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Topic
*  Frequency response methods.
*  Foundation of frequency response.
* Bode plots.
* Bode plots and transfer functions.
* Examples of Bode plots.
* Resonance response.
* Right-hand plane roots.

*  Non-minimum phase.

1. Introduction to Frequency Methods

There are some control system analysis methods in control system engineering that are based on the
frequency response. One of these methods is the Bode plots. The other methods are root locus diagram,
Nyquist diagram, and Nichols chart that we will cover later in the course.

1.1. Frequency Response Methods

Frequency response methods are a set of graphical techniques that focus on how the gain and phase of
a system change with frequency. Frequency responses can be used when we have a good mathematical
model for a system (a transfer function). Frequency response methods can also be used even when we
do not have a good model of the system (plant) that we are trying to stabilise. We just use experimental
data in place of a model.

1.2. Frequency Response Overview
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We will cover in this course, the detailed construction of:
e Bode plots (plots of gain and phase vs. frequency).
e Root locus diagrams (plot of real vs imaginary parts of transfer function).
e Nyquist plots (plot of gain vs. phase).

o If time permits, we will also look at the Nichols plot, which can be considered an alternate form
of the Nyquist plot.

For each plot type, we will discuss:
e How to assess system stability.
e How to determine the closed-loop characteristics of a control loop.

e How to design compensators (or controllers).

2. Foundations of the Frequency Response

Consider a system described by the transfer function:

N(s)

G(S) = m

Where: N(s) and D(s) are polynomials such that G(s) is proper.

2.1. Adding Input Signal

Let us apply a sinusoidal signal r(t) at the input of the system and determine the corresponding output
signal y(t).

r(t) = Acos(wt)u(t)

Applying Laplace transform to the equation above:

R(s)=A (L)

s? + w?
The Laplace transform of the resulting output signal is then:

Y(s) = G(s)R(s)

2.2. Partial Fraction

If we were to expand this using partial fractions we would obtain:
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c c* V(s)
—+ —+
s—jw s+jw D(s)

Y(s) =
Where: the first two terms arise from the sinusoidal excitation and the last term arises from the poles of
the system (as contained in D(s)).

The polynomial V (s)here arises from the polynomial simplification. We can use the Heaviside method to
find c and c™.

. s(s —jw)
c=(—jw)Y($)lssjw =4 [sz-l-—a)z G(s) '

s—jw

The equation becomes:
s(s — jw) ]
c= - —| G(s)
(s +jw)(s — jw) —jo
As a result:
=4(570)00)]_ =4(5550)00
€= s+jw Q) S_)jw_ Jjw + jw o)

Thus

c= (g) G(w) and c¢*= (g) G (jw)

Substituting back into the expression for Y (s), we obtain:
A\ (G(jw A\ (G (jw V(s
Y(S)=<_) (1_) +(_) (1_) L V)
2/\s—jw 2/\s+jw D(s)

2.3. Inverse Laplace Transform

We now take the inverse Laplace transform to move back into the time domain.

A . A . V(s)
=|— j Jjowt — *(7 —jwt -1 _N7
y(t) (2)0(1w)e + (2)6 (jw)e +L (D(s))
Where: the term L7} (%) = y;(t) is a transient arising from the poles of the system.

If the system is stable, then the transient will (eventually) decay to zero and we will be left with just the
first two terms. After the decay of the transient, we have:

y() = (g) G(jw)el®t + (g) G*(jw)e ot

- (%1) (I6Gw)le/0e@t + |G* (wt)|e 10 e—oY)
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A . .
= (5) (16G@T©H+0) + 16" (wDle @)
Applying exponential form to trigonometry identity:

A
y(t) = (§> |G(jw)|2 cos(wt + 0)

= A|G(jw)| cos(wt + 0) where: 6 = £G(jw)

If we compare this with the input signal r(t), we can see that the effect of the system is therefore to
multiply the gain of the input signal by |G (jw)| and phase shift it by 2G (jw)

3. Bode Plots

A Bode plot is a pair of plots showing the variation of gain (in dB) and phase (normally in degrees)
against the logarithm of the frequency.

90| \
-180

10 100

-270 100m 1
Angular Frequency[rad/s]

Figure 1: Bode plots of a control system (gain and phase plots)

We can use either angular or linear frequency on the x-axis, although angular frequency (in rad/s) is

usually more convenient.

3.1. Gain and Phase Response

We wish to determine the gain and phase response as a function of w for a system having transfer
function G (s). We can find this by plotting |G (jw)| and 2G (jw) as we vary w.
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Gain (dB)

Figure 2: Gain and phase response of a control system

3.2. Bode Approximations

If we need to plot an accurate frequency response, then we could solve the gain and phase responses at
many points. Alternatively, we could find explicit expressions for |G (jw)| and £G (jw). Tools like Matlab
make plotting an accurate Bode plot very easy — bode (tf ( [num], [den])) and

bode (zpk ([z], [p], [k])) produce Bode plots. Read the Matlab help file for details and options.

However, much of the time we only need an approximate frequency response for control design. In fact,
in many cases, the approximations are easier to work with than the accurate curves would be. Bode
developed a set of straight-line approximations to the real response curves. Using these approximations
makes it simple to plot a frequency response by hand.

3.3. Bode Plots - The Big Picture

Bode plots are intended to be quick and easy to draw:

+  They produce reasonably accurate gain responses and phase responses that are adequate for
many purposes.

+  The approximations become less accurate for systems containing lightly damped oscillatory
modes.

The basic idea of the Bode plot is to break a transfer function into smaller simple parts, each of which
has a known Bode plot. We will build the Bode plot of an arbitrarily complex transfer function by adding
the constituent plots graphically.

3.4. Dividing A Transfer Function into Its Parts

For example, consider a system having a transfer function:

K(s+2z)(s+z)
G = fi K ER
() s(s3 +dys? +dys+dy) or
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We may be able to break this down into a set of simpler elemental transfer functions, say:

G(s) =K(s +z1)(s + 23) (%) (S J,lpl) <52 + zqal)ns + w%)

Usually, a transfer function is broken down into these terms:

e Poles and zeros atdc: s"forn € Z

e Simple poles and zeros: (s + a)*!

e Complex pairs of poles and zeros: (s + 2{ws + w2 )*!

3.5. Gain Response of An Arbitrary TF
Let’s derive an equation for the gain and phase of an arbitrary transfer function G(s), where:

_K(s+2z)(s+23) ...(s +7)
T (5P +Dp) (5 + )

That is, the transfer function has k zeros at —zi € C and n polesats = —pi € C. The z; and p; are not
necessarily distinct. The gainof G(s) ats = jw is:

G(s)

IKlljw + zi||jw + 2, ... [jw + 2|
ljo + pilljw + p2| ... [jo + Py

1G(w)| =

Converting to dB, we write this as:

20log|G(jw)| = 20log|K| + 201log|jw + z;| + - + 201log|jw + z|
—20logljw + p1| — -+ — 201logljw + py|

To find the gain response of our overall function in dB we can find the gain responses arising from each
pole and zero separately and then add them. This is why we use a dB scale, because otherwise, we
would have to go to the bother of multiplying the individual responses. We shall see shortly that adding
the plots graphically is trivial.

3.6. Phase Response of An Arbitrary TF

Recall that a complex number a = bc/de will have a phase given by:
Za=14b +2sc —2d — Le

Similarly, our transfer function:

B K(s+z)(s+2y)..(s+2z)

O = T PG T ) (s FPw)

This will have a phase response of:

LG(s)=¢K+ £(s+z)+ 2(s+2zy)+ -+ 2(z1) — 2(s+p)— 2(s+py) —— 2(s+py)
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Rememberthat K € R,so 2K = 0if K > 0, or 180°if K < 0. If we calculate the phase responses for
our family of prototype pole/zero combinations, we will be able to add them to determine the overall
phase response of an arbitrary transfer function.

3.7. Transfer Functions for Bode Plots

It is easier to draw a Bode plot if we rearrange the transfer functions so that each term has unity gain at
dc. Normally we write a transfer function as:

_K(s+2z)(s+2)..(s+7)
~ (s +p)(s+pg) . (s +pp)

But, we will find it easier for Bode plotting if we first place it in the equivalent form:

K(1+ZS—1)(1+%)...(1+%)

(1+%)(1+;—2)...(1+;—n)

Converting to this form is accomplished by dividing through by the constant in each term and adjusting
the overall gain to compensate.

G(s)

G(s) =

Example for Tutorial 1 - Transfer Function Modification

Convert the transfer function given below into a suitable modified form for Bode plots.

s+ 10
s(s+2)(s?+3s+9)

G(s) =

a. Calculate the form manually. [4 marks]

b. Use simulation in MATLAB. [5 marks]

Answer
a. Calculate manually, the transfer function of the system is modified as follows:

s+ 10

G(o) = s(s+2)(s?+3s+9)

105+2(1io+1)

2
sx2(%+1)x9(§—2+%+1)

S
(rg+1)
s s\%2 s
s(z+ 1)((?) t3f 1)
Note the change in the constant (dc) gain term. Notice also the form change for the complex pair of
poles, from:

O | Ul

XMUT315 - Note 10-7



Note 10a: Introduction to Bode Plots

s2 4+ 2Cwys + w?

Thus, the equation above becomes:
S \2 S
(=) +20 () +1
(‘)n (‘)n

b. Matlab does not distinguish internally between the two forms of the transfer function that we have
discussed. However, you can specify which form Matlab uses to present the transfer function. This is
useful to convert between the two.

>> G = zpk(-6,[-1+j -1-j -2],2)

2 (s+6) % This is the default, with

———————————————————— % DisplayFormat = 'roots’
(s+2) (s*2 +2s + 2)

>> G.DisplayFormat = ’frequency’;G
3 (1+s/8)

(1+8/2) (1 +1.414(s/1.414) +(s/1.414)"2)

4. Forms and Plots of Bode Plots

In this section, we will look into a number of forms and plots of Bode plots. We look into forms such as

Kstn, (5 + 1)i1, (1+ i)ﬂ, and [(win)2 +20 >+ 1r1.

4.1. Systems with Form Ks™"

The most basic form of Bode plots is Ks™ where the pole is located at the origin (0, 0) in the s-plane.

4.1.1. Transfer Functions of Form Ks™
The gain of a transfer function G(s) = Ks™ is given by:
G(w)| = Ko™
So, the gainin dB is:
|G(jw)| = 20 log(Kw)™
= 20logK + 20nlogw

Thus, the transfer gain response is a straight line with a slope of 20n dB/decade and is equal to 20 log K
atw = 1.
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G(jw) = K(jw)"
= K™
Thus
£G(jw) = 2j"=90n° if K>0

The phase of G(s) = Ks™ is constant at 90n degrees.

4.1.2. The Plot of a TF with Form Ks™"

For example, an integrator (which has G(s) = 1/s = s™1) has a gain response of 1/w and a constant

phase of -90°.
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Figure 3: Bode plot of a TF with form Ks™
Example for Tutorial 2 — System with Pole at Origin
Given a first-order system with a zero at origin and gain of 100, sketch its Bode plots:  [5 marks]

G(S) = T

Answer

The following figure shows the Bode plots of system G (s) = 100/s
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1-—~-T7--T7TrT

(gpj ues

(Bap) aseyd

10k

Tk

Angular Freguency (radfs)

Note:

Gain of the system is:

|G(jw) = 100/jw| = 2010g(100) — 20 log(w)

40 — 20log(w) dB/dec

Phase shift of the system is:

2(G(jw) = 100/jw) = —90°

Example for Tutorial 3 — System with Pole and Negative Gain

Given a first-order system with a negative gain of 100 and a pole at the origin as in the following transfer

[5 marks]

function, sketch its Bode plots.

100
S

G(s)

Answer

The following figure shows the Bode plots of system G(s) = —100/s.

XMUT315 — Note 10 - 10
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2(G(jw) = —100/jw) = +90°

|G(jw) = —100/jw| = 2010g(100) — 20log(w)
|G(w)| =20 loga — 20 logw

At low frequencies (w < a) we find |G(jw)| = 1 (or 0 dB).

At high frequencies (w > a) we have |G(jw)| =

To cope with K < 0, you just need to account for the extra 180° phase shift associated with the negative

gain.
frequency asymptote is a straight line with a zero slope and unity gain. On a dB scale, the high-frequency

Notice the difference between positive gain and negative gain the Bode plot. It is difficult to distinguish
asymptote is given by:

The response in these two frequency regimes forms low-and high-frequency asymptotes. The low-

which gain is positive and which one is negative.
This is a system with a single pole at s = —a (a low pass filter).
This is therefore a straight line with a slope of -20 dB/decade.

4.2. Systems with Form (s/a + 1)1
Consider a transfer function of form (s)
Example for Tutorial 4 — System with Pole
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Consider the example of a first-order system with pole at -100 as shown in the following transfer
function as shown below, perform the following tasks:

G(s) =

(700) + 1
a. Sketch its Bode plots. [5 marks]
b. Describe the frequency response of the system. [6 marks]
c. Sketch its Bode plots. [5 marks]

Answer

a. Notice that the high and low-frequency asymptotes form a reasonable approximation of the real

response. The following figure shows the Bode plots of system G(s) = !

(s/100)+1
40 20bg@~_
H"*-n.
— 20t T~ 20 log(a) - 20 log(w) 4
3 =S
= 0 G|=1 it R B T
£ =
© -20 + Single pole at s=-100 rad/s -20 dB/deg
— 0 Y yyryrrey Y yyorryreg Y Yy yryery Y Y ororyreg
8
@
w
2 -90
[a I 1 1 1
100m 1 10 100 1k 10k

Angular Frequency [rad/s]

b. Atlow frequency, the transfer function G(s) = 1. It, therefore, has a phase of 0°in this region. At
. a _ .(a
high frequency G(s) =~ o= (w) .

The high-frequency asymptote thus has a fixed value of —-90°. At the breakpoint (w = a) we have

G(s) = % = 12;] which has a phase of -45°.

The normal approximation for the phase response is to draw a straight line at 0° up to a frequency a
factor of ten below the break point, a straight line with a phase of -90° beyond ten times the
breakpoint and then join the two asymptotes with a straight line.

c. Again, for the example of the following transfer function:

XMUT315 - Note 10 - 12



Note 10a: Introduction to Bode Plots

G(s) = ————
(700) + 1
1

The following figure shows the Bode plots of system G (s) = /10011

Gain[dB]

Phasea [deg]
©
o

100m 1 10 100 1k 10k
Angular Frequency [rad/s]

Example for Tutorial 5 — System with Pole

For a first-order system with a real pole at -20 and gain of 7 as the following transfer function:

7

G()=57720

a. Sketch the Bode plots of the system [5 marks]

b. Simulate the Bode plots of the system in MATLAB. [5 marks]

Answer

a. Let us begin by putting the transfer function into a form suitable for Bode plotting.

7 7 7l 1
S+20 20(55+1) 20\1+445

G(s) =

Note that:
20log (7/10) = —9.1 dB= —10dB

The following figure shows the Bode plots of a system G(s) = s+720
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b. We can check our work using Matlab. Be careful using the zpk () function — check that you have

the right dc gain and put the pole at —20 rad/s not +20 rad/s.

>> G = zpk([],[-201,7)

>> bode (G)

You can also use the tf () function instead. The following will both work:

>> G = tf(7,[1,207)

>> G = tf(7/20,[1/20,17])

Though Matlab is very useful for control design, it can be error-prone. One important reason to

understand how to draw a Bode plot by hand is that it allows you to recognize errors when using

computer-based tools.

Most of the errors are due to algorithm used in Matlab and accuracy of the simulation results. It is

also possible errors are due to extreme points e.g. infinite results obtained in the simulation.

+1)

N
a

4.3. Systems with Form (

Now, consider the case of a single zero at s = —a, where a > 0. The low-frequency asymptote arising

from a zero is the same as that for a pole (a straight line at 0 dB). However, for a zero, the high-

frequency asymptote is given by:

—20loga + 20logw

1G(jw)
The high-frequency asymptote is therefore a straight line with a slope of +20 dB/decade. The phase

response is also the opposite of that produced by a pole. At high frequencies, we have G (jw) = jw,

leading to a phase shift of +90°. As we might expect the phase is +45° at the breakpoint.
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Example for Tutorial 6 — System with Zero

For the following first-order system with a real zero at -50 as given below, sketch its Bode plots:

[5 marks]

G(s) = (s+50)

Answer

For a system with a zero at s = -50. The following figure shows the Bode plots of a system with a zero at

-50.

S =

T

ALl

20—
0

OF---

© o

()]
(Bap) aseyd

4.4. Systems with Repeated Roots

As a transition to complex pairs of poles/zeros, consider the case of a transfer function with a double

pole:

a>0

for

G(s)

We know that the gain and phase responses are the sum of the two parts. So, we will have a response

that falls off at -40 dB/decade beyond the breakpoint and moves from 0°to -180°in phase (over the

same frequency range that a single pole TF would take to move 90°).

Notice that the presence of two poles means that the gain at s = a is 6 dB down from the dc value. The

plots for a repeated zero are opposite, with a slope of 40 dB/decade and a phase that moves from 0° to

180°.

Example for Tutorial 7 — System with Double Poles
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For the following second-order system with double poles at -100 as given below, sketch its Bode plots.
[5 marks]

1

¢6) = G100

Answer

The plot of a transfer function with a double pole. The following figure shows the Bode plots of a system

with the double pole at s =-100

0 TN T T .
oo20 Double pole at s=-100rad/s .t 4
T 40 | =~
tn

-60 | 4

0.1 1 10 100 1k 10k
Angular Freguency [rad/s]

S 2 S 1
4.5. Systems with Form [(w—) + wa— + 1]

We might expect that the transfer function produced by a pair of complex poles would look something
like that produced by a double pole. As a way from the break point this is true, the gain rolls off at -40
dB/decade at high frequencies and the phase moves from 0° at low frequencies to -180° at high

frequencies.

However, when the transfer function is underdamped it leads to some significant deviations in the
region of the breakpoint. The smaller the damping the larger the effect. As damping decreases, we get:

* increasing peak in the gain response.
* sharper transition in the phase response.

These effects are shown in the figure.
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40 .
L =1
— w, = 100 rad,-‘s| 5
o, 0.2
0 — 01 A
£ 0.01
0

Phase [deg]

10 10I0 1k
Angular Frequency (radfs)

Figure 4: Bode plots of second-order systems with various damping ratios

We represent this family of curves with a straight-line approximation identical to the repeated real pole

example above.

Note though that the corner point is at w,, for the resonance, not at the real part of the pole pair.

If the damping is very low ({ < 0.01 say), you might prefer to approximate the phase response as a step
at the natural frequency.

4.5.1. Corrections for Second-order Systems

To draw an accurate frequency response for a second-order system, it is necessary to make corrections
by looking at a previously plotted response.

If you do not happen to have such a response handy, as a rough guide the peak (or trough for zeros) in
the gain response has a gain as follows at the breakpoint:

V1

M, = ——
N e
For lightly damped systems:
M L
P~ 27 =0

4.5.2. Resonance

This should be familiar, as it is just a description of resonance. The gain of the system becomes large in
the vicinity of the resonant frequency. Highly resonant (lightly damped) systems have a more
pronounced gain increase at resonance. All systems go through a 180° phase change in the vicinity of a

resonance.
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4.5.3. Damping and the Resonant Peak

Note 10a: Introduction to Bode Plots

For lightly damped systems we can see that the resonant peak occurs at approximately w,,. However,
the peak in the gain response shifts downwards in frequency as damping increases. However, the
passage of the phase response through -90° always occurs at w,,, which makes this a better feature to

search for in experiments.

40

Gain [dB]

-10

-20

._,_:;';'-'—'-""-:_

1
Frequency (radfs)

Figure 5: Resonant peak of second order system with various damping ratios

4.4. Systems with Form ( )2 + 2{(

S
Wn

win)+1

As you might expect the behaviour of a system with second-order zeros is opposite that with second-

order poles.

.
o

w, T 100 rad/s

Gain[dB]
o

s
o

-

]

o
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o
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o
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10

100
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Figure 6: Bode plots of a system ( )2 + 2(( ) +1

S
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Note 10a: Introduction to Bode Plots

4.5. Building An Arbitrary Bode Plot

The following list outlines the steps required for creating an arbitrary Bode plot:

1. Arrange the transfer function into a convenient form.

2. Plot the straight-line approximations for each term in the transfer function.

If required, make corrections to the approximations for complex pairs of poles.

3.

4. Gain peaks are approximate.

5. Add the various curves graphically and draw in the final response curves.

Example for Tutorial 8 — System with Double Poles

For a second-order system with real poles at -2 and -20 as shown in the following transfer function,

[5 marks]

sketch its Bode plots.
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+ 1)(250+ 1)

G

The following figure shows the Bode plots of system G (s)
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Example for Tutorial 9 — System with Pole and Zero
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Note 10a: Introduction to Bode Plots

For a system with a real pole at -5 and a real zero at -100 as in the following transfer function, sketch its

[5 marks]

Bode plots.

Answer

+1)

S

— (100

The following figure shows the Bode plots of system G (s)
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Example for Tutorial 10 — System with Zero and Double Poles

100 as shown in the following transfer function,

For a system with double poles at -5 and a zero at

sketch its Bode plots:

[5 marks]

12)
1)

+

S
00
+

v

6
(

G(s)

Answer

+12)
(5+1)

N
100

_ |

The following figure shows the Bode plots of system G (s)
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4.6. Checking the Bode Plot

You should always make sure that your final plot makes sense at both low and high frequencies.

Low Frequency:

At low frequencies, the response is determined by only the differentiators/integrators in the system. If
the overall transfer function includes a factor of s™, then the slope of the gain curve should be 20n

dB/decade and the phase at low frequency should be 90n degrees.

High frequency:

The high-frequency behaviour is determined by the number of poles, P, and zeros, Z. At high frequency,

the slope of the gain should be —20(P — Z) dB/decade and the phase should be at —90(P — Z)

degrees.

Note: As we will see next, the phase checks only work when all of the system poles and zeros are in the

left half of the s-plane. The roots in the discussion have all been in the left half of the s-plane.

4.7. Right-Half Plane Roots

Having right-half plane poles will make the system to be unstable. The transient response of the system

with right-hand plane poles is an increasing amplitude function.

-Half Plane

4.7.1. Bode Plots for Roots in the Right

Let’s first consider poles in the right-half plane. Consider the transfer functions as follow:

=s+a

and G,(s)
s—a

G1(s)
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Note 10a: Introduction to Bode Plots

The gain of these systems:

1 1

|G (jw)| :j(u — 4 = NeoEwy
And

16y (j)] = —— = —

jota VaZtw?
The two transfer functions have identical gains.
4.7.2. Phase Plot for Roots in the Right-half Plane Roots
Now, consider the phase responses of the two systems.
—a—jw

1
G = =
105) s—a w?+a?

And
1 a—jw

GZ(S):s+a:w2+a2

The phase shifts of these systems are:

Im{G,(s)}\ = _ (o
Re{Gz(s)}> = tan™" (Z)

i _ Im{G (S)} _ —W )
£G,(jw) = tan™? <W2(5)}> =tan~! (T) = —tan~! (E)

2G,(jw) = tan™?! <
The phase response is opposite to that we expect for a pole in the left-half side of the s-plane.
Example for Tutorial 11 - Right-hand Plane Pole

For the system with right-half plane pole at 100 and a gain of 100 as shown below, sketch its Bode plots:
[5 marks]

Answer

A quick examination of a Bode plot is a good check whenever you enter a system in Matlab, as it is easy
to put a root in the right half plane unintentionally (e.g.: particularly with the zpk() function).
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100
s—100

The following figure shows the Bode plots of system G(s) =

] =

3
'c L0+ Single pole at s=+100
® radis
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= | | | |
% T T T T
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g0 ———————
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4.8. Systems with Non-Minimum Phase

Non-minimum phase systems are causal and stable systems whose inverses are causal but unstable.
Having a delay in a given system or a zero on the right half of the s-plane may lead to a non-minimum
phase system.

4.8.1. Non-minimum Phase Systems

The same analysis can be performed on systems having zeros in the right-half plane. Perhaps
unsurprisingly, we find that these too have their gain response unchanged, but their phase response
reversed from the left-half plane analogue.

Systems containing at least one right-half plane zero are called non-minimum phase systems. Non-
minimum phase systems tend to be harder to control than minimum phase systems, but easier than
open-loop unstable systems (those with right half-plane poles).

Example for Tutorial 12 — Non-minimum Phase

For a non-minimum phase system with a right-hand side pole at 100 and a gain of 1/100 as given below,

sketch its Bode plots. [5 marks]
G(s) = s—100
= 100
Answer
The following figure shows the Bode plots of system G(s) = s;;go
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I
[
T

Gain [dB]
[
L]

—
Lae]
L]

[ie)
L)
T

Phase [deq]

100m 1 10 100 1k 10k
Angular Frequency [rad/s]

4.8.2. Response of Non-minimum Phase Systems

Non-minimum phase systems are troublesome because their initial response is “the wrong way” when
driven by an input.

Example for Tutorial 13 — Comparison of Non-minimum Phase

Sketch and compare the step responses and frequency response of two second-order systems having

the following transfer functions. [10 marks]
s+1
Gi(s) = —5———
1(5) s2+4s+5
And
—(s—-1)
G,(5) = —5——
2(5) s2+4s+5
Answer
The following figure shows the transient response of systems G, (s) = ———— and G, (s) = (1)
stig P v 1 52+45+5 2 5244545
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04 T T T T

_02 | i | i
0

We can also compare their Bode plots. The greater change in the phase for G, is what leads to the name
“non-minimum phase”.

The following figure shows the Bode plots of systems:

s+1 —(s—1)

G = d G =——
105) s2+4s+5 an 2(5) s2+4s+5
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