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e Applications of controllers or compensators.

e Examples of applications of Proportional, Derivative,
Integral controllers and their combinations.

e Examples of applications of Lag, Lead, and Lag-lead
compensators.

e Practical circuit implementations of controllers or
compensators.

e Tuning in of the controllers.



Applications of Controllers

* We will consider the following unity-feedback system.

 The output of the controller (i), which is equal to the
control input to the plant, is calculated in the time domain
from the feedback error (e) as follows:

u(t) = c(t)e(t)

controller plant

-T o C(s) —| P(s) >,

* First, let's take a look at how the controller works in a
closed-loop system using the block diagram shown above.




Applications of Controllers

 The variable (e) represents the tracking error, the difference
between the desired output () and the actual output (y).

* This error signal (e) is fed to the controller, and the controller
computes this error signal parameters of controller with
respect to time.

 Depending on the type of controller, these parameters are:
* K, for proportional controller,
* K;/s for integral controller,

* K s for derivative controller, or

* any of their combinations such as: K;, + K; /s for P!

controller, K,, + Kys for PD controller, and K, + K; /s +
K ;s for PID controller.



Applications of Controllers

The control signal (1) to the plant is equal to the error times
the magnitude of the parameters of the controller.

This control signal (u) is fed to the plant and the new output
(y) is obtained.

The new output (y) is then fed back and compared to the
reference to find the new error signal (e).

The controller takes this new error signal and computes an
update of the control input.

This process continues while the controller is in effect.

controller plant
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Example System for Controller

 The goal of examples of controller applications is to show how
each of the terms: K,, K;, and K, contributes to obtaining

the common goals of fast rise time, minimal overshoot, and

zero steady—state error.
Controller Plant
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* The goals listed above are commonly found in the design
specification of the control systems.

* We might have other (more specific) design specification
depending on the needs and requirements.



Example System for Controller

Suppose we have a simple mass-spring-damper system. The
governing equation of this system is:

I2) () fkx = F
™\ ax2 dc ) T

a. Derive the transfer function of the system.

b.Ifm=1kg, b=10Ns/m, k =20 N/m, and F =1 N, determine the
transfer function of the system.

c. Simulate the step response of the open-loop system in MATLAB.

d. Analyse the result of simulation in part
(c) in terms of DC gain and steady-state
error, rise time and settling time. What
are characteristics of the controller
needed to fix the problems?

—}.x




d.

Example System for Controller

Taking the Laplace transform of the governing equation,
we get:

ms?X(s) + bsX(s) + kX(s) = F(s)
The transfer function between the input force and the
output displacement then becomes:

X(s) 1
F(s) " ms2 + bs + k
let: m=1kg, b=10Ns/m, k =20 N/m, and F =1 N.
Substituting these values into the above transfer function:
X(s) 1
F(s) s2+4+10s+20




Example System for Controller

b. Let's first view the open-loop step response.
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Example System for Controller

c. The DC gain of the plant transfer function is 1/20, so 0.05
is the final value of the output to a unit step input.

This corresponds to a steady-state error of 0.95, which is
quite large.

Furthermore, the rise time is about 1 second and the
settling time is about 1.5 seconds.

Let's design a controller that will reduce the rise time,

reduce the settling time, and eliminate the steady-state
error.



P Controllers

e For a proportional controller, the control signal (1) to the
plant is equal to the proportional gain (K, ) times the
magnitude of the error.

* The output of a proportional controller, which is equal to
the control input to the plant, is calculated in the time
domain from the feedback error as follows:

u(t) = Kye(t)

* Thus, the transfer function of a proportional controller is
found by taking the Laplace transform of system equation:

controller plant

GC (S) = Kp r +“ : e Kp u P(s) y
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Where: K, = proportional gain.




P Controllers

* Increasing the proportional gain (K,,) has the effect of
proportionally increasing the control signal for the same
level of error.

* The fact that the controller will "push" harder for a given
level of error tends to cause the closed-loop system to react
more quickly, but also to overshoot more.

* Another effect of increasing K, is that it tends to reduce,
but not eliminate, the steady-state error.

controller plant
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Proportional Controller

Let’s talk about the characteristics of the proportional

controller.

The proportional controller (K,,) reduces the rise time,
increases the overshoot, and reduces the steady-state error.

Transfer function equation of the proportional controller is:

G. = K,

controller plant
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Example for Proportional Controller

For the given simple mass-spring-damper system, add a
proportional controller in series with the system.

+ L E(s) M(s) | ‘
R(s)A-(g) K R m——r

B o ——————————————————————————

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate
value of the parameter of the controller. Then, simulate the
transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time,
overshoot, settling time and steady-state error.



Example for Proportional Controller

a. The transfer function equation of a proportional controller is:
Go(s) = Kp

The closed-loop transfer function of unity-feedback system
with a proportional controller is as follow where X (s) is our
output (equals Y (s)) and our reference R(s) is the input:

1
T'(s) =X(S) _ GGy _ Ky (52+105+20)
R(s) 1+ GcG, 1+K( 1 )
P\s2 4+ 10s + 20
Kp

T2+ 10s + (20 + K,,)



Example for Proportional Controller

b. Let the proportional gain (K,) equal 300. The following
figure shows the step response of the example system with

proportional controller.

c. The plot below shows
that the proportional
controller reduced both
the rise time and the
steady-state error,
increased the overshoot,
and decreased the
settling time by a small
amount.
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D Controller

* For a derivative controller, the control signal (u) to the plant is
equal to the derivative gain (K;) times the derivative of the

error.

* The output of a derivative controller, which is equal to the
control input to the plant, is calculated in the time domain from
the feedback error as follows:

de
U,(t) = Kd E

* Thus, the transfer function of a derivative controller is found by
taking the Laplace transform of system equation:

controller plant

GC(S) — KdS r * e u

: Kds —— P(s) N
Where: K; = derivative gain. ‘




D Controller

* The addition of a derivative term to the controller (K;) adds
the ability of the controller to "anticipate" error.

* With simple proportional control, if K,, is fixed, the only way
that the control will increase is if the error increases.

* With derivative control, the control signal can become large
if the error begins sloping upward, even while the magnitude
of the error is still relatively small.

* This anticipation tends to add damping to the system,
thereby decreasing overshoot. controller plant

r T __ e u y

 The addition of a derivative - — Ps) ”
term, however, has no effect on

the steady-state error.

h




PD Controller

* Now, let's take a look at the characteristics of the PD
controller.

* Addition of derivative control (K;) tends to reduce both the
overshoot and the settling time.

* Transfer function equation of the PD controller is:

GC = Kp(l + STd)

controller plant
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Example for PD Controller

For the given simple mass-spring-damper system, add a
proportional-derivative controller in series with the system.
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a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate
values of the parameters of the controller. Then, simulate the
transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time,
overshoot, settling time and steady-state error.



Example for PD Controller

a. The transfer function of the PD controller is (note: K; = K, T;):
G.(s) = Kgs + K,

The closed-loop transfer function of the given system with a
PD controller is:

X(s)  G(s)Gy(s)
" R(s) 14+G.(s) Gp(S)

(Kas + K )( Z 1 105+20)

1+ (Kgs + K )( +105+20)

- KdS + Kp
52+ (10 + Ky)s + (20 + K,




Example for PD Controller

This plot shows that
the addition of the
derivative term
reduced both the
overshoot and the
settling time and had
a negligible effect on
the rise time and the
steady-state error.

b. Let K, equal 300 as before and let K; equal 10.
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| Controllers

* For an integral controller, the control signal (1) to the plant is
equal to the integral gain (K;) times the integral of the error.

* The output of an integral controller, which is equal to the control
input to the plant, is calculated in the time domain from the
feedback error as follows:

u(t) = Kije(t)dt

* Thus, the transfer function of an integral controller is found by
taking the Laplace transform of system equation:

controller plant

K; .
G:(s) = ?l : : ° | Kifs =5 P(s) LR
Where: K; = integral gain. ‘

b




| Controllers

* The addition of an integral term to the controller (K;) tends
to help reduce steady-state error.

* If there is a persistent, steady-state error, the integrator
builds and builds, thereby increasing the control signal and
driving the error down.

* A drawback of the integral term, however, is that it can make
the system more sluggish (and oscillatory) since when the
error signal changes sign, it may take a while for the
integrator to "unwind."

controller plant
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Pl Controller

* Let's investigate the characteristics of the Pl controller.

* Addition of integral control (K;) tends to decrease the rise
time, increase both the overshoot and the settling time,
and reduces the steady-state error.

* Transfer function equation of Pl controller is:

G.(s) = K, (1 + SLT)

controller plant

P(s) Y
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Example for Pl Controller

For the given simple mass-spring-damper system in Tutorial for
Example 1, add a proportional-integral controller in series with

the system. ; i
+ 1E(S) 1 1[M(5):

R(s) : K, [ i - sT‘] 1 Gy(s) > C(s)
Y N

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate
values of the parameters of the controller. Then, simulate the
transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time,
overshoot, settling time and steady-state error.



Example for Pl Controller

a. The transfer function of the Pl controller is (note: K; = K,, /T;):
G.(s) = K;/s + K,

For the given system, the closed-loop transfer function with a Pl
controller is:

X(s)  Ge(s)Gp(s)
R(s) 1+ G ()G, (s)

1
(Ki/s + Kp) (52 105 ¥ 20)
- 1
1+ (Ki/s + Kp) (52 105 ¥ 20)

KpS + Ki
s3 +10s% +(20 + K, )s + K;




Example for Pl Controller

b. Let's reduce K, to 30 and let K; equal 70.

C.

Step Response
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The above response shows that the integral controller
eliminated the steady-state error in this case.



PID Controllers

* For a PID controller, the output of a PID controller, which is
equal to the control input to the plant, is calculated in the time
domain from the feedback error as follows:

u(t) = Kye(t) + K; f e(t)dt + Kd%

* The transfer function of a PID controller is found by taking the
Laplace transform of system equation:

Ka4s® + Kps + K;
S

K.
G.(s) = K, +?‘+ K;s =

Where: K,, = proportional gain, K; = integral gain, and K; =
derivative gain. | controler plant

' e u y
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PID Controller

* Now, let's examine the characteristics of the PID control.

* PID controller tends to combine the characteristics of Pl and PD
controller. So, it is capable for improving both of the transient
response and steady-state characteristics of the system.



Example for PID Controller

For the given simple mass-spring-damper system, add a
proportional-integral-derivative controller in series with the system.

R(S)4t®-;-E—(Sz Ky[1 + 7= + Tgs] MG, 690 ——c(s)

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate values
of the parameters of the controller. Then, simulate the transient
response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time,
overshoot, settling time and steady-state error.



Example for PID Controller

a. Now, let's examine PID control. The transfer function of the
PID controller is (note: K; = K,T; and K; = K, /T;):
G.(s) = Kgs + K;/s + K,

The closed-loop transfer function of the given system with a
PID controller is:

X(s)  Ge(s)Gy(s)
R(s) 1+ G ()G, (s)

1
(Kas + Ki/s + Kp) (52 T 105 + 20)

1
1+ (Kgs + Ki/s + Kp) (52 + 10s + 20)

Kg4s® + Kps + K;
s34+ (10 + Ky)s2 + (20 + Ky )s + K;




Example for PID Controller

After several iterations of tuning, the gains K, = 350, K; = 300,

and K; = 50 provided the desired response.

Now, we have designed
a closed-loop system
with no overshoot, fast
rise time, and no
steady-state error.
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Summary of Controllers

 Summary of controllers:

Controller | Transfer Function Characteristics
Name Equation
P K, Reduces the rise time, increases the
overshoot, and reduces the steady-state error.
I K; Reduces steady-state error.
s
D Kgs Increases the transient response

responsiveness and characteristics.
PI K, +K;/s Decrease the rise time, increase both the
overshoot and the settling time, and reduces

the steady-state error.

PD K, + K;s Reduce both the overshoot and the settling
time.
PID K s? + K,s + K; Improve both of the transient response and

S steady-state characteristics.




Summary of Controllers

* The general effects of each controller parameter : K, K;, and K,
on a closed-loop system are summarized in the table below.

* Note, these guidelines hold in many cases, but not all.

* If you truly want to know the effect of tuning the individual
gains, you will have to do more analysis, or will have to perform
testing on the actual system.

Controller | Rise Time Overshoot | Settling Time | Steady-State Error
K, Decrease Increase Small Change | Decrease
K; Decrease Increase Increase Decrease
K Small
d Decrease Decrease No Change
Change




ag Compensator

* Lag compensator is commonly employed in the control
systems to improve steady-state conditions but has little
influence on the transient response of the systems.

Reference  Error |Po| < |Zo| Output
R(s) 4+ E(Sl (s + Zo) c E(S)

] (s + Po) Gpls)

Controller Plant

* Lag compensators reduce steady-state error, so
sometimes we want smaller steady-state error rather than
shorter rise and settling time as in a lead compensator.



ag Compensator

Phase-lag compensator:

* The integrator in Pl controller can cause some practical
problems; e.g., “integrator windup” due to actuator saturation.

* Pl controller is often approximated by “lag control.”

(s—2)
Ge() = G5y With  [pol < o]

Imag.

. MWW *
R, % |
o - - » Real v,(t) i Vv, (t)
-Z0 -Po i(t) e




LLag Compensator

* That s, the pole is closer to the origin than the zero.

e Because |zy| > |pgl, the phase " added to the open-loop
transfer function is negative. . . “phase lag”

* Pole often placed very close to origin e.g., pg = 0.01 to
minimize impact towards transient response performance.

* Zerois placed near pole. e.g., z5 = 0.1.

 We want |G,.(s)| = 1 for all s to preserve transient response
(and hence, have nearly the same placement of poles as for a
proportional controller).

* Ideais to improve steady-state error but to modify the
transient response as little as possible.



ag Compensator

* Thatis, using proportional control, we have pole locations
we like already, but poor steady-state error.

* So, we add a lag compensator to minimally disturb the
existing good pole locations but improve steady-state

error.
m

* Good steady-state error
without overflow
problems.

A N

—d —b Re

) 4
(

* \Very similar to
proportional control.




LLag Compensator

* The uncompensated system had loop gain:
K (before) = lirr& G(s)
S—

* The lag-compensated system has loop gain:

K (after) = lin& G.(s)G(s) = (?) lin(l) G(s)
S— 0/ S~

* Since |zy| > |pgl, there is an improvement in the position or
velocity or acceleration error constant of the system, and a
reduction in steady-state error.

* Transient response is mostly unchanged, but slightly slower

I”

settling due to small-magnitude slow “tail” caused by lag

compensator.



Example for Lag Compensator

* The control system given below suffers from issues in both
steady state and transient response conditions.

1
P(s) = GrDGED) and C(s)=1

e Steady-state: non-zero steady-state error.

* Transient response: sluggish system that takes time to
settle down.

compensator plant
U(s) + 1 Y (s)

—T—"" C(s) M g+ 1)(5+2) -




Example System for Lag Compensator

Simulate the uncompensated system in MATLAB. Comment
on the result of the simulation.

Design a lead compensator that will be able to fix the
problem observed in part (a).

Simulate in MATLAB and compare the uncompensated and
compensated systems. Observe whether the compensator
has achieved its purpose.



Example

Looking into the unit step response of the given system there
are issues as highlighted before e.g. non-zero steady-state
error and slow (sluggish) response of the system.
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Example for Lag Compensator

b. By trial and error, the gain and the pole and zero of the
lead compensator (e.g. with K =1, 10, and 100) are

determined:
K(s+1)
C —
)= SF 001
compensator plant

-U{:-i} 4- .‘([54'] ] 1 Y(“)
'T* " T5+001] | (et 1)) g

c. Looking into the response of the compensated system, the

plot shows smaller steady-state error than uncompensated
system



Example for Lag Compensator

Plots shown are with K =1 (orange line), K = 10 (yellow line),

and K =100 (purple line).

Notice the growing
oscillation as you
increase the system
gain (K), but settling
time increases for all
cases.
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ead Compensator

 Lead compensator is typically used in the control systems
to improve the transient response and hence the stability
of the systems.

Reference  Error [Zo| < |Po] Output
RS) g~ (s+20) ] Y(s)

(s + Po) GPs)

Controller Plant

* The lead compensators improve transient response and
stability, but they do not typically reduce steady-state
error.



ead Compensator

Phase-lead compensator:
e Derivative magnifies noise.

* |nstead of D-control or PD-control use “lead control.”

(s — 2p)
Gc(s) = with  |zg] < [pol
‘ (s — Po)
That is, the zero is closer to the origin than the pole.
, C
Imag. > ‘ I|
A l +|
— - AMA—H——
. )
A o » Real ™
-Po -Zo vi(t) R, Vo(t)




ead Compensator

* Lead compensator is the same form as lag compensator,
but with different intention:

* Lag compensator does not change much since Py =
Zy = 0. Instead, lag compensator improves steady-
state error.

 Lead compensator does change locus. Pole and zero
locations chosen so that poles will pass through
desired point s = s;.



Example for Lead Compensator

* The control system given below suffers from issues in the
transient response conditions.

P(s) = and C(s)=1

e Rise time: take some time for the system to rise up.

» Settling time: sluggish system that takes time to settle
down.

compensator plant

+ 4 Y (s)
J’T | C(s) (42) ‘ >

¥




d.

Example for Lead Compensator

Simulate the uncompensated system in MATLAB. Comment
on the result of the simulation.

Design a lead compensator that will be able to fix the
problem observed in part (a).

Simulate in MATLAB and compare the uncompensated and
compensated systems. Observe whether the compensator
has achieved its purpose.



Example for Lead Compensator

a. Looking into the unit step response of the given system there
are issues as highlighted before e.g. slow (sluggish) response
of the system e.g. long rise time and settling time.
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Example for Lead Compensator

b. By trial and error, the gain and the pole and zero of the
lead compensator are determined:

4.68(s + 2.9)
C(s) = s+54

compensator plant

U(s) + s+ 29

4
+ . ™ &=
T 485 54 el

c. From the plot compensated system (red line) reaches
steady state faster (shorter rise and settling times) than
uncompensated system (blue line), although it has a higher

percentage overshoot, M,,.



Example for Lead Compensator

the step response plot of the uncompensated and compensated

systems with lead compensator as shown in the figure below.
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ead-Lag Compensator

* For lead-lag compensator, it combines lead compensator and
lag compensator.

Error
Input s+a, || s+a, Output
- = | Gpl(s) >
s+b, )\ s+b,

Plant

Controller

* Lead-lag compensator provides the benefits of both lead and
lag compensators e.g. improve performance in terms of
steady-state conditions and transient responses.



ead-Lag Compensator

Lead-lag compensator:

* The transfer function of the lead-lag compensator is:

(S B Zlag) (S — Zieqa)

(S — plag) (S — Pread)

|plag| < |Zlag| and |Zlead| < |plead|

» Real

e with
Imag.
-Plead -Zlag
—H—0—0—%
-Zlead -Plag

C
| |




ead-Lag Compensator

* For lead-lag compensator, left figure (step response), right
figure (ramp response)

e Faster transient response when given step input (left).

 Smaller steady-state error when given ramp input (right)

1.4 : : 5

Unit ramp input

____________________________________________________________

= \With lead compensatc-r

"'i"'U'ﬁéii"niﬁéﬁééiad

= With lead-lag compensator === Vith lead compensator

—@- With lead-lag compens:
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ead-Lag Compensator

Lead-lag compensator improves transient response and
steady-state condition.

Design of the lead-lag compensator requires careful design
of its individual parts e.g. lag compensator and lead
compensator.

Trial and error is typically employed to get the best set up
for the lead-lag compensator.



ead-Lag Compensator

If we must satisfy both the transient and steady-state

specifications:

1. Design a lead compensator to meet transient specification
first.

2. Include lead compensator with plant after its design is
final.

3. Design alag compensator (where “plant” = actual plant
and lead compensator combined) to meet steady-state
specification.



Summary of Compensator

e Summary of compensators:

Name of Transfer Function Equation Characteristics
Compensator
Lag (s — zp) _ It improves steady-state error.
— with [po| <z
(s — po)
Lead (s — zp) _ It improves transient response
(s —pg) with |zo| < |pol performance.

Lead-lag It improves both steady-state

(S - Zlag) (s — Zieqa)
(S — plag) (S — Preaa)

with

error and transient response
performance.

|plag| < |Zlag| and |Zlead| < |plead|




Practical Implementations

e Practical implementation of controllers or compensators
with op amp-based amplifier circuits.

e Practical implementations of controllers P, I, D and any of
their combinations.

e Practical implementations of Lead, Lag, and Lead-lag
compensators.



Practical Active Implementations

Z5(s)

We derived as the transfer —NN——

-« 1Iy(s)

function of an inverting vy 29y

. . e ;A\«ﬁ\/\r’ — - V., (5)
operational amplifier whose e I(s)
(A% +

configuration is shown above:

Vo(5) _ Z(s) :
Vis) ~ Z15)

By judicious choice of Z;(s) and Z,(s), this circuit is used as a
building block to implement the compensators and
controllers, such as PID controllers and lag-lead compensators
using operational amplifiers.




Practical Active Implementations

 Controller’s active circuit realisations:

Z4(s)
Functi Zy(s) Z(s) G (s) = =
unction () Z,0(5)
Proportional R, R, Ry
(gain) R>
(xc)
Integral R C _\RC
S
Derivative C R —RCs
S+ =
Pl controller Ry R; and C (in series) _ & ( RZC)
R2 S
: 1
PD controller C and R, (in parallel) R, —R,C (s + ﬁ)
1
1
C; and R (in parallel) | R, and C, (in series R, C R.C
PID controller 1 1(inp ) |R2 2 (1 ies) _ R_2+C_1+R2C1S+ 1Lz
1 2




Practical Active Implementations

 Compensator’s active circuit realisations:

Function Z4(s) Z,(s) G.(s) = Z: Eg
Lag C; and R4 (in parallel) | C, and R, (in parallel) 1
compensator ~ (ﬁ) s+ R.C,
C2)\ s + R21C2
where R,C, > R, C;
Lead C; and R4 (in parallel) | C, and R, (in parallel) 1
compensator ~ (ﬁ) s+ R.C,
C2)\ s + R21C2
where R,C, < R,(C;
Lead-Lag Cascading lag compensator with lead compensator (as shown below).

compensator




Practical Active Implementations

e (Cascading lag-lead compensator’s active circuit realisations:

c, C,

| |

| \ AN

C, Ry Ry
e

! R] \ | \\
4/\/\/\F / ~ ! "ol?)
+
4/\/\/\/7 +

Lag compensator -
R,C,>R,C, Lead compensator
R3C3 = R4C4



Practical Passive Implementations

 Compensator’s passive circuit realisations:

' Vi(s V,(s _Vo(s)
Function i(s) o(S) G.(s) = Vl-(s)
Lag R{,R,,and C (all |C and R, 1
compensator in series) (both in ( 2 ) s+ R,C
series 1
) TR\ s+ mrmc
Lead C and R4 (both in R, 1
compensator parallel) and in s+ R.C
series with R, s+ Ric + Ric
Lead-Lag C; and Ry(both in | C; and R, (s + L) (s + L)
compensator parallel) and in (both in R1Cy Ry G
series with C, series) s+ ( 1 + 1 + 1 )S + 1
R,C;  R,C, R,C; R{R,C,C,

and R, (both in
series)




Practical Passive Implementations

 Compensator’s passive circuit realisations:

Lag compensator Lead compensator Lag-lead compensator



Example of Practical Implementation

Implement the PID controller when the transfer function of the
PID controller is:

6.(s) = (s + 55.925)(5 + 0.5)

The transfer function of the controller can be put in the form:
1

2796 (R, C; R.C
G.(s) =s +5642 + - :<R1+C2)+R2C1$+ 152

Equating the transfer function of the controller with the PID
controller:

1
R1G,
S

s+ 5642 +

27.96 (Rz C,
S

+— ]+ R,Cys +
R, Cz) 201S



Example of Practical Implementation

Comparing the PID controller in the table with the controller,
we obtain the following three relationships:

RZ Cl
+—==5642 R,C, =1 1/R,C, = 27.96
Ry G

Since there are four unknowns and three equations, we
arbitrarily select a practical value for one of the elements.

Selecting C, = 0.1 pF, the remaining e o
values are found to be Ry =357.65kQ, (. —NA—]
R, =178,891kQ, and C; =5.59 pF. = —(—

vi(1)
. oy - . - V(1)
The complete circuit is shown in the AAN > -

figure below, where the circuit Pk

element values have been rounded —
off.



Configuring the Controller

In majority of the cases, compensator is commonly designed
for tackling a particular issue or problem in control system
with its specific set up or arrangement.

On the other hand, controller is typically intended and
designed to be able to be adjusted or tuned-in to manage
the operation of the system.

There are many approaches to configure controllers. But

these are typically classified into e.g. ad-hoc (on the spot),
experimentation, or prescriptive formulas.



Configuring the Controller

* There are various ways to configure and to tune in the controller
in control system.

Method Advantages Disadvantages

Manual tuning No math required. Requires experience.

Consistent tuning, can employ computer-
automated control system design
techniques, may include devices analysis,
allows simulation before implementation,
and can support non-steady-state (NSS)

Software tools Some cost or training involved.

tuning.
) . Process upset, some trial-and-
Ziegler—Nichols Proven method. P . :
error, very aggressive tuning.
Process upset, some trial-and-
Tyreus-Luyben Proven method. P . .
error, very aggressive tuning.
Some math required and onl
Cohen—Coon Good process models. & y

good for first-order processes.

Can be used for auto tuning; amplitude is
Astrom-Hagglund [ minimum, so this method has lowest
process upset.

The process itself is inherently
oscillatory.




Configuring the Controller

General Tips for Designing a PID Controller

When you are designing a PID controller for a given system,
follow the steps shown below to obtain a desired response.

1. Obtain an open-loop response and determine what needs to
be improved.

Add a proportional control to improve the rise time.
Add a derivative control to reduce the overshoot.

Add an integral control to reduce the steady-state error.

A

Adjust each of the gains K,,, K;, and K; until you obtain a
desired overall response. You can always refer to the table
shown to find out which controller controls which
characteristics.



Configuring the Controller

e Lastly, please keep in mind that you do not need to
implement all three controllers (proportional, derivative,
and integral) into a single system, if not necessary.

* For example, if a Pl controller meets the given
requirements (like the above example), then you don't
need to implement a derivative controller on the system.

* Keep the controller as simple as possible.
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