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• Applications of controllers or compensators.

• Examples of applications of Proportional, Derivative, 

Integral controllers and their combinations.

• Examples of applications of Lag, Lead, and Lag-lead

compensators.

• Practical circuit implementations of controllers or 

compensators.

• Tuning in of the controllers.

Topics



Applications of Controllers

• We will consider the following unity-feedback system.

• The output of the controller (𝑢), which is equal to the 

control input to the plant, is calculated in the time domain 

from the feedback error (𝑒) as follows:

𝑢 𝑡 = 𝑐(𝑡)𝑒 𝑡

• First, let's take a look at how the controller works in a 

closed-loop system using the block diagram shown above. 



Applications of Controllers

• The variable (𝑒) represents the tracking error, the difference 

between the desired output (𝑟) and the actual output (𝑦). 

• This error signal (𝑒) is fed to the controller, and the controller 

computes this error signal parameters of controller with 

respect to time. 

• Depending on the type of controller, these parameters are: 

• 𝐾𝑝 for proportional controller, 

• 𝐾𝑖/𝑠 for integral controller, 

• 𝐾𝑑𝑠 for derivative controller, or 

• any of their combinations such as: 𝐾𝑝 + 𝐾𝑖/𝑠 for PI 

controller, 𝐾𝑝 + 𝐾𝑑𝑠 for PD controller, and 𝐾𝑝 + 𝐾𝑖/𝑠 +

𝐾𝑑𝑠 for PID controller.



Applications of Controllers

• The control signal (𝑢) to the plant is equal to the error times 

the magnitude of the parameters of the controller. 

• This control signal (𝑢) is fed to the plant and the new output 

(𝑦) is obtained. 

• The new output (𝑦) is then fed back and compared to the 

reference to find the new error signal (𝑒). 

• The controller takes this new error signal and computes an 

update of the control input. 

• This process continues while the controller is in effect.



Example System for Controller

• The goal of examples of controller applications is to show how 

each of the terms: 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑, contributes to obtaining 

the common goals of fast rise time, minimal overshoot, and 

zero steady-state error.

• The goals listed above are commonly found in the design 

specification of the control systems.

• We might have other (more specific) design specification 

depending on the needs and requirements.



Example System for Controller

Suppose we have a simple mass-spring-damper system. The 

governing equation of this system is:

𝑚
𝑑2𝑥

𝑑𝑥2
+ 𝑏

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹

d. Analyse the result of simulation in part 

(c) in terms of DC gain and steady-state 

error, rise time and settling time. What 

are characteristics of the controller 

needed to fix the problems?

a. Derive the transfer function of the system.

b. If 𝑚 = 1 kg, 𝑏 = 10 N s/m, 𝑘 = 20 N/m, and 𝐹 = 1 N, determine the 

transfer function of the system.

c. Simulate the step response of the open-loop system in  MATLAB.



Example System for Controller

a. Taking the Laplace transform of the governing equation, 

we get:

𝑚𝑠2𝑋 𝑠 + 𝑏𝑠𝑋 𝑠 + 𝑘𝑋 𝑠 = 𝐹(𝑠)

The transfer function between the input force and the 

output displacement then becomes: 

𝑋 𝑠

𝐹(𝑠)
=

1

𝑚𝑠2 + 𝑏𝑠 + 𝑘

Let: 𝑚 = 1 kg, 𝑏 = 10 N s/m, 𝑘 = 20 N/m, and 𝐹 = 1 N. 

Substituting these values into the above transfer function:

𝑋 𝑠

𝐹 𝑠
=

1

𝑠2 + 10𝑠 + 20



Example System for Controller

b. Let's first view the open-loop step response.



Example System for Controller

c. The DC gain of the plant transfer function is 1/20, so 0.05 

is the final value of the output to a unit step input. 

This corresponds to a steady-state error of 0.95, which is 

quite large. 

Furthermore, the rise time is about 1 second and the 

settling time is about 1.5 seconds. 

Let's design a controller that will reduce the rise time, 

reduce the settling time, and eliminate the steady-state 

error.



P Controllers

• For a proportional controller, the control signal (𝑢) to the 

plant is equal to the proportional gain (𝐾𝑝) times the 

magnitude of the error.

• The output of a proportional controller, which is equal to 

the control input to the plant, is calculated in the time 

domain from the feedback error as follows:

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡

• Thus, the transfer function of a proportional controller is 

found by taking the Laplace transform of system equation:

𝐺𝑐 𝑠 = 𝐾𝑝

Where: 𝐾𝑝 = proportional gain.



P Controllers

• Increasing the proportional gain (𝐾𝑝) has the effect of 

proportionally increasing the control signal for the same 

level of error. 

• The fact that the controller will "push" harder for a given 

level of error tends to cause the closed-loop system to react 

more quickly, but also to overshoot more. 

• Another effect of increasing 𝐾𝑝 is that it tends to reduce, 

but not eliminate, the steady-state error.



Proportional Controller

• Let’s talk about the characteristics of the proportional 

controller.

• The proportional controller (𝐾𝑝) reduces the rise time, 

increases the overshoot, and reduces the steady-state error.

• Transfer function equation of the proportional controller is:

𝐺𝑐 = 𝐾𝑝



Example for Proportional Controller

For the given simple mass-spring-damper system, add a 

proportional controller in series with the system.

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate 

value of the parameter of the controller. Then, simulate the 

transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time, 

overshoot, settling time and steady-state error.  



Example for Proportional Controller 

a. The transfer function equation of a proportional controller is:

𝐺𝑐 𝑠 = 𝐾𝑝

The closed-loop transfer function of unity-feedback system 

with a proportional controller is as follow where 𝑋(𝑠) is our 

output (equals 𝑌(𝑠)) and our reference 𝑅(𝑠) is the input:

𝑇 𝑠 =
𝑋 𝑠

𝑅 𝑠
 =

𝐺𝑐𝐺𝑝

1 + 𝐺𝐶𝐺𝑝
 =

𝐾𝑝
1

𝑠2 + 10𝑠 + 20

1 + 𝐾𝑝
1

𝑠2 + 10𝑠 + 20

 

=
𝐾𝑝

𝑠2 + 10𝑠 + 20 + 𝐾𝑝



Example for Proportional Controller

c. The plot below shows 
that the proportional 
controller reduced both 
the rise time and the 
steady-state error, 
increased the overshoot, 
and decreased the 
settling time by a small 
amount.

b. Let the proportional gain (𝐾𝑝) equal 300.  The following 

figure shows the step response of the example system with 

proportional controller.



D Controller

• For a derivative controller, the control signal (𝑢) to the plant is 

equal to the derivative gain (𝐾𝑑) times the derivative of the 

error.

• The output of a derivative controller, which is equal to the 

control input to the plant, is calculated in the time domain from 

the feedback error as follows:

𝑢 𝑡 = 𝐾𝑑

𝑑𝑒

𝑑𝑡

• Thus, the transfer function of a derivative controller is found by 

taking the Laplace transform of system equation:

𝐺𝑐 𝑠 = 𝐾𝑑𝑠

Where: 𝐾𝑑 = derivative gain.



D Controller

• The addition of a derivative term to the controller (𝐾𝑑) adds 

the ability of the controller to "anticipate" error. 

• With simple proportional control, if 𝐾𝑝 is fixed, the only way 

that the control will increase is if the error increases. 

• With derivative control, the control signal can become large 

if the error begins sloping upward, even while the magnitude 

of the error is still relatively small. 

• This anticipation tends to add damping to the system, 

thereby decreasing overshoot. 

• The addition of a derivative 

term, however, has no effect on 

the steady-state error.



PD Controller

• Now, let's take a look at the characteristics of the PD 

controller. 

• Addition of derivative control (𝐾𝑑) tends to reduce both the 

overshoot and the settling time. 

• Transfer function equation of the PD controller is:

𝐺𝑐 = 𝐾𝑝 1 + 𝑠𝑇𝑑



Example for PD Controller

For the given simple mass-spring-damper system, add a 

proportional-derivative controller in series with the system.

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate 

values of the parameters of the controller. Then, simulate the 

transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time, 

overshoot, settling time and steady-state error.  



Example for PD Controller

a. The transfer function of the PD controller is (note: 𝐾𝑑 = 𝐾𝑝𝑇𝑑):

𝐺𝑐 𝑠 = 𝐾𝑑𝑠 + 𝐾𝑝

The closed-loop transfer function of the given system with a 

PD controller is: 

𝑇 𝑠 =
𝑋 𝑠

𝑅 𝑠
=

𝐺𝑐 𝑠 𝐺𝑝 𝑠

1 + 𝐺𝑐 𝑠 𝐺𝑝 𝑠
 

=
𝐾𝑑𝑠 + 𝐾𝑝

1
𝑠2 + 10𝑠 + 20

1 + 𝐾𝑑𝑠 + 𝐾𝑝
1

𝑠2 + 10𝑠 + 20

=
𝐾𝑑𝑠 + 𝐾𝑝

𝑠2 + 10 + 𝐾𝑑 𝑠 + 20 + 𝐾𝑝



Example for PD Controller

b. Let 𝐾𝑝 equal 300 as before and let 𝐾𝑑 equal 10. 

c. This plot shows that 

the addition of the 

derivative term 

reduced both the 

overshoot and the 

settling time and had 

a negligible effect on 

the rise time and the 

steady-state error.



I Controllers

• For an integral controller, the control signal (𝑢) to the plant is 

equal to the integral gain (𝐾𝑖) times the integral of the error.

• The output of an integral controller, which is equal to the control 

input to the plant, is calculated in the time domain from the 

feedback error as follows:

𝑢 𝑡 = 𝐾𝑖 න 𝑒 𝑡 𝑑𝑡

• Thus, the transfer function of an integral controller is found by 

taking the Laplace transform of system equation:

𝐺𝑐 𝑠 =
𝐾𝑖

𝑠

Where: 𝐾𝑖 = integral gain.



I Controllers

• The addition of an integral term to the controller (𝐾𝑖) tends 

to help reduce steady-state error. 

• If there is a persistent, steady-state error, the integrator 

builds and builds, thereby increasing the control signal and 

driving the error down. 

• A drawback of the integral term, however, is that it can make 

the system more sluggish (and oscillatory) since when the 

error signal changes sign, it may take a while for the 

integrator to "unwind."



PI Controller

• Let's investigate the characteristics of the PI controller. 

• Addition of integral control (𝐾𝑖) tends to decrease the rise 

time, increase both the overshoot and the settling time, 

and reduces the steady-state error. 

• Transfer function equation of PI controller is:

𝐺𝑐 𝑠 = 𝐾𝑝 1 +
1

𝑠𝑇𝑖



Example for PI Controller

For the given simple mass-spring-damper system in Tutorial for 

Example 1, add a proportional-integral controller in series with 

the system.

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate 

values of the parameters of the controller. Then, simulate the 

transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time, 

overshoot, settling time and steady-state error.  



Example for PI Controller

a. The transfer function of the PI controller is (note: 𝐾𝑖 = 𝐾𝑝/𝑇𝑖):

𝐺𝑐 𝑠 = 𝐾𝑖/𝑠 + 𝐾𝑝

For the given system, the closed-loop transfer function with a PI 

controller is: 

𝑇 𝑠 =
𝑋 𝑠

𝑅 𝑠
=

𝐺𝑐 𝑠 𝐺𝑝 𝑠

1 + 𝐺𝑐 𝑠 𝐺𝑝 𝑠
 

=
𝐾𝑖/𝑠 + 𝐾𝑝

1
𝑠2 + 10𝑠 + 20

1 + 𝐾𝑖/𝑠 + 𝐾𝑝
1

𝑠2 + 10𝑠 + 20

=
𝐾𝑝𝑠 + 𝐾𝑖

𝑠3 +10𝑠2 + 20 + 𝐾𝑝 𝑠 + 𝐾𝑖



Example for PI Controller

The above response shows that the integral controller 

eliminated the steady-state error in this case. 

c. We have reduced the 

proportional gain (𝐾𝑝) 

because the integral 

controller also reduces 

the rise time and 

increases the overshoot 

as the proportional 

controller does (double 

effect). 

b. Let's reduce 𝐾𝑝 to 30 and let 𝐾𝑖 equal 70.  



PID Controllers

• For a PID controller, the output of a PID controller, which is 

equal to the control input to the plant, is calculated in the time 

domain from the feedback error as follows:

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖 න 𝑒 𝑡 𝑑𝑡 + 𝐾𝑑

𝑑𝑒

𝑑𝑡

• The transfer function of a PID controller is found by taking the 

Laplace transform of system equation:

𝐺𝑐 𝑠 = 𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 =

𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠

Where: 𝐾𝑝 = proportional gain, 𝐾𝑖 = integral gain, and 𝐾𝑑 = 

derivative gain.



PID Controller

• Now, let's examine the characteristics of the PID control. 

• PID controller tends to combine the characteristics of PI and PD 

controller. So, it is capable for improving both of the transient 

response and steady-state characteristics of the system.



Example for PID Controller

For the given simple mass-spring-damper system, add a 

proportional-integral-derivative controller in series with the system.

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate values 

of the parameters of the controller. Then, simulate the transient 

response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time, 

overshoot, settling time and steady-state error.  



Example for PID Controller

a. Now, let's examine PID control. The transfer function of the 

PID controller is (note: 𝐾𝑑 = 𝐾𝑝𝑇𝑑 and 𝐾𝑖 = 𝐾𝑝/𝑇𝑖):

𝐺𝑐 𝑠 = 𝐾𝑑𝑠 + 𝐾𝑖/𝑠 + 𝐾𝑝

The closed-loop transfer function of the given system with a 

PID controller is:

𝑇 𝑠 =
𝑋 𝑠

𝑅 𝑠
=

𝐺𝑐 𝑠 𝐺𝑝 𝑠

1 + 𝐺𝑐 𝑠 𝐺𝑝 𝑠

=
𝐾𝑑𝑠 + 𝐾𝑖/𝑠 + 𝐾𝑝

1
𝑠2 + 10𝑠 + 20

1 + 𝐾𝑑𝑠 + 𝐾𝑖/𝑠 + 𝐾𝑝
1

𝑠2 + 10𝑠 + 20

=
𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠3 + 10 + 𝐾𝑑 𝑠2 + 20 + 𝐾𝑝 𝑠 + 𝐾𝑖



Example for PID Controller

c. Now, we have designed 

a closed-loop system 

with no overshoot, fast 

rise time, and no 

steady-state error.

b. After several iterations of tuning, the gains 𝐾𝑝 = 350, 𝐾𝑖 = 300, 

and 𝐾𝑑 = 50 provided the desired response. 



Summary of Controllers

Controller 

Name

Transfer Function 

Equation

Characteristics

P 𝐾𝑝 Reduces the rise time, increases the 

overshoot, and reduces the steady-state error.

I 𝐾𝑖

𝑠

Reduces steady-state error.

D 𝐾𝑑𝑠 Increases the transient response 

responsiveness and characteristics.

PI 𝐾𝑝 + 𝐾𝑖/𝑠 Decrease the rise time, increase both the 

overshoot and the settling time, and reduces 

the steady-state error.

PD 𝐾𝑝 + 𝐾𝑑𝑠 Reduce both the overshoot and the settling 

time.

PID 𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠

Improve both of the transient response and 

steady-state characteristics.

• Summary of controllers:



Summary of Controllers

• The general effects of each controller parameter ∶ 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 

on a closed-loop system are summarized in the table below. 

• Note, these guidelines hold in many cases, but not all. 

• If you truly want to know the effect of tuning the individual 

gains, you will have to do more analysis, or will have to perform 

testing on the actual system.

Controller Rise Time Overshoot Settling Time Steady-State Error

𝐾𝑝 Decrease Increase Small Change Decrease

𝐾𝑖 Decrease Increase Increase Decrease

𝐾𝑑
Small 

Change
Decrease Decrease No Change



Lag Compensator

• Lag compensator is commonly employed in the control 

systems to improve steady-state conditions but has little 

influence on the transient response of the systems.

• Lag compensators reduce steady-state error, so 

sometimes we want smaller steady-state error rather than 

shorter rise and settling time as in a lead compensator. 



Lag Compensator

Phase-lag compensator:

• The integrator in PI controller can cause some practical 

problems; e.g., “integrator windup” due to actuator saturation.

• PI controller is often approximated by “lag control.”

𝐺𝑐 𝑠 =
𝑠 − 𝑧0

𝑠 − 𝑝0
 with 𝑝0 < 𝑧0



Lag Compensator

• That is, the pole is closer to the origin than the zero.

• Because 𝑧0 > 𝑝0 , the phase " added to the open-loop 

transfer function is negative. . . “phase lag”

• Pole often placed very close to origin e.g., 𝑝0 ≈ 0.01 to 

minimize impact towards transient response performance.

• Zero is placed near pole. e.g., 𝑧0 ≈ 0.1. 

• We want 𝐺𝑐(𝑠) ≈ 1 for all 𝑠 to preserve transient response 

(and hence, have nearly the same placement of poles as for a 

proportional controller).

• Idea is to improve steady-state error but to modify the 

transient response as little as possible.



Lag Compensator

• Good steady-state error 

without overflow 

problems.

• Very similar to 

proportional control.

• That is, using proportional control, we have pole locations 

we like already, but poor steady-state error.

• So, we add a lag compensator to minimally disturb the 

existing good pole locations but improve steady-state 

error.



Lag Compensator

• The uncompensated system had loop gain: 

𝐾 before = lim
𝑠→0

𝐺(𝑠)

• The lag-compensated system has loop gain:

𝐾 after = lim
𝑠→0

𝐺𝑐 𝑠 𝐺 𝑠 =
𝑍0

𝑃0
lim
𝑠→0

𝐺(𝑠)

• Since 𝑧0 > 𝑝0 , there is an improvement in the position or 

velocity or acceleration error constant of the system, and a 

reduction in steady-state error.

• Transient response is mostly unchanged, but slightly slower 

settling due to small-magnitude slow “tail” caused by lag 

compensator.



Example for Lag Compensator

• The control system given below suffers from issues in both 

steady state and transient response conditions.

𝑃 𝑠 =
1

𝑠 + 1 𝑠 + 2
 and 𝐶(𝑠) = 1

• Steady-state: non-zero steady-state error.

• Transient response: sluggish system that takes time to 

settle down.



Example System for Lag Compensator

a. Simulate the uncompensated system in MATLAB. Comment 

on the result of the simulation.

b. Design a lead compensator that will be able to fix the 

problem observed in part (a).

c. Simulate in MATLAB and compare the uncompensated and 

compensated systems. Observe whether the compensator 

has achieved its purpose.



Example System for Lag Compensator

a. Looking into the unit step response of the given system there 

are issues as highlighted before e.g. non-zero steady-state 

error and slow (sluggish) response of the system. 



Example for Lag Compensator

b. By trial and error, the gain and the pole and zero of the 

lead compensator (e.g. with 𝐾 = 1, 10, and 100) are 

determined:

𝐶(𝑠) =
𝐾 𝑠 + 1

𝑠 + 0.01

c. Looking into the response of the compensated system, the 

plot shows smaller steady-state error than uncompensated 

system 



Example for Lag Compensator

Notice the growing 

oscillation as you 

increase the system 

gain (𝐾), but settling 

time increases for all 

cases.

Plots shown are with 𝐾 = 1 (orange line), 𝐾 = 10 (yellow line), 

and 𝐾 = 100 (purple line). 



Lead Compensator

• Lead compensator is typically used in the control systems 

to improve the transient response and hence the stability 

of the systems.

• The lead compensators improve transient response and 

stability, but they do not typically reduce steady-state 

error. 



Lead Compensator

Phase-lead compensator:

• Derivative magnifies noise.

• Instead of D-control or PD-control use “lead control.”

𝐺𝑐 𝑠 =
𝑠 − 𝑧0

𝑠 − 𝑝0
 with 𝑧0 < 𝑝0

That is, the zero is closer to the origin than the pole.



Lead Compensator

• Lead compensator is the same form as lag compensator, 

but with different intention:

• Lag compensator does not change much since 𝑃0 ≈

𝑍0 ≈ 0. Instead, lag compensator improves steady-

state error.

• Lead compensator does change locus. Pole and zero 

locations chosen so that poles will pass through 

desired point 𝑠 = 𝑠1.



Example for Lead Compensator

• The control system given below suffers from issues in the 

transient response conditions.

𝑃 𝑠 =
4

𝑠 𝑠 + 2
 and 𝐶(𝑠) = 1

• Rise time: take some time for the system to rise up.

• Settling time: sluggish system that takes time to settle 

down.



Example for Lead Compensator

a. Simulate the uncompensated system in MATLAB. Comment 

on the result of the simulation.

b. Design a lead compensator that will be able to fix the 

problem observed in part (a).

c. Simulate in MATLAB and compare the uncompensated and 

compensated systems. Observe whether the compensator 

has achieved its purpose.



Example for Lead Compensator

a. Looking into the unit step response of the given system there 

are issues as highlighted before e.g. slow (sluggish) response 

of the system e.g. long rise time and settling time. 



Example for Lead Compensator

b. By trial and error, the gain and the pole and zero of the 

lead compensator are determined:

𝐶(𝑠) =
4.68 𝑠 + 2.9

𝑠 + 5.4

c. From the plot compensated system (red line) reaches 

steady state faster (shorter rise and settling times) than 

uncompensated system (blue line), although it has a higher 

percentage overshoot, 𝑀𝑝.



Example for Lead Compensator

the step response plot of the uncompensated and compensated 

systems with lead compensator as shown in the figure below.



Lead-Lag Compensator

• For lead-lag compensator, it combines lead compensator and 

lag compensator.

• Lead-lag compensator provides the benefits of both lead and 

lag compensators e.g. improve performance in terms of 

steady-state conditions and transient responses. 



Lead-Lag Compensator

Lead-lag compensator:

• The transfer function of the lead-lag compensator is:

𝑠 − 𝑧𝑙𝑎𝑔

𝑠 − 𝑝𝑙𝑎𝑔

𝑠 − 𝑧𝑙𝑒𝑎𝑑

𝑠 − 𝑝𝑙𝑒𝑎𝑑

• with

𝑝𝑙𝑎𝑔 < 𝑧𝑙𝑎𝑔  and 𝑧𝑙𝑒𝑎𝑑 < 𝑝𝑙𝑒𝑎𝑑



Lead-Lag Compensator

• For lead-lag compensator, left figure (step response), right 

figure (ramp response)

• Faster transient response when given step input (left). 

• Smaller steady-state error when given ramp input (right)



Lead-Lag Compensator

• Lead-lag compensator improves transient response and 

steady-state condition.

• Design of the lead-lag compensator requires careful design 

of its individual parts e.g. lag compensator and lead 

compensator.

• Trial and error is typically employed to get the best set up 

for the lead-lag compensator.



Lead-Lag Compensator

If we must satisfy both the transient and steady-state 

specifications:

1. Design a lead compensator to meet transient specification 

first.

2. Include lead compensator with plant after its design is 

final.

3. Design a lag compensator (where “plant” = actual plant 

and lead compensator combined) to meet steady-state 

specification.



Summary of Compensator

Name of 

Compensator

Transfer Function Equation Characteristics

Lag 𝑠 − 𝑧0

𝑠 − 𝑝0
 with 𝑝0 < 𝑧0

It improves steady-state error.

Lead 𝑠 − 𝑧0

𝑠 − 𝑝0
 with 𝑧0 < 𝑝0

It improves transient response 

performance.

Lead-lag 𝑠 − 𝑧𝑙𝑎𝑔

𝑠 − 𝑝𝑙𝑎𝑔

𝑠 − 𝑧𝑙𝑒𝑎𝑑

𝑠 − 𝑝𝑙𝑒𝑎𝑑

with

𝑝𝑙𝑎𝑔 < 𝑧𝑙𝑎𝑔  and 𝑧𝑙𝑒𝑎𝑑 < 𝑝𝑙𝑒𝑎𝑑

It improves both steady-state 

error and transient response 

performance.

• Summary of compensators:



• Practical implementation of controllers or compensators 

with op amp-based amplifier circuits.

• Practical implementations of controllers P, I, D and any of 

their combinations.

• Practical implementations of Lead, Lag, and Lead-lag 

compensators. 

Practical Implementations



Practical Active Implementations

• We derived as the transfer 

function of an inverting 

operational amplifier whose 

configuration is shown above:

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=

𝑍2(𝑠)

𝑍1(𝑠)

• By judicious choice of 𝑍1(𝑠) and 𝑍2(𝑠), this circuit is used as a 

building block to implement the compensators and 

controllers, such as PID controllers and lag-lead compensators 

using operational amplifiers.



Practical Active Implementations

Function 𝒁𝟏(𝒔) 𝒁𝟐(𝒔) 𝑮𝒄 𝒔 =
𝒁𝟏 𝒔

𝒁𝟐 𝒔

Proportional 

(gain)
𝑅1 𝑅2 −

𝑅1

𝑅2

Integral 𝑅 𝐶
−

1
𝑅𝐶

𝑠

Derivative 𝐶 𝑅 −𝑅𝐶𝑠

PI controller 𝑅1 𝑅2 and 𝐶 (in series)
−

𝑅1

𝑅2

𝑠 +
1

𝑅2𝐶

𝑠

PD controller 𝐶 and 𝑅1(in parallel) 𝑅2 −𝑅2𝐶 𝑠 +
1

𝑅1𝐶

PID controller 𝐶1 and 𝑅1(in parallel) 𝑅2 and 𝐶2 (in series)
−

𝑅2

𝑅1
+

𝐶1

𝐶2
+ 𝑅2𝐶1𝑠 +

1
𝑅1𝐶2

𝑠

• Controller’s active circuit realisations:



Practical Active Implementations

Function 𝒁𝟏(𝒔) 𝒁𝟐(𝒔) 𝑮𝒄 𝒔 =
𝒁𝟏 𝒔

𝒁𝟐 𝒔

Lag 

compensator

𝐶1 and 𝑅1(in parallel) 𝐶2 and 𝑅2(in parallel)

−
𝐶1

𝐶2

𝑠 +
1

𝑅1𝐶1

𝑠 +
1

𝑅2𝐶2

 

where 𝑅2𝐶2 > 𝑅1𝐶1

Lead 

compensator

𝐶1 and 𝑅1(in parallel) 𝐶2 and 𝑅2(in parallel)

−
𝐶1

𝐶2

𝑠 +
1

𝑅1𝐶1

𝑠 +
1

𝑅2𝐶2

 

where 𝑅2𝐶2 < 𝑅1𝐶1

Lead-Lag 

compensator

Cascading lag compensator with lead compensator (as shown below).

• Compensator’s active circuit realisations:



Practical Active Implementations

• Cascading lag-lead compensator’s active circuit realisations:



Practical Passive Implementations

Function 𝑽𝐢(𝐬) 𝑽𝐨(𝐬) 𝑮𝒄 𝒔 =
𝑽𝒐 𝐬

𝑽𝒊 𝐬

Lag 

compensator

𝑅1, 𝑅2, and 𝐶 (all 

in series)

𝐶 and 𝑅2 

(both in 

series)

𝑅1

𝑅1 + 𝑅2

𝑠 +
1

𝑅2𝐶

𝑠 +
1

(𝑅1 + 𝑅2)𝐶

Lead 

compensator

𝐶 and 𝑅1 (both in 

parallel) and in 

series with 𝑅2

𝑅2
𝑠 +

1
𝑅1𝐶

𝑠 +
1

𝑅1𝐶
+

1
𝑅2𝐶

Lead-Lag 

compensator

𝐶1 and 𝑅1(both in 

parallel) and in 

series with 𝐶2 

and 𝑅2 (both in 

series)

𝐶1 and 𝑅2 
(both in 
series)

𝑠 +
1

𝑅1𝐶1
𝑠 +

1
𝑅2𝐶2

𝑠 +
1

𝑅1𝐶1
+

1
𝑅2𝐶2

+
1

𝑅2𝐶1
𝑠 +

1
𝑅1𝑅2𝐶1𝐶2

• Compensator’s passive circuit realisations:



Practical Passive Implementations

• Compensator’s passive circuit realisations:

Lag compensator                             Lead compensator                               Lag-lead compensator



Example of Practical Implementation

• Implement the PID controller when the transfer function of the 

PID controller is:

𝐺𝑐 𝑠 =
(𝑠 + 55.92)(𝑠 + 0.5)

𝑠

• The transfer function of the controller can be put in the form:

𝐺𝑐 𝑠 = 𝑠 + 56.42 +
27.96

𝑠
=

𝑅2

𝑅1
+

𝐶1

𝐶2
+ 𝑅2𝐶1𝑠 +

1
𝑅1𝐶2

𝑠

• Equating the transfer function of the controller with the PID 

controller:

𝑠 + 56.42 +
27.96

𝑠
=

𝑅2

𝑅1
+

𝐶1

𝐶2
+ 𝑅2𝐶1𝑠 +

1
𝑅1𝐶2

𝑠



Example of Practical Implementation

• Comparing the PID controller in the table with the controller, 

we obtain the following three relationships:

𝑅2

𝑅1
+

𝐶1

𝐶2
= 56.42 𝑅2𝐶1 = 1 1/𝑅2𝐶1 = 27.96

• Since there are four unknowns and three equations, we 
arbitrarily select a practical value for one of the elements.

• Selecting 𝐶2 = 0.1 μF, the remaining 

values are found to be 𝑅1 = 357.65 kΩ, 

𝑅2 = 178,891 kΩ, and 𝐶1 = 5.59 μF.

• The complete circuit is shown in the 

figure below, where the circuit 

element values have been rounded 

off. 



Configuring the Controller 

• In majority of the cases, compensator is commonly designed 

for tackling a particular issue or problem in control system 

with its specific set up or arrangement. 

• On the other hand, controller is typically intended and 

designed to be able to be adjusted or tuned-in to manage 

the operation of the system.

• There are many approaches to configure controllers. But 

these are typically classified into e.g. ad-hoc (on the spot), 

experimentation, or prescriptive formulas.



Configuring the Controller 

Method Advantages Disadvantages

Manual tuning No math required. Requires experience.

Software tools

Consistent tuning, can employ computer-
automated control system design 
techniques, may include devices analysis, 
allows simulation before implementation, 
and can support non-steady-state (NSS) 
tuning.

Some cost or training involved.

Ziegler–Nichols Proven method.
Process upset, some trial-and-
error, very aggressive tuning.

Tyreus-Luyben Proven method.
Process upset, some trial-and-
error, very aggressive tuning.

Cohen–Coon Good process models.
Some math required and only 
good for first-order processes.

Åström-Hägglund
Can be used for auto tuning; amplitude is 
minimum, so this method has lowest 
process upset.

The process itself is inherently 
oscillatory.

• There are various ways to configure and to tune in the controller 

in control system.



Configuring the Controller

General Tips for Designing a PID Controller

When you are designing a PID controller for a given system, 

follow the steps shown below to obtain a desired response.

1. Obtain an open-loop response and determine what needs to 

be improved.

2. Add a proportional control to improve the rise time.

3. Add a derivative control to reduce the overshoot.

4. Add an integral control to reduce the steady-state error.

5. Adjust each of the gains 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 until you obtain a 

desired overall response. You can always refer to the table 

shown to find out which controller controls which 

characteristics.



Configuring the Controller

• Lastly, please keep in mind that you do not need to 

implement all three controllers (proportional, derivative, 

and integral) into a single system, if not necessary. 

• For example, if a PI controller meets the given 

requirements (like the above example), then you don't 

need to implement a derivative controller on the system. 

• Keep the controller as simple as possible.
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