] VICTORIA UNIVERSITY OF

yosd WELLINGTON
"

TE HERENGA WAKA

XMUT315 Control Systems Engineering
Note 10b: Analysis with Bode Plots

Topic

* Closed loop stability.

*  Gain and phase margin.

* Determining gain and phase margin in Bode plots.
* Damping and phase margin.

* Transient response parameters from Bode plots.
e System types.

* Steady-state errors.

* System errors and inputs.

* Determining steady-state errors in Bode plots.

1. Introduction to Analysis with Bode Plots

With Bode plots, we can perform stability analysis, transient response analysis, and steady-state analysis
of the control systems.

1.1. Closed Loop Stability

Imagine a situation where we have a system described by a transfer function G(s). We now enclose the
system in a unity gain feedback loop.

X (8)—{ G(#) - Y(s)

Figure 1: Closed loop feedback system



Note 10b: Analysis with Bode Plots

We know that negative feedback is useful in stabilising a system. However, instability results when the
feedback is positive. The feedback in the system shown becomes positive when the plant transfer
function G (s) contributes 180° of phase shift to the overall system.

System stability is one of the basic concerns when designing a control system. We would like to be able
to meaningfully talk about how close a system is to instability, not just whether it is stable or not.

For many systems, we can assess the stability by finding the frequency at which the phase curve crosses
-180° and reading the gain at that point.

If the gain > 1, then the system will be unstable. If the gain < 1 at the frequency where the phase crosses
-180°, then there is not enough gain to sustain the oscillations. This approach leads to a metric known as

the gain margin.

1.2. Gain Margin

The gain margin is the amount by which we can increase the gain of a stable system before it becomes
unstable.
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Figure 2: Gain margin in the Bode plots

To determine the gain margin of a system, read the gain at the frequency where the phase curve crosses
180°. Note that the gain margin must be positive for the system to be stable!

1.3. Unity Gain

In control applications we often use the Unity Gain Frequency, which is the frequency at which the
system’s gain has dropped to one (0 dB). We can use the Bode plot to simply read off the frequency
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Note 10b: Analysis with Bode Plots

where the gain plot crosses the 0 dB line. Note that some systems have multiple unity gain frequencies
because their gain curves cross and recross the 0 dB line. In crude terms, the unity gain frequency of a
control system is the highest frequency at which the control is doing anything useful. Beyond this point,
the gain is too small to improve the system.

1.4. Phase Margin

The phase margin is the amount by which we can decrease the phase of a stable system before it
become unstable.
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Figure 3: Phase margin in the Bode plots

To determine the phase margin of a system, find the unity gain frequency and read the system phase at
that point. This reveals how much extra phase lag we could tolerate before instability sets in.

1.5. Gain and Phase Margins with MATLAB

The margin () command in MATLAB will tell you the gain and phase margins and the frequencies at
which they occur. If you call it without any return arguments, it will draw a plot displaying the same
information.
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Figure 4: Gain and phase margins in Bode plot with MATLAB

1.6. Phase Margin with Multiple Unity Gain
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The following Bode plot shows a higher order system that has multiple crossing of the 0 dB gain curve
with unity gain line. There are two 180° phase crossings with corresponding gain margins of -9.35 dB
and +10.6 dB.
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Closed-loop response for k=1

Note 10b: Analysis with Bode Plots

Bode Diagram
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Figure 5: Systems with multiple phase and gain margin crossing

For some systems cross the 0 dB gain curve more than once, in general, there will be a different phase
margin associated with each of these crossings. It is possible to define the system phase margin as the

worst (smallest) of the individual phase margins.

However, this is dangerous as there are some systems like this appear to be stable but are not. When
you see a system with multiple crossings of the 0 dB line, you should double check the system stability
with another method, such as a root locus diagram or (more traditionally) a Nyquist plot.

Example for Tutorial 1 — Stability Analysis with Bode Plots

For each system given below, find the gain margin and phase margin if the value of gain K is 1, 100,

1000, and 0.1. Write a summary on the stability of each system. [30 marks]
R(s) + K C(s)
(s+2) o

(s+His+6) [

System 1
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C(s)

C(s)
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tem 1 K =1

=
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System
Kis—1)
(s+1)
(s-2)
(s+2)
System 3

it for

(s+2)(s+4)

K(s2 —4s + 13)

e Pl

1 yields the following Bode plots:
Open-Loop B

R(s) +
R(s) +

Note: All results for this problem are based upon a non-asymptotic frequency response.
System 1: Plotting for K
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Note 10b: Analysis with Bode Plots

K=1:

For K =1, phase response is 180° at w = 6.63 rad/s, the gain margin is -53.6 dB at this
frequency. Phase margin is +co at any frequency.

K =100:

For K =100, gain curve is raised by 40 dB yielding -13.6 dB at 6.63 rad/s. Thus, the gain margin is
13.6 dB.

Phase margin: Raising the gain curve by 40 dB yields 0 dB at 2.54 rad/s, where the phase curve is
107.3°. Hence, the phase margin is 180° - 107.3° = 72.7°.

K =1000:

For K = 1000, gain curve is raised by 60 dB yielding +6.4 dB at 6.63 rad/s. Thus, the gain margin
is -6.4 dB.

Phase margin: Raising the gain curve by 60 dB yields 0 dB at 9.07 rad/s, where the phase curve is
200.3°. Hence, the phase margin is 180° - 200.3° = -20.3°.

K=0.1:

For K =1, phase response is 180° at w = 6.63 rad/s, the gain margin is increased to 53.6 dB at
this frequency.

For K = 0.1, gain curve is lowered by 20 dB yielding -73.6 dB at 6.63 rad/s. Thus, the gain margin
is increased to 73.6 dB.

Stability Summary of System 1:

When K = 1, considering positive gain margin (GM = 53.6 dB at 6.63 rad/s) and phase margin
(PM = oo at any frequency), the system is found to be stable.

Any increase of the gain might reduce the gain margin of the system. If the increase is excessive,
the system could be unstable.

If the gain is lowered, the system stays stable with the margins are increased.

b. System 2: Plotting for K =1 yields the following Bode plots:

XMUT315 — Note 10 - 7



Note 10b: Analysis with Bode Plots

Open-Loop Bode Plat for System 2 K =1
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1, when the phase response is 180° at w = 1.56 rad/s, the gain margin is -2.85 dB and

For K

phase margin is -18.6° at 1.26 rad/s.

K =100:

100, gain curve is raised by 40 dB yielding +37.15 dB at 1.56 rad/s. Thus, the gain margin

is -37.15 dB.

For K

Phase margin: Raising the gain curve by 40 dB yields 0 dB at 99.8 rad/s, where the phase curve is

-84.3°. Hence, the phase margin is 180° - 84.3° = 95.7°,

K =1000:

1000, gain curve is raised by 60 dB yielding +57.15 dB at 1.56 rad/s. Thus, the gain

margin is -57.15 dB.

For K

Phase margin: Raising the gain curve by 54 dB yields 0 dB at 500 rad/s, where the phase curve is

-91.03°. Hence, the phase margin is 180° - 91.03° = 88.97°.

K =0.1:

iv.

0.1, gain curve is lowered by 20 dB yielding -22.85 dB at 1.56 rad/s. Thus, the gain

margin is -22.85 dB.

For K
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Note 10b: Analysis with Bode Plots

Phase margin: Lowering the gain curve by 20 dB yields 0 dB at 0.162 rad/s, where the phase

curve is -99.8°. Hence, the phase margin is 180° - 99.86° = 80.2°.

Stability Summary of System 2:

Both gain and phase margins of the system are negative i.e. -2.85 dB at 1.56 rad/s and -18.6° at

1.26 rad/s respectively. The system is unstable due to these negative margins.

Increasing the gain reduces the gain margin further making the system to become more

unstable.

Decreasing the gain of the system might increase the margin and might turn the system to

become stable.

1 yields the following Bode plots:

System 3: Plotting for K

C.

Open-Loop Bode Plat for System 3 K =1
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1.41 rad/s, the gain margin is 0 dB at this frequency.

1, phase response is 180° at w

Phase margin is 0° at 1.41 rad/s.

For K
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K =100:

For K = 100, gain curve is raised by 40 dB yielding 40 dB at 1.41 rad/s. Thus, the gain margin is -
40 dB.

Phase margin: Raising the gain curve by 40 dB yields no frequency where the gain curve is 0 dB.
Hence, the phase margin is infinite.

K =1000:
For K = 1000, gain curve is raised by 60 dB yielding 60 dB at 1.41 rad/s. Thus, the gain margin is -
60 dB.

Phase margin: Raising the gain curve by 60 dB yields no frequency where the gain curve is 0 dB.
Hence, the phase margin is infinite.

K=0.1:

For K = 0.1, gain curve is lowered by 20 dB yielding -20 dB at 1.41 rad/s. Thus, the gain margin is
20 dB.

Phase margin: Lowering the gain curve by 20 dB yields no frequency where the gain curve is 0
dB. Hence, the phase margin is infinite.

Stability Summary of System 3:

Both gain and phase margins are zero at 1.41 rad/s and 1.41 rad/s respectively. The system is
critically stable.

Increasing the gain might turn the system to become unstable.

Reducing the gain increases the margins and these make the system to become stable.

2. Transient Response in Bode Plots

From the given Bode plots, we can determine a variety of transient response parameters. Transient
response parameters that can be derived and approximated from the Bode diagrams are damping ratio,
settling time, and peak time.

For transient response analysis, we need to know several of the values of these parameters to work out
the transient response parameters: knowing phase margin will give you the damping ratio and knowing
closed-loop bandwidth (+ damping ratio) will provide you the settling time and peak time.

2.1. Phase Margin and Damping Ratio

XMUT315 — Note 10 - 10



Note 10b: Analysis with Bode Plots

Phase margin is particularly useful because there is a direct link between a system’s phase margin and
its damping in the closed loop case. The smaller the phase margin, the more badly the system will ring.

PM=130 deg PM=50 deg
- B —— SR o T =3
fx
Time (seconds) Time (seconds)

PM=25 deg PM=10 deg

Arnpdinace

Figure 5: Transient response of systems with various phase margins

2.2. Phase Margin and Damping Ratio

It can be shown that there is a relationship between the phase margin the damping ratio of the closed

loop response. For a standardised second order equation as shown in the figure below, the open-loop
transfer function of the plant is:

2

G(s) = —
() = s(s + 2Cwy,)

¢
Wy Cls)
5(s + 28w,)

Figure 7: Standard second-order system

The closed-loop transfer function of the system is:
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C(s) w?
R(s) 2+ 2{w,s + w?

T(s) =

To evaluate the phase margin, find the frequency for which |G(jw)| = 1.

wz
IG(w)| = = =1

—w? + j2{ww

The frequency, w1, that satisfies the equation above is:

W, = a)n\/—ZZZ +/1+4¢4

The phase angle of G (jw) at this frequency is:

1)
. — —90° — -1 ( 1 )
2G(jw) 0° — tan 2o

Substitute the equation for w; into the equation above.

()
2¢

2G(jw) = —90° — tan~

The difference between the angle of the equation above and -180° is the phase margin, ¢,,.

\/—2(2 + 41+ 4¢4
-1
2¢

¢m = 90° — tan

The accurate relation of damping ratio with the phase margin of the system over the full range is:
1 %

\/2(2 + 1 +47*

¢m = tan™

To keep the damping reasonable, we generally try to preserve a phase margin of about 60°.

Rearrange the equation given above, the damping ratio is:

1
4 2
—r—+2) -4
(tan2 Dm

The relationship between phase margin and damping ratio is as shown in the graph below.

{=4
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Figure 6: Graph of phase margin vs. damping ratio

For damping ratios less than 0.65, we can use the approximate relation ¢,,, = 100{ as shown in the

graph above.

2.3. Bandwidth of Control Systems

The magnitude or gain of the frequency response of the given control system is given as:

wp

V(@ — w?2)? + 40202 w?

ITGw)| =

To determine the transient response of the control system, we need to find the closed-loop bandwidth

from the Bode plots.

For an open-loop system, the bandwidth of the control systems (wpgy,) is the width of frequency of gain
of the system from DC (0 rad/s) to the half-power point (i.e. -3 dB).

For a typical second-order system, the gain plot of the equation given above is shown in the figure
below. The bandwidth is located at wgy, or in log frequency scale, it is log wgy, -
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Figure 8: Peak gain and bandwidth of the second order system in the Bode plot

2.4. Closed-Loop Bandwidth
The bandwidth of the standardised control systems (wpgy,) is determined by finding the frequency for
which M = 1/~/2 (that is -3 dB).

wn

- V(@2 — 02)? + 420k w?

Equate the equation above to be equal to 1/+/2 that happens when w = wgy:

w? 1
\/(wrzl — wi)? + 4P wiwEy, V2

Rearranging the equation above, the bandwidth of the control system is:

g = 0n (1~ 22) + AT =477 1 2

The closed-loop bandwidth, wgy, is the frequency at which the closed-loop gain response is -3 dB. As
shown in the figure below, if the open-loop phase response is between -135° and -225°, this equals the
frequency at which the open-loop gain response is approximated to be between -6 and -7.5 dB.
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Closed-loop magnitude = -3 dB

2280 —260 —240 —220 —200 —180 —160 —140 —120 —100 —80

Open-loop phase (degrees)

Figure 9: Graph of open-loop gain (in dB) vs. open loop phase (in degree)

Given the Bode plots of a control system as shown in the figure below, we can determine the phase
margin and bandwidth of the system. From the plots, phase margin (PM) is 180° - 150° = 30°. Also, we
found that gain margin (GM) is 10 dB at 4 rad/s. Considering the open-loop system and looking at the
frequency when the gain of the system is -7.5 dB, the bandwidth (wpgy,) is approximately 3.5 rad/s.
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Figure 10: Bandwidth in the Bode plots
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2.5. Transient Response Parameters in Bode Plots

We could determine the transient response parameters of the system from the normalised bandwidth
vs. damping ratio for settling time, peak time, and rise time.

2.5.1. Settling Time in Bode Plots

The settling time of a second order system (Ty) is:

Rearranging the equation above

=72

Substituting the w,, in the bandwidth equation, the bandwidth equation becomes:

wngé\/u—zqzn 404 — 472 42

Where: { is the damping ratio.

Hence, the settling time is:

4

T. =
y wpw{

Ja-2+ iz a7 12

The following figure shows the damping ratio vs. normalised settling time (T) of the system.

-

0 0102030405060708059 1
Damping ratio

Figure 11: Graphs of settling time (T) vs. damping ratio

2.5.2. Peak Time in Bode Plots
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Like settling time, we can determine also the time-to-peak (T,,) from the Bode plots through the
bandwidth of the closed loop system (wgy, ). For a given second order system, the peak time is:

T
T, =—
p
Wp/ 1- (2
Rearranging the equation above
T
W, =

Substituting w,, in the bandwidth equation, the bandwidth equation becomes:

s = — (1~ 20%) + AT =47 2

Ty /1= (2

Where: { is the damping ratio.

Hence, rearranging the equation, the peak time is:

Ja-2)+ iz a2

T,

V4
P _wBW\/l—fz

The following figure shows the damping ratio vs. normalised peak time (T},) of the system.

I
_II'_

4
0 010203040506070809 1
Damping ratio

Figure 12: Graph of peak time (T,) vs. damping ratio

2.5.3. Rise Time in Bode Plots

To relate the bandwidth to rise time (T;.), knowing the desired {, we can calculate it from:

Where:
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=)

¢ =tan™?! ( Z

Rearranging the equation above
m—¢

Wy = ———
Yo 1-2

Thus, substituting w,, into the bandwidth equation
7'[ [e—
¢ (1—-2¢3) +J4{*— 4%+ 2

Wpy = —F/—
To/1 — (2

Or

T—¢
T, =———— |(1—-20%) +J40*— 4%+ 2
wBW\/l—CZ\/

The following figure shows the damping ratio vs. normalised rise time (T;.) of the system

gy T

1 |
0.1 02 03 04 05 06 07 08 09

Damping ratio

1

15
0

Figure 13: Graph of rise time (T;-) vs. damping ratio

Alternatively, the following figure shows the damping ratio vs. normalised rise time (T}.) of the system.
Using this graph, we could determine the bandwidth of the system graphically.
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Figure 14: Normalised rise time versus damping ratio for a second-order underdamped response

For example, assume { = 0.4 and T;. = 0.2 second.

Using the graph given above, the ordinate T,.w,, = 1.463, from which w,, = 1.463/0.2 = 7.315 rad/s.

g = 0n (1~ 22) + AT—4T7 1 2

Using the above given equation, wgy, = 10.05 rad/s.

Example for Tutorial 2 — Transient Response Analysis with Bode Plots

The Bode plots for a plant, G(s), used in a unity feedback system are shown in the figure below. Do the
following:

a.

Find the gain margin, phase margin, 0 dB frequency (unity gain), 180° frequency, and the closed-

loop bandwidth. [10 marks]
Use your results in part (a) to estimate the damping ratio, percent overshoot, settling time, and peak
time. [10 marks]
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Answer

From the Bode plots given below, the gain margin, phase margin, 0 dB frequency (unity gain), 180°
frequency, and the closed-loop bandwidth are determined from the plots.
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The results estimated from the graphs given above:

e Gain margin = 14.96 dB.

e Phase margin = 49.57°.

e 0dBfrequency =2.152 rad/s.

e 180° frequency = 6.325 rad/s.

e Bandwidth (@-7 dB point) = 3.8 rad/s.

From the equation given below, the damping ratio of the system can be calculated.

1 \ 1
{="1 = =0.48

4 2 4 2
<tan2 o, F 2) -4 |(@raost2) 4

The damping ratio of the system, { is 0.48.

Or, from the graph given below, the damping ratio of the system, { is estimated to be 0.5.
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From the equation given below, the percentage overshoot of the system can be calculated from:

14 (0.48)
%0S = evV1=¢* x 100% = eV1-(048)* x 100% = 17.93%

The percentage overshoot of the system, %0S is 17.93%.

From the equation given below, the settling time of the system (2% standard) can be calculated from:

y=— Ja-2 + ywi—ae
wpw{
4
N m\/(l —2(048)%) +/4(0.48)* — 4(0.48)2 + 2 = 2.84 s

The settling time of the system, T is 2.84 s.

From the equation given below, the time-to-peak (n = 1) can be calculated from:

A
T,=———— [(1—20%)+J40*—47%2+2

J(1 —2(0.48)2) + ,/4(0.48)* — 4(0.48)2 + 2

T
 (3.8)y/1 = (0.48)2
1225

The time-to-peak of the system, Tj, is 1.22 s.

3. Steady-State Characteristics in Bode Plots

From the given Bode plots, we can determine a variety of steady-state parameters. Steady-state
parameters that can be derived and approximated from the Bode diagrams are:
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* System type.
* Steady-state static error constants (K, K, and K,,).

* Steady-state errors.

With these parameters, we could analyse the characteristics and behaviour of the control system at
steady-state conditions:

Type O Type 1 Type 2
Static Static Static
Steady-state error error error
Input error formula constant Error constant Error constant Error
Step, 1 Ky = 1 _ B
u(t) | +K, Constant 1 +K, Kp == 0 Kp == 0
Ramp, 1 K, = 1
tu(?) K, Ky =0 - Constant K, Ky == 0
lelrabola, 0 . o ‘o K, = i
Erzu(t) X, a = - a = = Constant X,

Table 1: Steady-state analysis of control system

3.1. System Type on a Bode Plot

The type of a system is defined to be equal to the number of integrators in the open loop transfer
function. We can find the type of a system by examining its Bode plot.

a. Atype 0system has a slope of 0 and a phase of 0° at low frequencies.
b. Atype 1 system has a slope of -20 dB/decade and a phase of -90° at low frequencies.

c. Atype 2 system has a slope of -40 dB/decade and a phase of -180° at low frequencies.

“Low frequencies” in this context means in the frequency range below any of the system zeros or poles.
Note that examination of an experimental frequency response allows you to determine the system type
without needing a transfer function.

As illustrated in the diagram below, the type of the system can be determined as follows:

For the first system 1/(s + 10) with blue line, the gain of the frequency response at low frequency
is 0 dB and the phase shift at low frequency is 0 degree. So, the system is a type 0.

For the second system 1/s with orange line, the gain of the frequency response at low frequency is
a slope with -20 dB/decade and the phase shift at low frequency is -90 degree. So, based on these
results, the system is defined as a type 1 system.
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e For the second system 1/s2 with yellow line, the gain of the frequency response at low frequency is
a -40 dB/decade slope and the phase shift at low frequency is -180 degree. As a result, the system is

a type 2.
Bode Diagram
% i — lis+10)
= T e — s
2 -60f ] #
3 1/52
100
™ 45 -
g i
=2 —
@ a0 e —— —
53]
1]
=
O 135

Frequency (rad/s)

Figure 15: System’s types as determined in Bode plot

3.2. Steady-State Errors from a Bode Plot

The system type is related to the error that a closed loop system will exhibit when attempting to follow
a reference signal. Reminder:

a.

A type 0 system will have an error 1/(1 + K,) for a step input and infinite error for ramps and
paraboloids.

A type 1 system will have zero error for a step, an error of 1/K,, for a ramp and an infinite error
for an input paraboloid.

A type 2 system will have zero error when tracking input steps or ramps, but an error 1/K,
when tracking a command paraboloid.

3.2.1. Steady-State Error with a Step Input

The error to a steady-state unity gain step is given by:

1
1+K,

e(e0) =
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Where: K,, is the position-error constant.

For a type O system, K, is equal to the value of the open loop gain of the system. Thus, if our Bode plot
indicates a type 0 system (zero slope at low frequency), we can directly read off the K, value.

For systems of higher type, the DC gain of the system is infinite, so the value of K,, is also infinite. This
corresponds to zero static error to a step function for systems including one or more integrators in the
forward path. The position error constant is the DC gain of the system.
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Figure 16: Position-error constant in Bode plots.

For the system given in the figure above, the magnitude of the low-frequency gain extended to 1 rad/s is
20 dB. So, the position error constant (K}) is found to be K,, = log=1(|G(s)|/20) = log=1(20/20) = 10.

Alternatively, we could find the position error constant from the intersection of the low-frequency slope
with the frequency axis. For a given type 0 system, the transfer function of the system is:

[1iza(s +z)
R
i=1 pi
20 log M
A
20 log K,
= ()
®o

Figure 17: Determining the position-error constant (K,) from Bode plot
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The initial value of the gain plot of the frequency response is:

n
[Ti=1 2

m
i=1Pi

201log|G(s)| = 20logK

The value of position-error constant is:

lim K H?:1(5 + z;) —K H?:1 Zj
s=0 [, (s +p;) [T, pi

This is actually the same as the value of the low-frequency gain of the system for type 0 system.

K, = lsl_r% G(s)H(s) =

20log Ky, = |G(s)]

Thus

K
P 20

G(s
- [| ®)
3.2.2. Steady-State Error with a Ramp Input
The error in the presence of a unit ramp input is specified as:
e(») =K,
Where: K,, is the velocity error constant.

Recall that K, = ling sG(s). For a type 1 system, the multiplication by s would result in a level gain curve
S—

at low frequencies. If we were to plot a gain plot of sG(s), then K,, would be the low frequency gain.

Rather than plot this explicitly, we can instead examine the gain that the 1/s part of the transfer
function has at a frequency of 1 rad/s.

Similarly, we can find the velocity error constant by determining the gain of the 1/s part of the transfer
function if extended to w = 1.
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Figure 18: Velocity-error constant in Bode plots

For the system given in the figure above, the magnitude of the low-frequency gain extended to 1 rad/s is
20 dB. So, the velocity error constant (K,,) is found to be K,, = log™(|G(s)|/20) = log=1(20/20) = 10.

Alternatively, we could find the velocity error constant from the intersection of the low-frequency slope
with the frequency axis. For a given type 1 system, the transfer function of the system is:

ooy = g Ta 2)
m
sITZ.(s +pi)
20 log M
n 3
1z
20 log K—=1 |20 dB/dec

i
@, 1 p;
=1

g Kv

Figure 19: Determining the velocity-error constant (K,,) from Bode plot

The initial value of the gain plot of the frequency response is:

n
A
201log|G(s)| = 20log K ————
wo [T, pi
With a type 1 system, the -20 dB/decade slope of the frequency response can be considered as
originated from a function:

' _ =17
G'(s) = K—S m
The G'(s) intersects the frequency axis when the frequency of the frequency response is:
W= K#
i=1Di

Thus, the velocity-error constant of the system is:

i=1Zi i=1Zi
K, =limsG(s)=s<K = >=K =
Y50 s 12, pi i=1Pi

Hence
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w =K, or K,=w

This is actually the same as the frequency-axis intercept. Extending the initial -20 dB/decade slope to the
frequency axis will give you the velocity-error constant.

3.2.3. Steady-State Error with a Parabolic Input

The error in the presence of a unit parabolic input is specified as:
e() = K,

Where: K, is the parabolic error constant.

Recall that K, = lirré s2G(s). For a type 2 system, the multiplication by s? would result in a level gain
S—
curve at low frequencies. If we were to plot a gain plot of s2G(s), then K, would be the low frequency

gain.

Rather than plot this explicitly, we can instead examine the gain that the 1/s? part of the transfer
function has at a frequency of 1 rad/s.

Similarly, we can find the acceleration error constant by determining the gain of the 1/s? part of the
transfer function if extended to w = 1.
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Figure 20: Parabolic-error constant in Bode plots

For the system given in the figure above, the magnitude of the low-frequency gain extended to 1 rad/s is
45 dB. So, the parabolic error constant (K, ) is found to be K, = log=1(|G(s)|/20) = log~1(45/20) =
177.

Alternatively, we could find the parabolic error constant from the intersection of the low-frequency
slope with the frequency axis. For a type 2 system, the transfer function of the system is:

[1i=1(s +2)
s? T2, (s +po)

G(s)=K
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Figure 21: Determining the parabolic-error constant (K, ) from Bode plot

The initial value of the gain plot of the frequency response is:

n
A7
20log|G(s)| = ZOIOgK%
wWo 11i=1Pi

With a type 1 system, the -20 dB/decade slope of the frequency response can be considered as
originated from a function:
n
G'(s) = K —
sZII% s

The G'(s) has an intersection with the frequency axis when the frequency of the frequency response is:

K H?=1 Zi

m
i=1Di

But, since the acceleration-error constant of the system is:

ITie1z ] _ KH?=1ZL'

2 m m
S% =1 Di i=1Pi

K, = lir%szG(s) =s?|K
S—

Hence

w =K, or K, =w?

Consider the above two equations, extending the initial -40 dB/decade slope to the frequency axis will

give you the velocity-error constant at / K,,.

Example for Tutorial 3 — Steady-State Analysis with Bode Plots
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The open-loop frequency response shown in the figure below was experimentally obtained from a unity
feedback system.
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a. Estimate the percent overshoot of the closed-loop system. [20 marks]

b. Estimate the steady-state error of the closed-loop system. [20 marks]

Answer

a. The phase margin of the closed-loop system is determined from following frequency response
diagram.
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From the Bode plots given above, the phase margin (PM) of the given closed-loop system is 20° and
the gain margin is 5 dB.

The damping ratio of the system is calculated from the following equation:

) 1 ) 1
¢ = ; — = _=0176
(tan2 by + 2) —4 (tan2 20t 2) —4

Or using the graph below, the damping ratio can be estimated from the system phase margin.
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Using the equation or the graph given above, the damping ratio, { is 0.176 or 0.18 respectively.

The percentage overshoot of the system is calculated from the following equation:

114 (0.176)
%0S = eV1=%* x 100% = evV1-(0176)* x 100% = 57%

The equation given above yields 57% overshoot.

The system is Type 1 since the initial slope is - 20 dB/dec and extending this slope intersection with
the gain at 1 rad/s is 12 dB. Continuing the low frequency slope down to the 0 dB line yields 4 rad/s.
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Knowing that we found the intersection of low frequency slope with 1 rad/s is 12 dB. So, the
velocity-error constant is:

K, =log™! [@ =log™?! (%) =4
Or, from the intersection with the frequency axis (i.e. zero dB line), the velocity error constant is:
K, =4
As a result, for K;, = 4 and given relevant inputs, the steady-state errors of the system are:
e For aunitstepinput is zero.
e Foraunitramp inputis:

1
e(oo)ramp = K. =0.25
v

e Fora parabolic input is infinite.
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