

Introduction to Controllers and Compensators

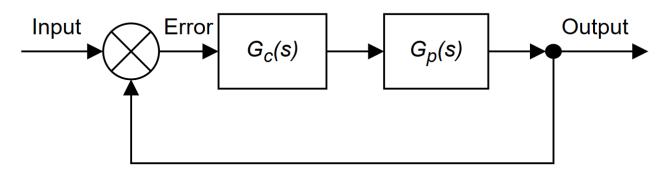
XMUT315 Control Systems Engineering

Topics

- Introduction to Controller and Compensator in the Feedback Control Systems.
- Controllers (e.g. Proportional Controller, Integral Controller, Derivative Controller, Proportional-Integral Controller, Proportional-Derivative Controller, and Proportional-Integral-Derivative Controller).
- Compensators (e.g. Lead Compensator, Lag Compensator, and Lead-Lag Compensator).
- Introduction to Controller/Compensator Design.

Controller and Compensator

- Controller or compensator changes the behaviour of the control system.
 - Controller is an element whose role is to maintain a physical quantity in a desired level.
 - Compensator is an element for modification of system dynamics e.g. to improve characteristics of the open-loop plant so that it can safely be used with feedback control.



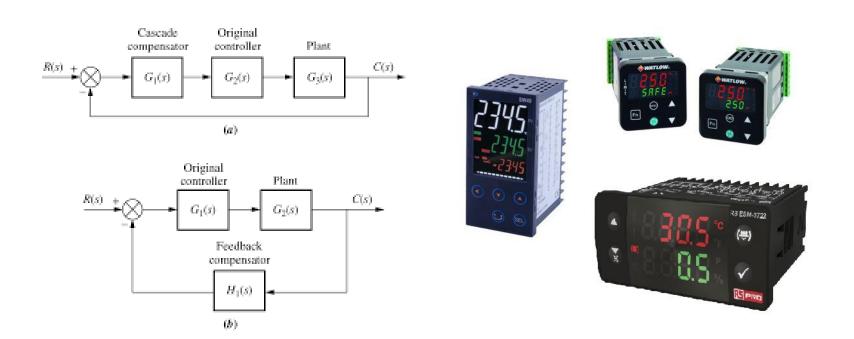
Note: G_c = controller or compensator and G_p = plant.

Controller and Compensator

- Three main types of controller:
 - P (gain or proportional) controller.
 - D (derivative) controller.
 - I (integral) controller.
 - PD (proportional derivative) controller.
 - PI (proportional integral) controller.
 - PID (proportional, integral, and derivative) controller.
- Three main types of compensator:
 - Lag compensator.
 - Lead compensator.
 - Lead-lag compensator.

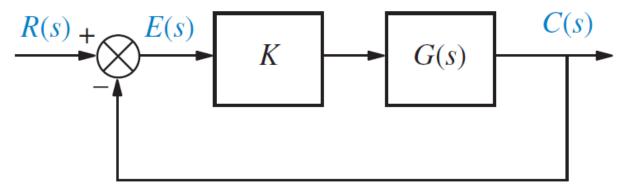
Controller and Compensator

- Controllers or compensators:
 - They change the natural response of the system.
 - They adjust the poles of the system.
 - They help achieve the desired output from a given input.



P Controller

• For a unity feedback system as shown below, a proportional controller $(G_c(s))$ connected in series with the plant (G(s)).



The transfer function of the proportional controller is:

$$G_c(s) = K$$

Thus

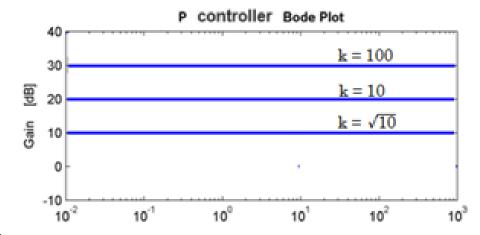
$$T(s) = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)} = \frac{KG(s)}{1 + KG(s)}$$

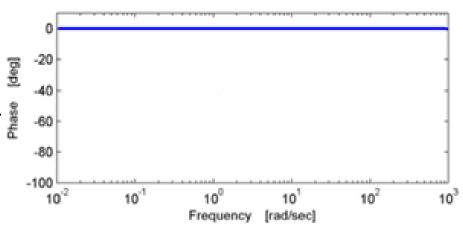
Characteristics of P Controllers

- The frequency response of a P controller is as shown below.
- Magnitude plot:
 - All frequency:20 log *K*
- Phase-shift plot:
 - All frequency: 0°

Improve transient response (up to a point):

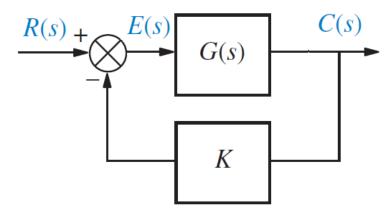
 Increases the gain of the system, often result in a nonzero steady-state error, and relatively easy to implement.





P Controller

• For a proportional controller $(G_c(s))$ attached in the feedback path, consider a plant in the forward path (G(s)).



The transfer function of the closed-loop feedback system is:

$$T(s) = \frac{C(s)}{R(s)} = \frac{G(s)}{1 - (-G_c(s))G(s)} = \frac{G(s)}{1 + KG(s)}$$

P Controller

- Unlike previous set up, notice that the controller is placed in the feedback loop of the given control system.
- Notice the negative sign in the equation for the transfer function equation of the feedback system.
- If the size of the loop gain is large, that is if:

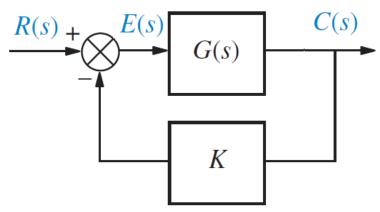
$$|KG(s)| \gg 1$$

 Then, the gain of the closed-loop system approximately is the gain of the controller:

$$T(s) \approx \frac{G(s)}{KG(s)} = \frac{1}{K}$$

P Controller in First-Order System

• For a proportional controller $(G_c(s))$ is attached to the feedback path and the plant in the forward path is a first-order system G(s).



 The transfer function equations of both the controller and the plant are:

$$G_c(s) = K$$
 and $G(s) = \left(\frac{A}{1 + sT}\right)$

P Controller in First-Order System

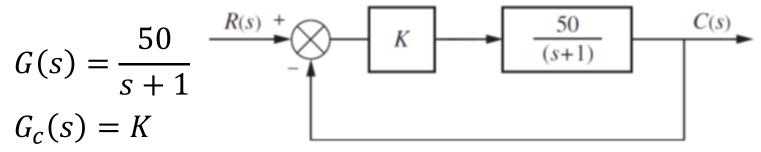
• In term of T(s) = C(s)/R(s), closed-loop transfer function equation of the system is:

$$T(s) = \frac{G(s)}{1 - (-G_c(s))G(s)} = \frac{\left(\frac{A}{1 + sT}\right)}{1 - (-K)\left(\frac{A}{1 + sT}\right)} = \frac{A}{1 + sT + AK}$$

- Thus, we can see that the time constant of the closed-loop first-order system depends on both gains of the plant A and controller K.
- The gain of the closed-loop system depends on the gain of the plant A.

Example of P Controller in First-Order System

The open-loop transfer function equation of a first-order system is given below.



a. Determine the time constant of the open-loop system.

[2 marks]

b. If a proportional controller connected in series with the system as shown below, determine the gain of proportional controller (K) that will change the time constant (τ) of the closed-loop system to become 0.1 second. [6 marks]

Example of P Controller in First-Order System

a. The time constant of the open-loop first-order system is:

$$G(s) = \frac{50K}{s+a}$$

Thus

$$\tau = \frac{1}{a} = \frac{1}{1} = 1 \text{ s}$$

b. The gain of the proportional controller (K) that will change the time constant of the closed-loop first order system to become 0.1 second is determined as follows.

$$T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{K\left(\frac{50}{s+1}\right)}{1 + K\left(\frac{50}{s+1}\right)} = \frac{50K}{s+1+50K}$$

Example of P Controller in First-Order System

Thus, equate the time constant with the part of the transfer function equation.

$$\tau = \frac{1}{a} = \frac{1}{1 + 50K}$$

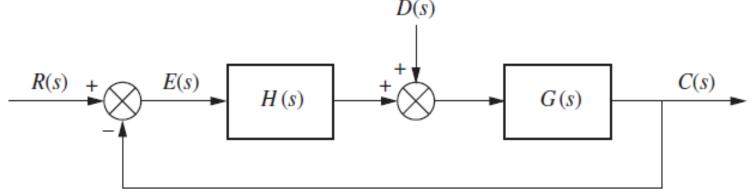
For the time constant of 0.1 second, the gain of the proportional controller is calculated from:

$$0.1 = \frac{1}{1 + 50K}$$

Rearrange the equation above, the value of K is:

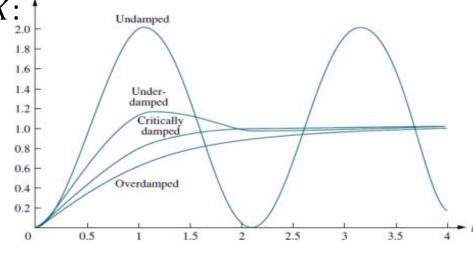
$$K = \frac{10 - 1}{50} = 0.18$$

• For a unity feedback second-order system (G(s)) with a proportional controller (H(s)) added as shown below.

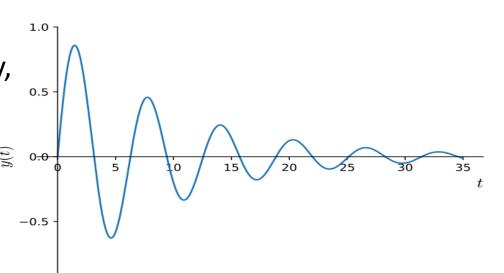


• Unless told otherwise, assume D(s) = 0, if $G(s) = \omega_n^2/(s^2 + 2\omega_n\zeta s + \omega_n^2)$ and H(s) = K:

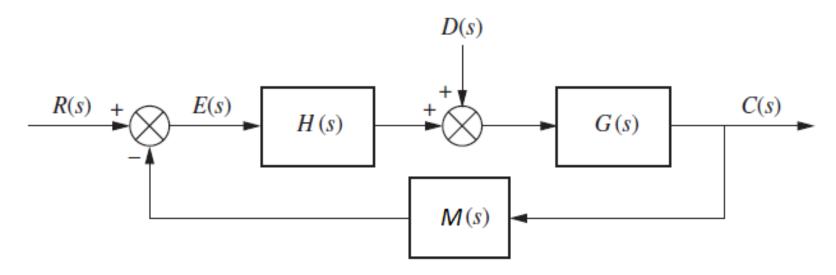
$$T(s) = \frac{H(s)G(s)}{1 + H(s)G(s)}$$
$$= \frac{\omega_n^2 K}{s^2 + 2\omega_n \zeta s + (1 + K)\omega_n^2}$$



- We can determine values for 1 + K to make the system: undamped, underdamped, critically damped, and overdamped.
- As proven for first order system before, higher gain is typically yielding a faster response, but it is at the expense of a more oscillatory response.
- If the transient response of the system is too oscillatory, it will take time before the system settles to its final salvalue.
- We cannot, therefore, just increase the controller gain.



• For a second-order system with a proportional controller (M(s)) and non-unity feedback as shown below.



• If D(s) = 0, the open-loop gain of the system is:

$$\frac{C(s)}{R(s)} = H(s)G(s)$$

• The transfer function equation of the closed-loop system is:

$$T(s) = \frac{C(s)}{R(s)} = \frac{H(s)G(s)}{1 + M(s)H(s)G(s)}$$

 Focusing on the characteristic equation of the transfer function, it is:

$$1 + M(s)H(s)G(s)$$

- Notice that M(s) influences the characteristic equation.
- As a result, the variable M(s) affects transient response of the closed-loop system as specified above.

 Applying final value theorem, the steady-state equation of the system for a step input is:

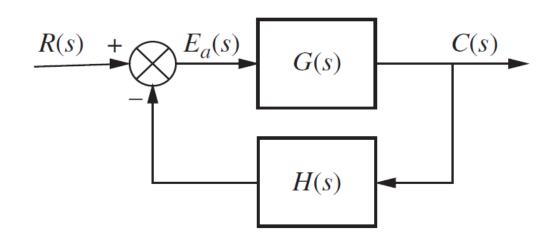
$$C(\infty) = \lim_{s \to 0} s (R(s)) \frac{H(s)G(s)}{1 + M(s)H(s)G(s)}$$
$$= \lim_{s \to 0} s \left(\frac{1}{s}\right) \left(\frac{H(s)G(s)}{1 + M(s)H(s)G(s)}\right)$$
$$\cong \frac{1}{M(s)}$$

• Thus, the variable M(s) influences also the steady-state response of the closed loop system for a given step input.

For an open-loop control system described as the transfer function equation given below, attempt the following tasks.

$$G(s) = \frac{5}{s^2 + 10s + 5}$$

a. Derive the transfer function equation of the closed-loop system with a proportional controller H(s) = M added in the feedback loop as shown below. [4 marks]



b. If *M* is 9, determine the transient response of the closed-loop system. [6 marks]

c. As part of design specification for the system, for a step input response, determine the feedback gain (*M*) if we wish the steady-state error condition of the closed-loop system to be 0.6. [8 marks]

a. For the given second-order system with non-unity feedback, the transfer function of the closed-loop system is:

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$

$$= \frac{\left(\frac{5}{s^2 + 10s + 5}\right)}{1 + \left(\frac{5}{s^2 + 10s + 5}\right)M}$$

Rearrange the equation above, it becomes:

$$T(s) = \frac{5}{s^2 + 10s + 5(1+M)}$$

b. The transient response of the closed-loop system when *M* is 9 is:

$$T(s) = \frac{5}{s^2 + 10s + 5(1+9)} = \frac{5}{s^2 + 10s + 50}$$

Evaluating the characteristics equation of the closed loop system, its roots are:

$$\operatorname{root}_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-10 \pm \sqrt{(10)^2 - 4(1)(50)}}{2(1)} = -5 \pm j5$$

The roots are complex pair, so the response of the closed-loop system is underdamped.

c. For a step input, the steady-state error of the closed-loop system is:

$$e_{step}(\infty) = \lim_{s \to 0} \frac{s(1/s)}{1 + T(s)}$$

$$= \lim_{s \to 0} \frac{1}{1 + \frac{5}{s^2 + 10s + 5(1 + M)}}$$

$$= \lim_{s \to 0} \frac{s^2 + 10s + 5(1 + M)}{s^2 + 10s + 5(2 + M)}$$

$$= \frac{1 + M}{2 + M}$$

To achieve a steady-state error of 0.6 for the step response of the system, the gain of proportional controller M is calculated from:

$$e_{step}(\infty) = \frac{1+M}{2+M} = 0.6$$

Thus, the gain of the proportional controller that meets the design specification is:

$$M = \frac{1.2 - 1}{1 - 0.6} = 0.5$$

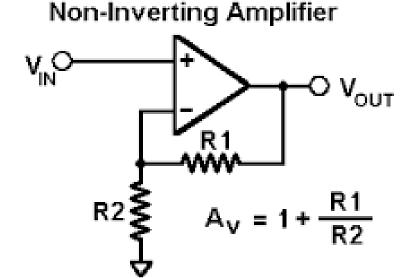
P Controller in Practice

- In practice, the P controller is realised as a non-inverting amplifier with R₁ and R₂ forming the voltage divider part of the circuit.
- Voltage at the non-inverting input is:

$$V_p = V_{IN}$$

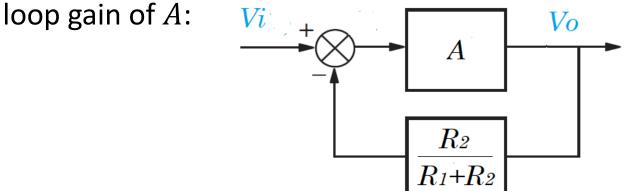
 Due to potential divider arrangement in the circuit, the voltage at the inverting pin of the op amp is:

$$V_n = V_{OUT} \left(\frac{R_2}{R_1 + R_2} \right)$$



P Controller in Practice

As an example, given the non-inverting amplifier with open-



The transfer function equation of the amplifier is:

$$\frac{V_o}{V_i} = \frac{A}{1 - A\left(-\frac{R_2}{R_1 + R_2}\right)} = \frac{A(R_1 + R_2)}{R_1 + R_2 + AR_2}$$

• If the loop gain $AR_2/(R_1 + R_2)$ is large, then:

$$AR_2 \gg R_1 + R_2$$

P Controller in Practice

 As a result, the transfer function of the non-inverting amplifier is:

$$\frac{V_o}{V_i} = \frac{A(R_1 + R_2)}{AR_2} = \frac{R_1 + R_2}{R_2}$$

In the above equation, the feedback loop path is:

$$\beta = \frac{R_2}{R_1 + R_2}$$

• So, if the loop gain is large:

$$\frac{V_o}{V_i} = \frac{R_1 + R_2}{R_2} = \frac{1}{\beta}$$

Example of P Controller in Practice

For example, given specification of a non-inverting operational amplifier circuit as shown below, perform the following tasks:

- Gain $A = 10^5$.
- Feedback resistors: $R_1 = 6 \text{ k}\Omega$, $R_2 = 4 \text{ k}\Omega$.
- a. Derive the transfer function equation of the amplifier.

[6 marks]

- b. Determine whether the forward-loop gain of the amplifier is larger than the feedback loop gain. [4 marks]
- c. Calculate the gain of the amplifier. [4 marks]

Example of P Controller in Practice

a. The transfer function of the op amp circuit is derived from:

$$V_p = V_i \qquad (Eq. 1)$$

And

$$V_n = V_o \left(\frac{R_2}{R_1 + R_2} \right) = V_o \left(\frac{4 \text{ k}\Omega}{6 \text{ k}\Omega + 4 \text{ k}\Omega} \right) = 0.4 V_o \quad (Eq. 2)$$

For the non-inverting amplifier with an open-loop gain of A, the output voltage is:

$$V_o = A(V_p - V_n) = A(V_i - 0.4V_o)$$
 (Eq. 3)

Substituting equations (1) and (2) into equation (3), the transfer function equation of the op amp circuit is:

$$\frac{V_o}{V_i} = \frac{A}{(1+0.4A)}$$

Example of P Controller in Practice

b. Consider whether the feedback loop is large, the feedback loop is:

$$AR_2 = (10^5)(4 \times 10^3) = 4 \times 10^8$$

And

$$R_1 + R_2 = (6 \times 10^3) + (4 \times 10^3) = 10^4$$

As calculated above, the feedback loop is large (e.g. $4 \times 10^8 \gg 10^4$).

c. As a result, the overall gain of the amplifier is:

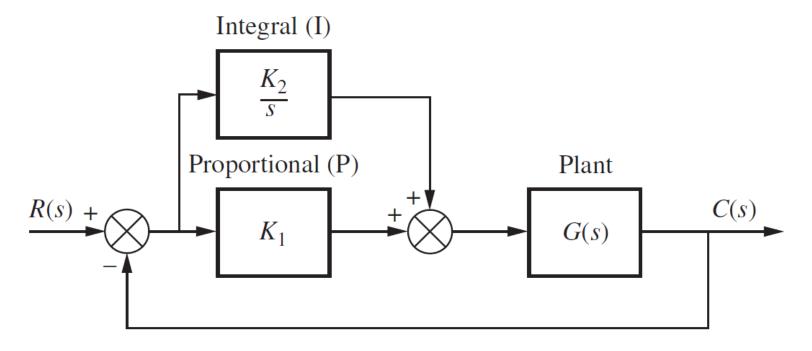
$$\frac{V_o}{V_i} = \frac{R_1 + R_2}{R_2} = \frac{6 \text{ k}\Omega + 4 \text{ k}\Omega}{4 \text{ k}\Omega} = 2.5$$

PI Controllers

For a PI Controller, its transfer function can be written as:

$$G_c(s) = P(s) + I(s) = K_1 + \frac{K_2}{s} = \frac{K_1(s + K_2/K_1)}{s}$$

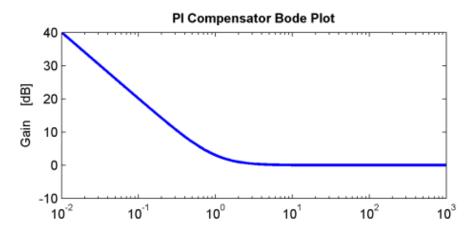
Where: $P(s) = K_1$ and $I(s) = K_2/s$.

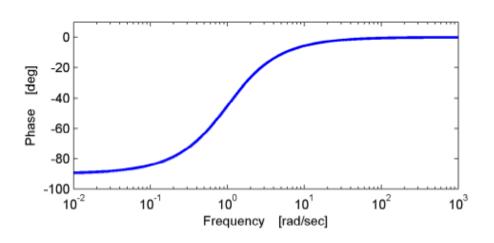


Characteristics of PI Controllers

- The frequency response of a PI controller is as shown below.
- Magnitude plot:
 - Low: -slope gain.
 - Cut-off: half gain.
 - High: zero gain.
 - Phase-shift plot:
 - Low: -90°.
 - Cut-off: -45°.
 - High: 0°.

Improve steady-state error:





• Increases system type, error becomes zero, zero at z_c is small and negative, and active circuits are required to implement.

Applications of PI Controllers

- The functions P(s) and I(s) can be chosen so the $(s + K_2/K_1)$ term (e.g. controller zero) cancels plant pole.
- Suppose the plant of a second-order system is:

$$G(s) = \frac{1}{(s + T_1)(s + T_2)}$$

• If we apply PI to this plant, and make $K_2/K_1=T_2$, then

$$\frac{O(s)}{E(s)} = G_c(s)G(s) = \frac{1}{s(s+T_1)}$$

So, the closed-loop transfer function equation is:

$$T(s) = \frac{O(s)}{I(s)} = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)} = \frac{1}{s^2 + sT_1 + 1}$$

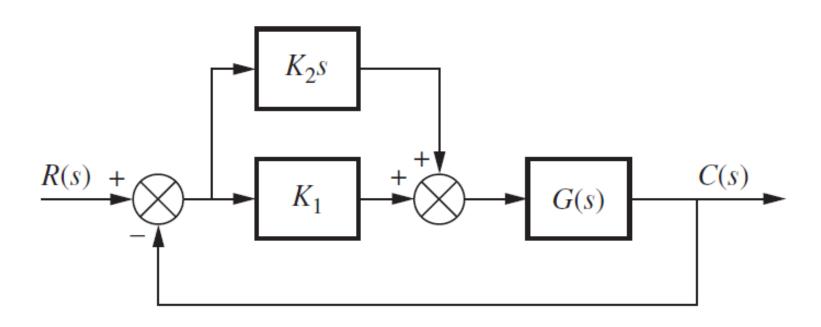
Note, the I(s) term means that the steady-state value is 1.

PD Controllers

• For a PD Controller, it transfer function equation:

$$G_1(s) = P(s) + D(s) = K_1 + K_2 s = K_2(s + K_1/K_2)$$

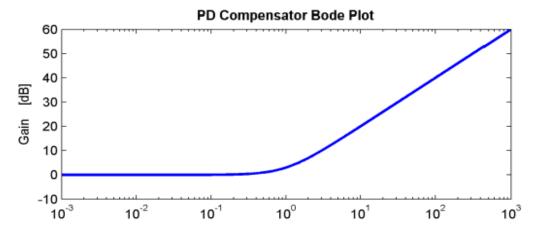
Where: $P(s) = K_1$ and $D(s) = K_2 s$.

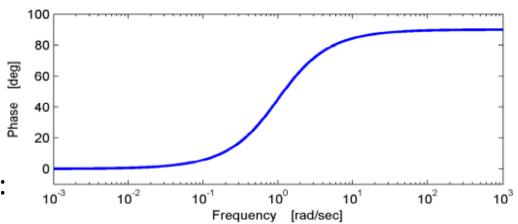


Characteristics of PD Controllers

- The frequency response of a PD controller is as shown below.
- Magnitude plot:
 - Low: zero gain.
 - Cut-off: half gain.
 - High: +slope gain.
 - Phase-shift plot:
 - Low: 0°.
 - Cut-off: +45°.
 - High: +90°.

Improve transient response:





Zero at $-z_c$ is selected to indicate the design point, active circuits are required to implement, and it can cause noise and saturation; implement with rate feedback or with a pole (lead).

Applications of PD Controllers

- We could make $s + K_1/K_2$ term to cancel plant pole.
- If transfer function of the plant of a second order system is:

$$G(s) = \frac{1}{s(s+T)}$$

• And PD is applied and assign $K_1/K_2 = T$ then:

$$\frac{O(s)}{E(s)} = G_c(s)G(s) = \frac{1}{s}$$

So, the closed-loop transfer function equation is:

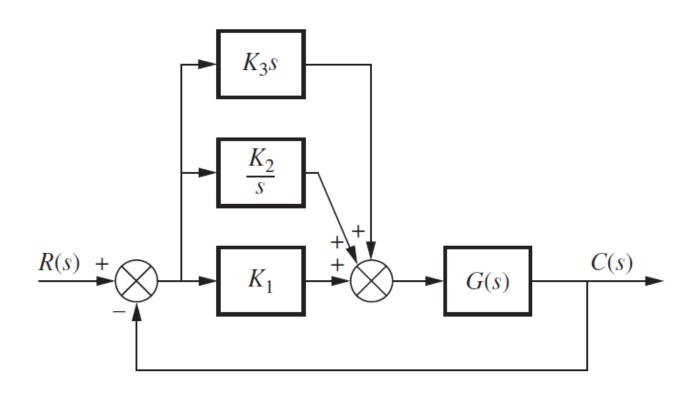
$$T(s) = \frac{O(s)}{I(s)} = \frac{1}{s+1}$$

PID Controllers

For a PID Controller, its transfer function equation is:

$$G_c(s) = P(s) + I(s) + D(s) = K_1 + \frac{K_2}{s} + K_3 s$$

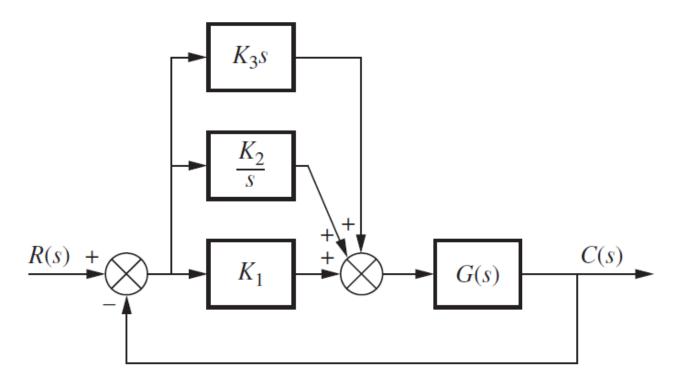
Where: $P(s) = K_1$, $I(s) = K_2/s$, and $D(s) = K_3 s$



PID Controllers

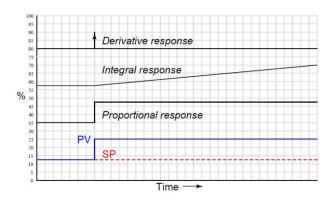
 Alternatively, this gives the transfer function equation of PID controller:

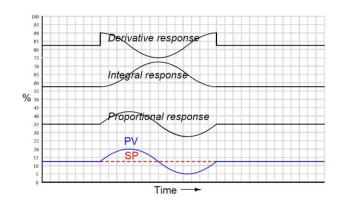
$$G_c(s) = \frac{K_3 s^2 + K_1 s + K_2}{s}$$

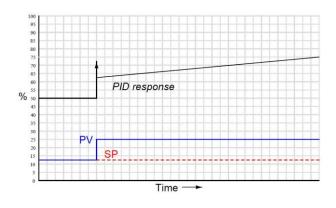


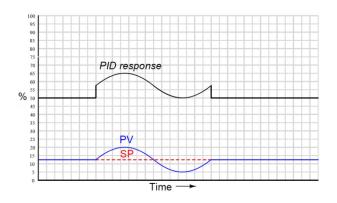
Characteristics of PID Controllers

 The response of a PID controller is as shown below over the step and sinusoidal inputs.









Characteristics of PID Controllers

Improve steady-state error and transient response:

- Lag zero at $-z_{lag}$ and pole at the origin improve steady-state error; lead zero at $-z_{lead}$ improves transient response.
- Lag zero at $-z_{lag}$ is close to, and to the left of, the origin.
- Lead zero at $-z_{lead}$ is selected to indicate the design point.
- Active circuits are required to implement.
- It can cause noise and saturation; implement with rate feedback or with an additional pole.

Applications of PID Controllers

 We could apply a PID controller to a plant of second order system:

$$G(s) = \frac{1}{1 + bs + as^2}$$

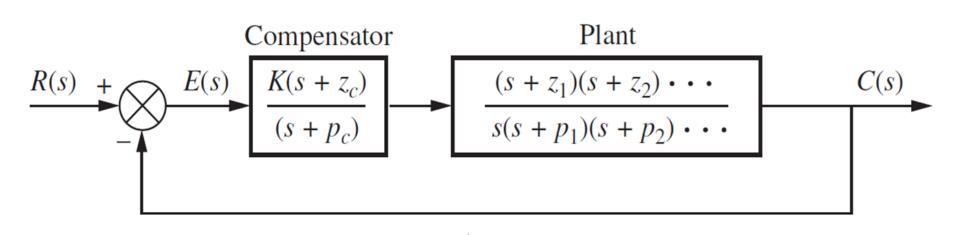
• Thus, set $K_3 = a$, $K_1 = b$, and $K_2 = 1$, the equation is now:

$$T(s) = \frac{O(s)}{E(s)} = G_c(s)G(s) = \frac{1}{s}$$

- In all these examples, by careful arrangement, system is either first or second order.
- Cancellation may not give best response, but analysis of systems is easier!

Lead Compensators

• With $P_c > Z_c$, block diagram of lead compensator.



$$G_C(s) = \frac{(s + z_c)}{(s + p_c)}$$

$$S$$
-plane
$$-p_c - z_c$$

Lead Compensators

The transfer function of a lead compensator is:

$$G_c(s) = \frac{1}{\beta} \left(\frac{s + \frac{1}{T}}{s + \frac{1}{\beta T}} \right) \qquad (\beta < 1)$$

Or

$$G_{lead}(s) = \frac{s + z_c}{s + p_c}$$
 with $|p_c| > |z_c|$

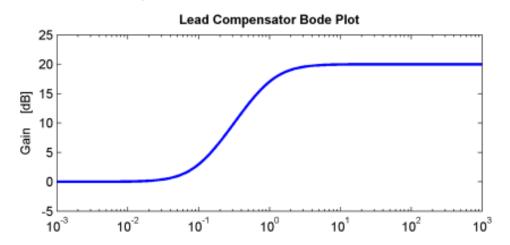
This controller consists of 1 pole and 1 zero with |pole| > |zero|.

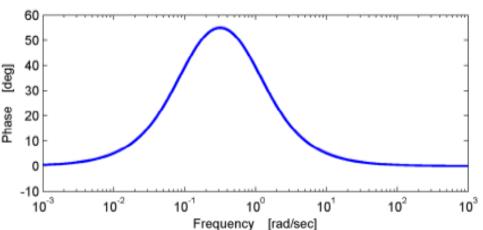
Characteristics of Lead Compensators

- Frequency response plot of lead compensator.
- Magnitude plot:
 - Low: zero gain.
 - Cut-off: half gain.
 - High: +finite gain.
 - Phase-shift plot:
 - Low: 0° .
 - Cut-off: $+45^{\circ}$.
 - High: 0°.

Improve transient response:

Zero at $-z_c$ and pole at $-p_c$

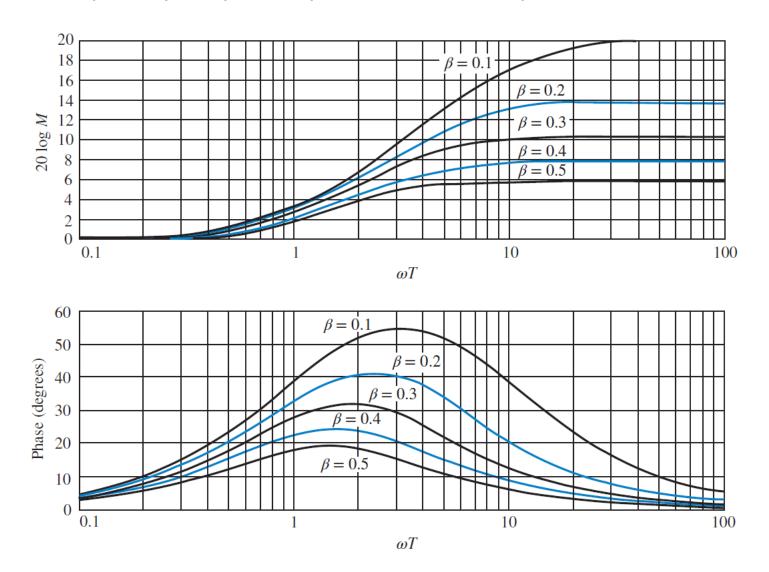




are selected to indicate design point and pole at $-p_c$ is more negative than zero at $-z_c$. Active circuits are not required.

Characteristics of Lead Compensators

• Frequency response plot of lead compensator with varied β .

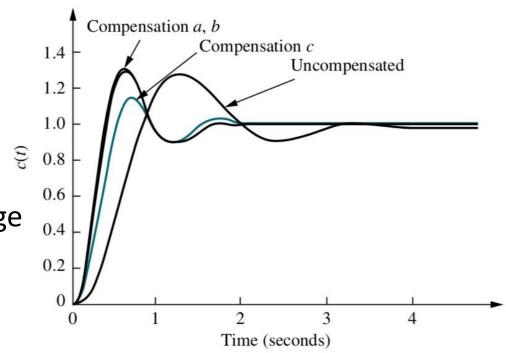


Applications of Lead Compensators

 In lead compensator, the zero is closer to the origin than the pole, that is:

$$z_c < p_c$$

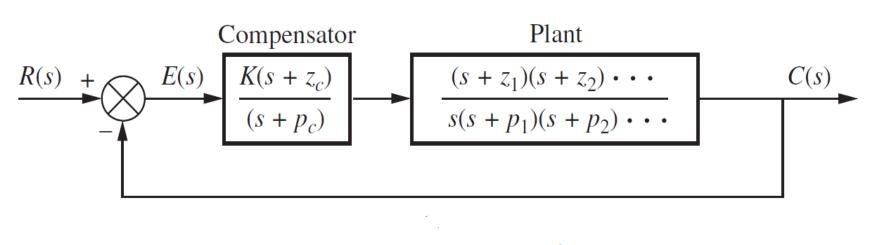
 The lead compensator influences transient response (e.g. percentage overshoot and settling times).



• The uncompensated system is slower compared with the compensated systems (a, b), and c = increasing distance of the poles from origin).

Lag Compensators

• With $Z_c > P_c$, block diagram of lag compensator.



$$G_C(s) = \frac{(s + z_c)}{(s + p_c)}$$

$$-z_c - p_c$$
s-plane

Lag Compensators

The transfer function of the lag compensator is:

$$G_c(s) = \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}} \qquad (\alpha > 1)$$

• Or

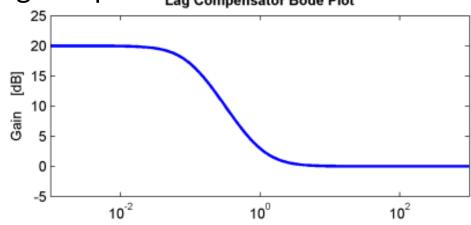
$$G_{lag}(s) = \frac{s + z_c}{s + p_c}$$
 with $|p_c| < |z_c|$

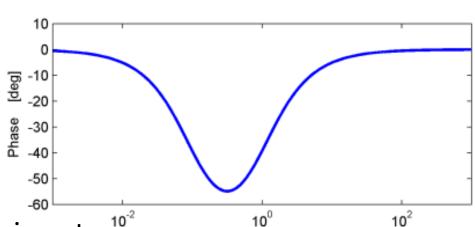
This controller consists of 1 pole and 1 zero with |pole| < |zero|.

Characteristics of Lag Compensators

- Frequency response plot of lag compensator Bode Plot
- Magnitude plot:
 - Low: +finite gain.
 - Cut-off: half gain.
 - High: zero gain.
 - Phase-shift plot:
 - Low: 0°.
 - Cut-off: -45°.
 - High: 0°.

Improve steady-state error

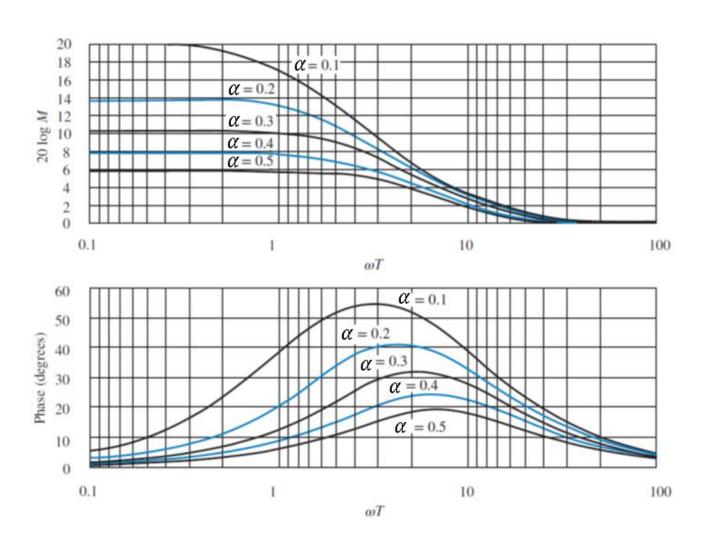




• Error is improved, but not driven to $\overset{10^{\circ}}{\text{zero}}$. $\overset{10^{\circ}}{\text{Frequency [rad/sec]}}$ Pole at $-p_c$ is small and negative; Zero at $-z_c$ is close to, and to the left of the pole at $-p_c$; Active circuits are not required.

Characteristics of Lag Compensators

• Frequency response plot of lag compensator with varied α .

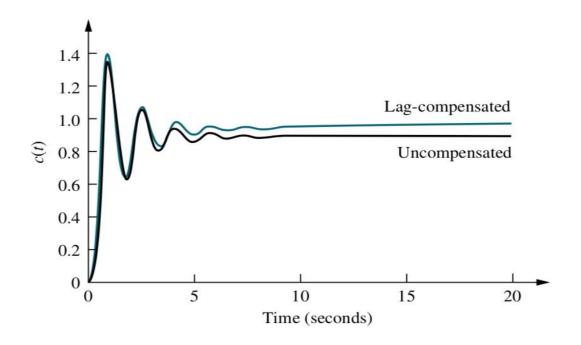


Applications of Lag Compensators

 In lag compensator, the pole is closer to the origin than the zero, that is:

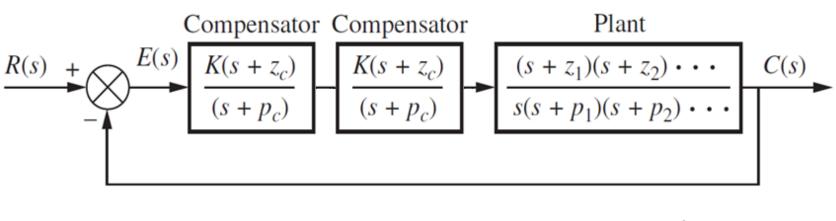
$$z_c > p_c$$

The lag compensator reduces steady- state error.

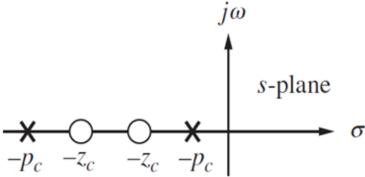


Lead-Lag Compensators

Block diagram of lead-lag compensator.



$$G_C(s) = \frac{(s+z_c)}{(s+p_c)} \ \frac{(s+z_c)}{(s+p_c)}$$



Lead-Lag Compensators

Transfer function of the lead-lag compensator:

$$G_c(s) = \left(\frac{s + \frac{1}{T_1}}{s + \frac{\gamma}{T_1}}\right) \left(\frac{s + \frac{1}{T_2}}{s + \frac{1}{\gamma T_2}}\right) \qquad (\gamma > 1)$$

Or

$$G_{lead-lag}(s) = G_{lead}(s)G_{lag}(s)$$

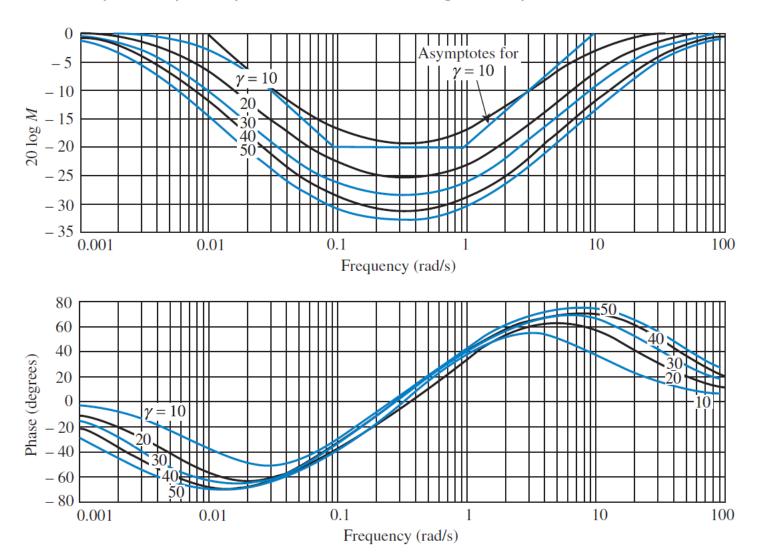
$$= \left(\frac{s + z_{c(lag)}}{s + p_{c(lag)}}\right) \left(\frac{s + z_{c(lead)}}{s + p_{c(lead)}}\right)$$

 The pole and zero of the lag and lead parts of the lead-lag controller are:

$$|p_{c(lag)}| < |z_{c(lag)}|$$
 and $|z_{c(lead)}| < |p_{c(lead)}|$

Characteristics of Lead-Lag Compensators

• The frequency response of lead-lag compensator with varied γ :



Characteristics of Lead-Lag Compensators

Lead-lag compensator improves steady-state error and transient response:

- Lag pole at $-p_{lag}$ and lag zero at $-z_{lag}$ are used to improve steady-state error.
- Lead pole at $-p_{lead}$ and lead zero at $-z_{lead}$ are used to improve transient response.
- Lag pole at $-p_{lag}$ is small and negative.
- Lag zero at $-z_{lag}$ is close to, and to the left of, lag pole at $-p_{lag}$
- Lead zero at $-z_{lead}$ and the lead pole at $-p_{lead}$ are selected to indicate the design point.
- Lead pole at $-p_{lead}$ is more negative than lead zero at $-z_{lead}$.
- Active circuits are not required to implement.

Applications of Lead-Lag Compensators

 Considering the transfer function equation of the second-order plant is:

$$G(s) = \frac{K}{(s+T_1)(s+T_2)}$$

- For improving transient response, we can make z_c in the $G_c(s)$ to be equal to largest of T_1 and T_2 , say T_2 , to speed up system.
- Then, the open-loop transfer function of the system is:

$$\frac{O(s)}{E(s)} = G_c(s)G(s)$$

$$= \left(\frac{s + z_{c(lag)}}{s + p_{c(lag)}}\right) \left(\frac{s + z_{c(lead)}}{s + p_{c(lead)}}\right) \frac{K}{(s + T_1)(s + T_2)}$$

Applications of Lead-Lag Compensators

Thus, the transfer function of closed-loop system is:

$$T(s) = \frac{O(s)}{I(s)} = \frac{\text{Forward}}{1 - \text{Loop}}$$

This gives the closed-loop transfer function equation:

$$T(s) = \frac{O(s)}{I(s)} = \frac{\left[\frac{K}{(s + p_{c(lead)})(s + T_1)}\right]}{1 - (-1)\left(\frac{K}{(s + p_{c(lead)})(s + T_1)}\right)}$$
$$= \frac{K}{(s + p_{c(lead)})(s + T_1) + K}$$

Applications of Lead-Lag Compensators

$$T(s) = \frac{K}{s^2 + s(p_{c(lead)} + T_1) + (p_{c(lead)}T_1) + K}$$

- This case is a further example of pole-zero cancellation for system improvement.
- Note: a pole is like 1 + sT term on denominator and a zero is such a term on numerator.

• For improving the steady-state condition of the system, we can make z_c of the lead part in the $G_c(s)$ to be equal to the smaller of T_1 and T_2 , say T_1 , to remove more dominant pole in the system.

Lead-Lag Compensator Characteristics

- Then, the pole in the lead part is used to cancel the zero of the lag part of the compensator.
- This leaves the pole of the lag part to be varied and assign to be very close to the origin e.g. $p_{c(lag)} \cong 0$ (to simulate an integral function like to the system).

$$T(s) = \frac{K}{(s + p_{c(lag)})(s + T_2) + K} = \frac{K}{s(s + T_2) + K}$$

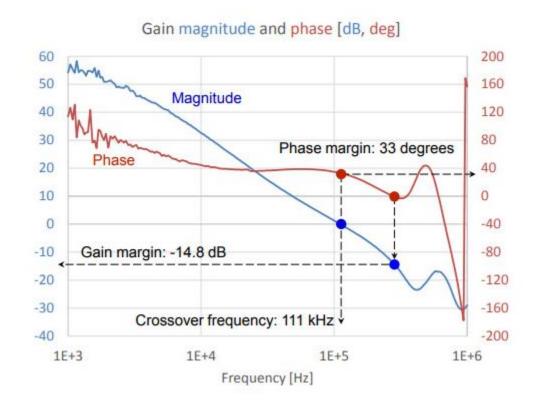
 Thus, this would improve the steady-state condition of the system by reducing or removing the steady-state error in the system.

Intro to Controller/Compensator Design

- We will focus on modifying system characteristics by applying feedback.
- Furthermore, we will be able to tailor the closed-loop transfer function with the addition of a compensator.
- Compensator design is a compromise between two competing goals.
 - Performance: Keeping the open loop gain high reduces system errors and the effects of disturbances.
 - Stability: The closed loop system must be kept stable by carefully managing the gain where the phase approaches –180°.

Intro to Controller/Compensator Design

- Compensator design can often be philosophically reduced to two (inter-related) problems:
 - one operating at low frequencies to achieve the required performance,
 - the other at high frequency to ensure stability.



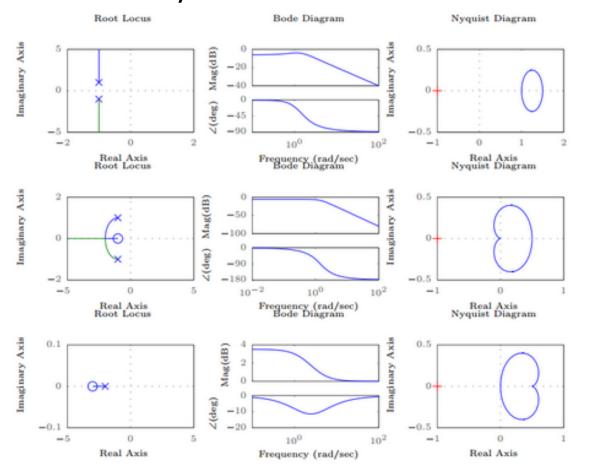
Methods for Controller/Compensator Design

There are a variety of approaches to designing a controller of compensator:

- 1. Choose a compensator structure and then tune manually.
- Choose a compensator model and tune using a "recipe" (e.g. Ziegler-Nichols).
- 3. Use a model and solve for desired pole locations.
- Measure the system performance and use a graphical technique.
- 5. Use a mathematical model with a graphical technique.
- 6. Use mathematical tools to achieve optimal performance (State-Space Analysis).

Controller/Compensator Design in the Course

- In the remaining lectures, we will focus on the graphical methods which form the classical control.
- These are mainly about items 3 and 5 in the list.



Convention for System Topology and Notation

- We will generally design out controller or compensators assuming unity gain feedback with the compensator C(s) placed in the forward path.
- Remember that this is equivalent to a system with the controller or compensator in the feedback path.

