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• Introduction to Controller and Compensator in the 

Feedback Control Systems.

• Controllers (e.g. Proportional Controller, Integral 

Controller, Derivative Controller, Proportional-Integral 

Controller, Proportional-Derivative Controller, and 

Proportional-Integral-Derivative Controller).

• Compensators (e.g. Lead Compensator, Lag 

Compensator, and Lead-Lag Compensator).

• Introduction to Controller/Compensator Design.

Topics



Controller and Compensator

• Controller or compensator changes the behaviour of the 

control system.

• Controller is an element whose role is to maintain a physical 

quantity in a desired level. 

• Compensator is an element for modification of system 

dynamics e.g. to improve characteristics of the open-loop 

plant so that it can safely be used with feedback control.

Note: 𝐺𝑐 = controller or compensator and 𝐺𝑝 = plant. 



Controller and Compensator

• Three main types of controller:

• P (gain or proportional) controller.

• D (derivative) controller.

• I (integral) controller.

• PD (proportional derivative) controller.

• PI (proportional integral) controller.

• PID (proportional, integral, and derivative) controller.

• Three main types of compensator:

• Lag compensator.

• Lead compensator.

• Lead-lag compensator.



Controller and Compensator

• Controllers or compensators:

• They change the natural response of the system.

• They adjust the poles of the system.

• They help achieve the desired output from a given input.



• For a unity feedback system as shown below, a proportional 

controller (𝐺𝑐(𝑠)) connected in series with the plant (𝐺(𝑠)).

• The transfer function of the proportional controller is:

𝐺𝑐(𝑠) = 𝐾

• Thus

𝑇 𝑠 =
𝐺𝑐 𝑠 𝐺 𝑠

1 + 𝐺𝑐 𝑠 𝐺(𝑠)
=

𝐾𝐺 𝑠

1 + 𝐾𝐺(𝑠)

P Controller 



• The frequency response of a P controller is as shown below.

Characteristics of P Controllers

• Magnitude plot:

• All frequency: 

20 log 𝐾

• Phase-shift plot:

• All frequency: 0

Improve transient response (up 
to a point):

• Increases the gain of the 

system, often result in a non-

zero steady-state error, and 

relatively easy to implement.



• For a proportional controller (𝐺𝑐(𝑠)) attached in the feedback 

path, consider a plant in the forward path (𝐺(𝑠)).

• The transfer function of the closed-loop feedback system is:

𝑇 𝑠 =
𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 − (−𝐺𝑐 𝑠 )𝐺(𝑠) 
=

𝐺(𝑠)

1 + 𝐾𝐺(𝑠)

P Controller 



• Unlike previous set up, notice that the controller is placed in 

the feedback loop of the given control system.

• Notice the negative sign in the equation for the transfer 

function equation of the feedback system.

• If the size of the loop gain is large, that is if: 

𝐾𝐺(𝑠) ≫ 1

• Then, the gain of the closed-loop system approximately is the 

gain of the controller:

𝑇(𝑠) ≈
𝐺(𝑠)

𝐾𝐺(𝑠)
=

1

𝐾

P Controller



• For a proportional controller (𝐺𝑐(𝑠)) is attached to the feedback 

path and the plant in the forward path is a first-order system 

𝐺(𝑠). 

• The transfer function equations of both the controller and the 

plant are:

𝐺𝑐 𝑠 = 𝐾 and 𝐺 𝑠 =
𝐴

1 + 𝑠𝑇

P Controller in First-Order System



• In term of 𝑇 𝑠 = 𝐶(𝑠)/𝑅(𝑠), closed-loop transfer function 

equation of the system is:

𝑇 𝑠 =
𝐺(𝑠)

1 − −𝐺𝑐 𝑠 𝐺(𝑠)
=

𝐴
1 + 𝑠𝑇

1 − −𝐾
𝐴

1 + 𝑠𝑇

=
𝐴

1 + 𝑠𝑇 + 𝐴𝐾

P Controller in First-Order System

• Thus, we can see that the time constant of the closed-loop 

first-order system depends on both gains of the plant 𝐴 and 

controller 𝐾. 

• The gain of the closed-loop system depends on the gain of 

the plant 𝐴.



Example of P Controller in First-Order System

The open-loop transfer function equation of a first-order system 

is given below.

𝐺 𝑠 =
50

𝑠 + 1

𝐺𝑐 𝑠 = 𝐾

a. Determine the time constant of the open-loop system. 

       [2 marks]

b. If a proportional controller connected in series with the system 

as shown below, determine the gain of proportional controller 

(𝐾) that will change the time constant (𝜏) of the closed-loop 

system to become 0.1 second.   [6 marks]



Example of P Controller in First-Order System

a. The time constant of the open-loop first-order system is:

𝐺 𝑠 =
50𝐾

𝑠 + 𝑎
Thus

𝜏 =
1

𝑎
=

1

1
= 1 s

b. The gain of the proportional controller (𝐾) that will change 

the time constant of the closed-loop first order system to 

become 0.1 second is determined as follows.

𝑇 𝑠 =
𝐺 𝑠

1 + 𝐺 𝑠 𝐻 𝑠
=

𝐾
50

𝑠 + 1

1 + 𝐾
50

𝑠 + 1

=
50𝐾

𝑠 + 1 + 50𝐾



Example of P Controller in First-Order System

Thus, equate the time constant with the part of the transfer 

function equation.

𝜏 =
1

𝑎
=

1

1 + 50𝐾

For the time constant of 0.1 second, the gain of the 

proportional controller is calculated from:

0.1 =
1

1 + 50𝐾

Rearrange the equation above, the value of 𝐾 is:

𝐾 =
10 − 1

50
= 0.18



P Controller in Second-Order System

• For a unity feedback second-order system (𝐺(𝑠)) with a 

proportional controller (𝐻(𝑠)) added as shown below.

𝑇 𝑠 =
𝐻 𝑠 𝐺 𝑠

1 + 𝐻 𝑠 𝐺(𝑠)

=
𝜔𝑛

2𝐾

𝑠2 + 2𝜔𝑛𝜁𝑠 + 1 + 𝐾 𝜔𝑛
2

• Unless told otherwise, assume 𝐷(𝑠) = 0, if 𝐺 𝑠 = 𝜔𝑛
2/(

)
𝑠2 +

2𝜔𝑛𝜁𝑠 + 𝜔𝑛
2  and 𝐻 𝑠 = 𝐾:



P Controller in Second-Order System

• As proven for first order system before, higher gain is typically 

yielding a faster response, but it is at the expense of a more 

oscillatory response. 

• If the transient response of 

the system is too oscillatory, 

it will take time before the 

system settles to its final 

value. 

• We cannot, therefore, just 

increase the controller gain.

• We can determine values for 1 + 𝐾 to make the system: 

undamped, underdamped, critically damped, and overdamped.



P Controller in Second-Order System

• For a second-order system with a proportional controller (𝑀(𝑠)) 

and non-unity feedback as shown below.

• If 𝐷(𝑠) = 0, the open-loop gain of the system is:

𝐶(𝑠)

𝑅(𝑠)
= 𝐻 𝑠 𝐺(𝑠)



P Controller in Second-Order System

• The transfer function equation of the closed-loop system is:

𝑇 𝑠 =
𝐶 𝑠

𝑅 𝑠
=

𝐻 𝑠 𝐺(𝑠)

1 + 𝑀(𝑠)𝐻 𝑠 𝐺(𝑠)

• Focusing on the characteristic equation of the transfer 

function, it is:

1 + 𝑀(𝑠)𝐻 𝑠 𝐺(𝑠)

• Notice that 𝑀(𝑠) influences the characteristic equation.

• As a result, the variable 𝑀(𝑠) affects transient response of 

the closed-loop system as specified above. 



P Controller in Second-Order System

• Applying final value theorem, the steady-state equation of the 

system for a step input is:

𝐶 ∞ = lim
𝑠→0

𝑠 𝑅(𝑠)
𝐻 𝑠 𝐺(𝑠)

1 + 𝑀(𝑠)𝐻 𝑠 𝐺(𝑠)

 = lim
𝑠→0

𝑠
1

𝑠

𝐻 𝑠 𝐺(𝑠)

1 + 𝑀(𝑠)𝐻 𝑠 𝐺(𝑠)

≅
1

𝑀(𝑠)
 

• Thus, the variable 𝑀(𝑠) influences also the steady-state 

response of the closed loop system for a given step input.



Example of P Controller in Second-Order System

For an open-loop control system described as the transfer 

function equation given below, attempt the following tasks.

𝐺 𝑠 =
5

𝑠2 + 10𝑠 + 5

a. Derive the transfer function equation of the closed-loop 

system with a proportional controller 𝐻 𝑠 = 𝑀 added in the 

feedback loop as shown below.   [4 marks]



Example of P Controller in Second-Order System

b. If 𝑀 is 9, determine the transient response of the closed-

loop system.    [6 marks]

c. As part of design specification for the system, for a step 

input response, determine the feedback gain (𝑀) if we 

wish the steady-state error condition of the closed-loop 

system to be 0.6.    [8 marks]



Example of P Controller in Second-Order System

a. For the given second-order system with non-unity feedback, 

the transfer function of the closed-loop system is:

𝑇 𝑠 =
𝐺 𝑠

1 + 𝐺 𝑠 𝐻 𝑠

 =

5
𝑠2 + 10𝑠 + 5

1 +
5

𝑠2 + 10𝑠 + 5
𝑀

 

Rearrange the equation above, it becomes: 

 𝑇(𝑠) =
5

𝑠2 + 10𝑠 + 5 1 + 𝑀



Example of P Controller in Second-Order System

b. The transient response of the closed-loop system when 

𝑀 is 9 is:

𝑇 𝑠 =
5

𝑠2 + 10𝑠 + 5 1 + 9
=

5

𝑠2 + 10𝑠 + 50

Evaluating the characteristics equation of the closed loop 

system, its roots are:

root1,2 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

=
−10 ± 10 2 − 4 1 50

2(1)
= −5 ± 𝑗5 

The roots are complex pair, so the response of the closed-

loop system is underdamped.



Example of P Controller in Second-Order System

c. For a step input, the steady-state error of the closed-loop 

system is:

𝑒𝑠𝑡𝑒𝑝 ∞ = lim
𝑠→0

𝑠 1/𝑠

1 + 𝑇 𝑠

 = lim
𝑠→0

1

1 +
5

𝑠2 + 10𝑠 + 5 1 + 𝑀

 = lim
𝑠→0

𝑠2 + 10𝑠 + 5 1 + 𝑀

𝑠2 + 10𝑠 + 5 2 + 𝑀

=
1 + 𝑀

2 + 𝑀



Example of P Controller in Second-Order System

To achieve a steady-state error of 0.6 for the step response of 

the system, the gain of proportional controller 𝑀 is calculated 

from:

𝑒𝑠𝑡𝑒𝑝 ∞ =
1 + 𝑀

2 + 𝑀
= 0.6

Thus, the gain of the proportional controller that meets the 

design specification is:

𝑀 =
1.2 − 1

1 − 0.6
= 0.5



• In practice, the P controller is realised as a non-inverting 
amplifier with 𝑅1 and 𝑅2 forming the voltage divider part of 
the circuit.

P Controller in Practice 

• Voltage at the non-inverting 

input is:

𝑉𝑝 = 𝑉𝐼𝑁

• Due to potential divider 

arrangement in the circuit, 

the voltage at the inverting 

pin of the op amp is:

𝑉𝑛 = 𝑉𝑂𝑈𝑇

𝑅2

𝑅1 + 𝑅2



• As an example, given the non-inverting amplifier with open-

loop gain of 𝐴:

• The transfer function equation of the amplifier is:

𝑉𝑜

𝑉𝑖
=

𝐴

1 − 𝐴 −
𝑅2

𝑅1 + 𝑅2

=
𝐴 𝑅1 + 𝑅2

𝑅1 + 𝑅2 + 𝐴𝑅2

• If the loop gain 𝐴𝑅2/(𝑅1 + 𝑅2) is large, then:

𝐴𝑅2 ≫ 𝑅1 + 𝑅2

P Controller in Practice 



P Controller in Practice 

• As a result, the transfer function of the non-inverting 

amplifier is:

𝑉𝑜

𝑉𝑖
=

𝐴 𝑅1 + 𝑅2

𝐴𝑅2
=

𝑅1 + 𝑅2

𝑅2

• In the above equation, the feedback loop path is:

𝛽 =
𝑅2

𝑅1 + 𝑅2

• So, if the loop gain is large: 

𝑉𝑜

𝑉𝑖
=

𝑅1 + 𝑅2

𝑅2
=

1

𝛽



Example of P Controller in Practice 

For example, given specification of a non-inverting operational 

amplifier circuit as shown below, perform the following tasks: 

• Gain 𝐴 = 105.

• Feedback resistors: 𝑅1 = 6 k, 𝑅2 = 4 k.

a. Derive the transfer function equation of the amplifier. 

       [6 marks]

b. Determine whether the forward-loop gain of the amplifier 

is larger than the feedback loop gain.  [4 marks]

c. Calculate the gain of the amplifier.  [4 marks]



Example of P Controller in Practice 

a. The transfer function of the op amp circuit is derived from:

𝑉𝑝 = 𝑉𝑖 (𝐸𝑞. 1)

And

𝑉𝑛 = 𝑉𝑜

𝑅2

𝑅1 + 𝑅2
= 𝑉𝑜

4 kΩ

6 kΩ + 4 kΩ
= 0.4𝑉𝑜 (𝐸𝑞. 2)

For the non-inverting amplifier with an open-loop gain of 𝐴, 

the output voltage is:

𝑉𝑜 = 𝐴 𝑉𝑝 − 𝑉𝑛 = 𝐴 𝑉𝑖 − 0.4𝑉𝑜  (𝐸𝑞. 3)

Substituting equations (1) and (2) into equation (3), the 

transfer function equation of the op amp circuit is:

𝑉𝑜

𝑉𝑖
=

𝐴

(1 + 0.4𝐴)



Example of P Controller in Practice 

b. Consider whether the feedback loop is large, the feedback 

loop is: 

𝐴𝑅2 = 105 4 × 103 = 4 × 108

And

𝑅1 + 𝑅2 = 6 × 103 + 4 × 103 = 104

As calculated above, the feedback loop is large (e.g. 4 ×

108 ≫ 104). 

c. As a result, the overall gain of the amplifier is:

𝑉𝑜

𝑉𝑖
=

𝑅1 + 𝑅2

𝑅2
=

6 kΩ + 4 kΩ

4 kΩ
= 2.5



• For a PI Controller, its transfer function can be written as: 

𝐺𝑐 𝑠 = 𝑃 𝑠 + 𝐼 𝑠 = 𝐾1 +
𝐾2

𝑠
=

𝐾1 𝑠 + 𝐾2/𝐾1

𝑠

Where: 𝑃 𝑠 = 𝐾1 and 𝐼(𝑠) = 𝐾2/𝑠.

PI Controllers



• The frequency response of a PI controller is as shown below.

Characteristics of PI Controllers

• Magnitude plot:

• Low: -slope gain.

• Cut-off: half gain.

• High: zero gain.

• Phase-shift plot:

• Low: -90.

• Cut-off: -45.

• High: 0.

Improve steady-state error:

• Increases system type, error becomes zero, zero at 𝑧𝑐 is small 

and negative, and active circuits are required to implement.



• The functions 𝑃(𝑠) and 𝐼(𝑠) can be chosen so the (

)

s +

𝐾2/𝐾1  term (e.g. controller zero) cancels plant pole.

• Suppose the plant of a second-order system is: 

𝐺 𝑠 =
1

𝑠 + 𝑇1 𝑠 + 𝑇2

• If we apply PI to this plant, and make 𝐾2/𝐾1 = 𝑇2, then

𝑂(𝑠)

𝐸(𝑠)
= 𝐺𝑐 𝑠 𝐺 𝑠 =

1

𝑠 𝑠 + 𝑇1
 

• So, the closed-loop transfer function equation is:

𝑇 𝑠 =
𝑂(𝑠)

𝐼(𝑠)
=

𝐺𝑐 𝑠 𝐺(𝑠)

1 + 𝐺𝑐 𝑠 𝐺(𝑠)
=

1

𝑠2 + 𝑠𝑇1 + 1

Note, the 𝐼(𝑠) term means that the steady-state value is 1.

Applications of PI Controllers



• For a PD Controller, it transfer function equation:

𝐺1 𝑠 = 𝑃 𝑠 + 𝐷 𝑠 = 𝐾1 + 𝐾2𝑠 = 𝐾2 𝑠 + 𝐾1/𝐾2

Where: 𝑃(𝑠) = 𝐾1 and 𝐷(𝑠) = 𝐾2𝑠.

PD Controllers



• The frequency response of a PD controller is as shown below.

Characteristics of PD Controllers

• Magnitude plot:

• Low: zero gain.

• Cut-off: half gain.

• High: +slope gain.

• Phase-shift plot:

• Low: 0.

• Cut-off: +45.

• High: +90.

Improve transient response:

Zero at −𝑧𝑐 is selected to indicate the design point, active circuits 

are required to implement, and it can cause noise and saturation; 

implement with rate feedback or with a pole (lead). 



• We could make 𝑠 + 𝐾1/𝐾2 term to cancel plant pole. 

• If transfer function of the plant of a second order system is: 

𝐺 𝑠 =
1

𝑠 𝑠 + 𝑇

• And PD is applied and assign 𝐾1/𝐾2 = 𝑇 then:

𝑂(𝑠)

𝐸(𝑠)
= 𝐺𝑐 𝑠 𝐺(𝑠) =

1

𝑠

• So, the closed-loop transfer function equation is:

𝑇 𝑠 =
𝑂(𝑠)

𝐼(𝑠)
=

1

𝑠 + 1

Applications of PD Controllers



• For a PID Controller, its transfer function equation is:

𝐺𝑐 𝑠 = 𝑃 𝑠 + 𝐼 𝑠 + 𝐷 𝑠 = 𝐾1 +
𝐾2

𝑠
+ 𝐾3𝑠

Where: 𝑃 𝑠 = 𝐾1, 𝐼 𝑠 = 𝐾2/𝑠, and 𝐷 𝑠 = 𝐾3𝑠

PID Controllers



• Alternatively, this gives the transfer function equation of 

PID controller:

𝐺𝑐 𝑠 =
𝐾3𝑠2 + 𝐾1𝑠 + 𝐾2

𝑠

PID Controllers



Characteristics of PID Controllers

• The response of a PID controller is as shown below over 

the step and sinusoidal inputs.



Characteristics of PID Controllers

Improve steady-state error and transient response:

• Lead zero at −𝑧𝑙𝑒𝑎𝑑  is selected to indicate the design point.

• Active circuits are required to implement.

• It can cause noise and saturation; implement with rate 

feedback or with an additional pole.

• Lag zero at −𝑧𝑙𝑎𝑔 and pole at the origin improve steady-state 

error; lead zero at −𝑧𝑙𝑒𝑎𝑑  improves transient response.

• Lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, the origin.



• We could apply a PID controller to a plant of second order 

system:

𝐺 𝑠 =
1

1 + 𝑏𝑠 + 𝑎𝑠2

• Thus, set 𝐾3 = 𝑎, 𝐾1 = 𝑏, and 𝐾2 = 1, the equation is 

now: 

𝑇 𝑠 =
𝑂(𝑠)

𝐸(𝑠)
= 𝐺𝑐(𝑠)𝐺(𝑠) =

1

𝑠

• In all these examples, by careful arrangement, system is 

either first or second order.

• Cancellation may not give best response, but analysis of 

systems is easier!

Applications of PID Controllers



Lead Compensators

• With 𝑃𝑐 > 𝑍𝑐, block diagram of lead compensator.



• The transfer function of a lead compensator is:

𝐺𝑐 𝑠 =
1

𝛽

𝑠 +
1
𝑇

𝑠 +
1

𝛽𝑇

 (𝛽 < 1)

• Or

𝐺𝑙𝑒𝑎𝑑 𝑠 =
𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
 with 𝑝𝑐 > 𝑧𝑐

• This controller consists of 1 pole and 1 zero with |pole| > 

|zero|. 

Lead Compensators



Characteristics of Lead Compensators

• Frequency response plot of lead compensator.

• Magnitude plot:

• Low: zero gain.

• Cut-off: half gain.

• High: +finite gain.

• Phase-shift plot:

• Low: 0.

• Cut-off: +45.

• High: 0.

Improve transient response:

are selected to indicate design point and pole at −𝑝𝑐 is more 

negative than zero at −𝑧𝑐. Active circuits are not required.

Zero at −𝑧𝑐 and pole at −𝑝𝑐 



Characteristics of Lead Compensators

• Frequency response plot of lead compensator with varied 𝛽.



• In lead compensator, the zero is closer to the origin than the 

pole, that is:

𝑧𝑐 < 𝑝𝑐

Applications of Lead Compensators

• The lead compensator 

influences transient 

response (e.g. percentage 

overshoot and settling 

times).

• The uncompensated system is slower compared with the 

compensated systems (𝑎, 𝑏, and 𝑐 = increasing distance of 

the poles from origin).



Lag Compensators

• With 𝑍𝑐 > 𝑃𝑐, block diagram of lag compensator.



• The transfer function of the lag compensator is:

𝐺𝑐 𝑠 =
𝑠 +

1
𝑇

𝑠 +
1

𝛼𝑇

 (𝛼 > 1)

• Or

𝐺𝑙𝑎𝑔 𝑠 =
𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
 with 𝑝𝑐 < 𝑧𝑐

• This controller consists of 1 pole and 1 zero with |pole| < 

|zero|.  

Lag Compensators



Characteristics of Lag Compensators

• Frequency response plot of lag compensator.

• Magnitude plot:

• Low: +finite gain.

• Cut-off: half gain.

• High: zero gain.

• Phase-shift plot:

• Low: 0.

• Cut-off: -45.

• High: 0.
Improve steady-state error

• Error is improved, but not driven to zero.

Pole at −𝑝𝑐 is small and negative; Zero at −𝑧𝑐 is close to, and to 

the left of the pole at −𝑝𝑐; Active circuits are not required.



Characteristics of Lag Compensators

• Frequency response plot of lag compensator with varied 𝛼.



Applications of Lag Compensators

• In lag compensator, the pole is closer to the origin than 

the zero, that is:

𝑧𝑐 > 𝑝𝑐

• The lag compensator reduces steady- state error.



Lead-Lag Compensators

• Block diagram of lead-lag compensator.



Lead-Lag Compensators

• Transfer function of the lead-lag compensator:

𝐺𝑐 𝑠 =
𝑠 +

1
𝑇1

𝑠 +
𝛾
𝑇1

𝑠 +
1
𝑇2

𝑠 +
1

𝛾𝑇2

 (𝛾 > 1)

• Or

𝐺𝑙𝑒𝑎𝑑−𝑙𝑎𝑔 𝑠 = 𝐺𝑙𝑒𝑎𝑑 𝑠 𝐺𝑙𝑎𝑔 𝑠

 =
𝑠 + 𝑧𝑐(𝑙𝑎𝑔)

𝑠 + 𝑝𝑐 𝑙𝑎𝑔

𝑠 + 𝑧𝑐(𝑙𝑒𝑎𝑑)

𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑)

• The pole and zero of the lag and lead parts of the lead-lag 

controller are:

𝑝𝑐(𝑙𝑎𝑔) < 𝑧𝑐(𝑙𝑎𝑔)  and 𝑧𝑐(𝑙𝑒𝑎𝑑) < 𝑝𝑐(𝑙𝑒𝑎𝑑)



Characteristics of Lead-Lag Compensators

• The frequency response of lead-lag compensator with varied 𝛾: 



Characteristics of Lead-Lag Compensators

Lead-lag compensator improves steady-state error and transient 
response:

• Lag pole at −𝑝𝑙𝑎𝑔 and lag zero at −𝑧𝑙𝑎𝑔 are used to improve 

steady-state error.

• Lead pole at −𝑝𝑙𝑒𝑎𝑑 and lead zero at −𝑧𝑙𝑒𝑎𝑑  are used to 

improve transient response.

• Lag pole at −𝑝𝑙𝑎𝑔 is small and negative.

• Lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, lag pole at −𝑝𝑙𝑎𝑔

• Lead zero at −𝑧𝑙𝑒𝑎𝑑  and the lead pole at −𝑝𝑙𝑒𝑎𝑑 are selected to 

indicate the design point.

• Lead pole at −𝑝𝑙𝑒𝑎𝑑 is more negative than lead zero at −𝑧𝑙𝑒𝑎𝑑.

• Active circuits are not required to implement.



Applications of Lead-Lag Compensators

• Considering the transfer function equation of the second-order 

plant is: 

𝐺(𝑠) =
𝐾

𝑠 + 𝑇1 𝑠 + 𝑇2
 

• For improving transient response, we can make 𝑧𝑐 in the 𝐺𝑐 𝑠  

to be equal to largest of 𝑇1 and 𝑇2, say 𝑇2, to speed up system. 

• Then, the open-loop transfer function of the system is:

𝑂(𝑠)

𝐸(𝑠)
= 𝐺𝑐 𝑠 𝐺 𝑠

 =
𝑠 + 𝑧𝑐 𝑙𝑎𝑔

𝑠 + 𝑝𝑐 𝑙𝑎𝑔

𝑠 + 𝑧𝑐 𝑙𝑒𝑎𝑑

𝑠 + 𝑝𝑐 𝑙𝑒𝑎𝑑

𝐾

𝑠 + 𝑇1 𝑠 + 𝑇2



Applications of Lead-Lag Compensators

• Thus, the transfer function of closed-loop system is:

𝑇 𝑠 =
𝑂(𝑠)

𝐼(𝑠)
=

Forward

1 − Loop
 

• This gives the closed-loop transfer function equation:

𝑇 𝑠 =
𝑂(𝑠)

𝐼(𝑠)
=

𝐾

𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑) 𝑠 + 𝑇1

1 − −1
𝐾

𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑) 𝑠 + 𝑇1

=
𝐾

𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑) 𝑠 + 𝑇1 + 𝐾



Applications of Lead-Lag Compensators

𝑇(𝑠) =
𝐾

𝑠2 + 𝑠 𝑝𝑐(𝑙𝑒𝑎𝑑) + 𝑇1 + 𝑝𝑐(𝑙𝑒𝑎𝑑)𝑇1 + 𝐾

• This case is a further example of pole-zero cancellation for 

system improvement. 

• Note: a pole is like 1 + 𝑠𝑇 term on denominator and a zero is 

such a term on numerator.

• For improving the steady-state condition of the system, we 

can make 𝑧𝑐 of the lead part in the 𝐺𝑐 𝑠  to be equal to the 

smaller of 𝑇1 and 𝑇2, say 𝑇1, to remove more dominant pole in 

the system. 



Lead-Lag Compensator Characteristics

• Then, the pole in the lead part is used to cancel the zero of 

the lag part of the compensator.

• This leaves the pole of the lag part to be varied and assign 

to be very close to the origin e.g. 𝑝𝑐(𝑙𝑎𝑔) ≅ 0 (to simulate 

an integral function like to the system). 

𝑇 𝑠 =
𝐾

𝑠 + 𝑝𝑐(𝑙𝑎𝑔) 𝑠 + 𝑇2 + 𝐾
=

𝐾

𝑠 𝑠 + 𝑇2 + 𝐾

• Thus, this would improve the steady-state condition of the 

system by reducing or removing the steady-state error in 

the system.



Intro to Controller/Compensator Design

• We will focus on modifying system characteristics by 

applying feedback. 

• Furthermore, we will be able to tailor the closed-loop 

transfer function with the addition of a compensator.

• Compensator design is a compromise between two 

competing goals. 

• Performance:  Keeping the open loop gain high reduces 

system errors and the effects of disturbances.

• Stability: The closed loop system must be kept stable by 

carefully managing the gain where the phase 

approaches −180°.



Intro to Controller/Compensator Design

• Compensator design can often be philosophically reduced 

to two (inter-related) problems: 

• one operating at 

low frequencies to 

achieve the 

required 

performance, 

• the other at high 

frequency to ensure 

stability.



Methods for Controller/Compensator Design

There are a variety of approaches to designing a controller of 

compensator:

1. Choose a compensator structure and then tune manually.

2. Choose a compensator model and tune using a “recipe” 

(e.g.  Ziegler-Nichols).

3. Use a model and solve for desired pole locations.

4. Measure the system performance and use a graphical 

technique.

5. Use a mathematical model with a graphical technique.

6. Use mathematical tools to achieve optimal performance  

(State-Space Analysis).



Controller/Compensator Design in the Course

• In the remaining lectures, we will focus on the graphical 

methods which form the classical control .

• These are mainly about items 3 and 5 in the list.



Convention for System Topology and Notation

• We will generally design out controller or compensators 

assuming unity gain feedback with the compensator 𝐶(𝑠) 

placed in the forward path. 

• Remember that this is equivalent to a system with the 

controller or compensator in the feedback path.
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