(s) = \left[1 - \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}\right]R(s) - \left[\frac{1}{1 + G_1(s)G_2(s)H(s)}\right]D(s)$$

b. For R(s) = D(s) = 1/s, the steady-state error of the system is:

$$e(\infty) = \lim_{s \to 0} sE(s)$$

$$=1-\frac{\lim_{s\to 0}G_1(s)G_2(s)}{1+\lim_{s\to 0}G_1(s)G_2(s)H(s)}-\frac{1}{1+\lim_{s\to 0}G_1(s)G_2(s)H(s)}$$

c. Zero error if $G_1(s)$ and/or $G_2(s)$ is Type 1. Also, H(s) is Type 0 with unity DC gain.

Sensitivity of Parameters on Steady-State

- Sensitivity is the degree to which changes in system parameters affect system transfer functions, and hence performance.
- A system with zero sensitivity (that is, changes in the system parameters have no effect on the transfer function) is ideal.
- The greater the sensitivity, the less desirable the effect of a parameter change.

Sensitivity of Parameters on Steady-State

• For example, assume the function of:

$$F = \frac{K}{(K+a)}$$

- If K = 10 and a = 100, then F = 0.091.
- If parameter a triples to 300, then F = 0.032.
- We see that a fractional change in parameter a of (300-100)/100 = 2 (e.g. 200% change) yields a change in the function F of (0.032 0.091)/0.091 = 0.65 (e.g. 65% change).
- Thus, the function F has reduced sensitivity to changes in parameter a.

Sensitivity of Parameters on Steady-State

- With feedback, it reduces sensitivity to parameter changes.
- Sensitivity is ratio of the fractional change in the function to the fractional change in the parameter as the fractional change of the parameter approaches zero.
- That is,

$$S_{F:P} = \lim_{\Delta P \to 0} \frac{\text{Fractional change in the function, } F}{\text{Fractional change in the parameter, } P}$$

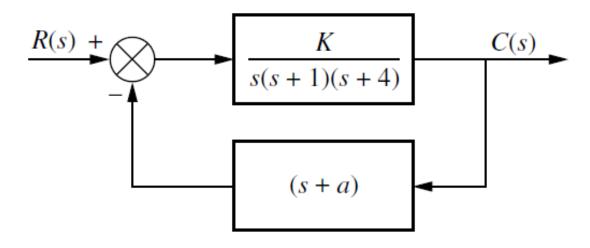
$$= \lim_{\Delta P \to 0} \frac{\Delta F / F}{\Delta P / P} = \lim_{\Delta P \to 0} \frac{P \Delta F}{F \Delta P}$$

Which reduces to:

$$S_{F:P} = \frac{P}{F} \left(\frac{\delta F}{\delta P} \right)$$

Example of Sensitivity of S/S Parameters

For a system as shown in the figure below, assume it is given a step input.



- a. Find the sensitivity of the steady-state error to parameter *a*. [6 marks]
- b. Plot the sensitivity of the system as a function of parametera. [5 marks]

Example of Sensitivity of S/S Parameters

a. First, find the forward transfer function of an equivalent unity-feedback system.

$$G_e(s) = \frac{\frac{K}{s(s+1)(s+4)}}{1 + \frac{K(s+a-1)}{s(s+1)(s+4)}}$$
$$= \frac{K}{s^3 + 5s^2 + (K+4)s + K(a-1)}$$

Thus, steady-state error of the system is:

$$e(\infty) = \frac{1}{1 + K_p} = \frac{1}{a + \frac{K}{K(a-1)}} = \frac{a-1}{a}$$

Example of Sensitivity of S/S Parameters

Finding the sensitivity of $e(\infty)$, it is:

$$S_{e:a} = \frac{a}{e} \left(\frac{\delta e}{\delta a} \right) = \frac{a}{\left(\frac{a}{a-1} \right)} \left[\frac{a - (a-1)}{a^2} \right] = \frac{a-1}{a^2}$$

b. The plot of sensitivity of the system as a function of parameter *a* is as shown in the figure below.

