
 

XMUT315 Control Systems Engineering 

Note 10b: Analysis with Bode Plots 
 

Topic 

• Closed loop stability. 

• Gain and phase margin. 

• Determining gain and phase margin in Bode plots. 

• Damping and phase margin. 

• Transient response parameters from Bode plots. 

• System types. 

• Steady-state errors. 

• System errors and inputs. 

• Determining steady-state errors in Bode plots. 

 

1. Introduction to Analysis with Bode Plots 

With Bode plots, we can perform stability analysis, transient response analysis, and steady-state analysis 

of the control systems. 

 

1.1. Closed Loop Stability 

Imagine a situation where we have a system described by a transfer function 𝐺(𝑠). We now enclose the 

system in a unity gain feedback loop. 

 

Figure 1: Closed loop feedback system 
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We know that negative feedback is useful in stabilising a system. However, instability results when the 

feedback is positive. The feedback in the system shown becomes positive when the plant transfer 

function 𝐺(𝑠) contributes 180° of phase shift to the overall system. 

System stability is one of the basic concerns when designing a control system. We would like to be able 

to meaningfully talk about how close a system is to instability, not just whether it is stable or not.  

For many systems, we can assess the stability by finding the frequency at which the phase curve crosses 

-180° and reading the gain at that point.  

If the gain > 1, then the system will be unstable. If the gain < 1 at the frequency where the phase crosses 

-180°, then there is not enough gain to sustain the oscillations. This approach leads to a metric known as 

the gain margin. 

 

1.2. Gain Margin 

The gain margin is the amount by which we can increase the gain of a stable system before it becomes 

unstable. 

 

Figure 2: Gain margin in the Bode plots 

 

To determine the gain margin of a system, read the gain at the frequency where the phase curve crosses 

180°. Note that the gain margin must be positive for the system to be stable! 

 

1.3. Unity Gain 

In control applications we often use the Unity Gain Frequency, which is the frequency at which the 

system’s gain has dropped to one (0 dB). We can use the Bode plot to simply read off the frequency 
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where the gain plot crosses the 0 dB line. Note that some systems have multiple unity gain frequencies 

because their gain curves cross and recross the 0 dB line. In crude terms, the unity gain frequency of a 

control system is the highest frequency at which the control is doing anything useful. Beyond this point, 

the gain is too small to improve the system. 

 

1.4. Phase Margin 

The phase margin is the amount by which we can decrease the phase of a stable system before it 

become unstable. 

 

Figure 3: Phase margin in the Bode plots 

 

To determine the phase margin of a system, find the unity gain frequency and read the system phase at 

that point. This reveals how much extra phase lag we could tolerate before instability sets in. 

 

1.5. Gain and Phase Margins with MATLAB 

The margin()command in MATLAB will tell you the gain and phase margins and the frequencies at 

which they occur. If you call it without any return arguments, it will draw a plot displaying the same 

information. 
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Figure 4: Gain and phase margins in Bode plot with MATLAB 

 

1.6. Phase Margin with Multiple Unity Gain 

 

The following Bode plot shows a higher order system that has multiple crossing of the 0 dB gain curve 

with unity gain line. There are two 180 phase crossings with corresponding gain margins of -9.35 dB 

and +10.6 dB. 
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Figure 5: Systems with multiple phase and gain margin crossing 

 

For some systems cross the 0 dB gain curve more than once, in general, there will be a different phase 

margin associated with each of these crossings. It is possible to define the system phase margin as the 

worst (smallest) of the individual phase margins. 

However, this is dangerous as there are some systems like this appear to be stable but are not. When 

you see a system with multiple crossings of the 0 dB line, you should double check the system stability 

with another method, such as a root locus diagram or (more traditionally) a Nyquist plot. 

 

Example for Tutorial 1 – Stability Analysis with Bode Plots 

 

For each system given below, find the gain margin and phase margin if the value of gain 𝐾 is 1, 100, 

1000, and 0.1. Write a summary on the stability of each system.    [30 marks] 

 



Note 10b: Analysis with Bode Plots  

XMUT315 – Note 10 - 6 

 

 

Answer 

Note: All results for this problem are based upon a non-asymptotic frequency response. 

a. System 1: Plotting for 𝐾 = 1 yields the following Bode plots: 
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i. 𝐾 = 1: 

For 𝐾 = 1, phase response is 180 at 𝜔 = 6.63 rad/s, the gain margin is -53.6 dB at this 

frequency. Phase margin is +∞ at any frequency. 

ii. 𝐾 = 100: 

For 𝐾 = 100, gain curve is raised by 40 dB yielding -13.6 dB at 6.63 rad/s. Thus, the gain margin is 

13.6 dB. 

Phase margin: Raising the gain curve by 40 dB yields 0 dB at 2.54 rad/s, where the phase curve is 

107.3. Hence, the phase margin is 180 - 107.3 = 72.7. 

iii. 𝐾 = 1000: 

For 𝐾 = 1000, gain curve is raised by 60 dB yielding +6.4 dB at 6.63 rad/s. Thus, the gain margin 

is -6.4 dB. 

Phase margin: Raising the gain curve by 60 dB yields 0 dB at 9.07 rad/s, where the phase curve is 

200.3. Hence, the phase margin is 180 - 200.3 = -20.3. 

iv. 𝐾 = 0.1: 

For 𝐾 = 1, phase response is 180 at 𝜔 = 6.63 rad/s, the gain margin is increased to 53.6 dB at 

this frequency. 

For 𝐾 = 0.1, gain curve is lowered by 20 dB yielding -73.6 dB at 6.63 rad/s. Thus, the gain margin 

is increased to 73.6 dB. 

 

Stability Summary of System 1: 

• When 𝐾 = 1, considering positive gain margin (GM = 53.6 dB at 6.63 rad/s) and phase margin 

(PM = ∞ at any frequency), the system is found to be stable. 

• Any increase of the gain might reduce the gain margin of the system. If the increase is excessive, 

the system could be unstable. 

• If the gain is lowered, the system stays stable with the margins are increased. 

 

b. System 2: Plotting for 𝐾 = 1 yields the following Bode plots: 
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i. 𝐾 = 1: 

For 𝐾 = 1, when the phase response is 180 at 𝜔 = 1.56 rad/s, the gain margin is -2.85 dB and 

phase margin is -18.6 at 1.26 rad/s. 

ii. 𝐾 = 100: 

For 𝐾 = 100, gain curve is raised by 40 dB yielding +37.15 dB at 1.56 rad/s. Thus, the gain margin 

is -37.15 dB. 

Phase margin: Raising the gain curve by 40 dB yields 0 dB at 99.8 rad/s, where the phase curve is 

-84.3. Hence, the phase margin is 180 - 84.3 = 95.7. 

iii. 𝐾 = 1000: 

For 𝐾 = 1000, gain curve is raised by 60 dB yielding +57.15 dB at 1.56 rad/s. Thus, the gain 

margin is -57.15 dB. 

Phase margin: Raising the gain curve by 54 dB yields 0 dB at 500 rad/s, where the phase curve is 

-91.03. Hence, the phase margin is 180 - 91.03 = 88.97. 

iv. 𝐾 = 0.1: 

For 𝐾 = 0.1, gain curve is lowered by 20 dB yielding -22.85 dB at 1.56 rad/s. Thus, the gain 

margin is -22.85 dB. 
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Phase margin: Lowering the gain curve by 20 dB yields 0 dB at 0.162 rad/s, where the phase 

curve is -99.8. Hence, the phase margin is 180 - 99.86 = 80.2. 

 

Stability Summary of System 2: 

• Both gain and phase margins of the system are negative i.e. -2.85 dB at 1.56 rad/s and -18.6 at 

1.26 rad/s respectively. The system is unstable due to these negative margins. 

• Increasing the gain reduces the gain margin further making the system to become more 

unstable. 

• Decreasing the gain of the system might increase the margin and might turn the system to 

become stable. 

 

c. System 3: Plotting for 𝐾 = 1 yields the following Bode plots: 

 
i. 𝐾 = 1: 

For 𝐾 = 1, phase response is 180 at 𝜔 = 1.41 rad/s, the gain margin is 0 dB at this frequency. 

Phase margin is 0 at 1.41 rad/s. 
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ii. 𝐾 = 100: 

For 𝐾 = 100, gain curve is raised by 40 dB yielding 40 dB at 1.41 rad/s. Thus, the gain margin is - 

40 dB. 

Phase margin: Raising the gain curve by 40 dB yields no frequency where the gain curve is 0 dB. 

Hence, the phase margin is infinite. 

iii. 𝐾 = 1000: 

For 𝐾 = 1000, gain curve is raised by 60 dB yielding 60 dB at 1.41 rad/s. Thus, the gain margin is - 

60 dB. 

Phase margin: Raising the gain curve by 60 dB yields no frequency where the gain curve is 0 dB. 

Hence, the phase margin is infinite. 

iv. 𝐾 = 0.1: 

For 𝐾 = 0.1, gain curve is lowered by 20 dB yielding -20 dB at 1.41 rad/s. Thus, the gain margin is 

20 dB. 

Phase margin: Lowering the gain curve by 20 dB yields no frequency where the gain curve is 0 

dB. Hence, the phase margin is infinite. 

 

Stability Summary of System 3: 

• Both gain and phase margins are zero at 1.41 rad/s and 1.41 rad/s respectively. The system is 

critically stable. 

• Increasing the gain might turn the system to become unstable. 

• Reducing the gain increases the margins and these make the system to become stable. 

 

2. Transient Response in Bode Plots 

From the given Bode plots, we can determine a variety of transient response parameters. Transient 

response parameters that can be derived and approximated from the Bode diagrams are damping ratio, 

settling time, and peak time. 

For transient response analysis, we need to know several of the values of these parameters to work out 

the transient response parameters: knowing phase margin will give you the damping ratio and knowing 

closed-loop bandwidth (+ damping ratio) will provide you the settling time and peak time.  

 

2.1. Phase Margin and Damping Ratio 
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Phase margin is particularly useful because there is a direct link between a system’s phase margin and 

its damping in the closed loop case. The smaller the phase margin, the more badly the system will ring. 

 

Figure 5: Transient response of systems with various phase margins 

 

2.2. Phase Margin and Damping Ratio 

It can be shown that there is a relationship between the phase margin the damping ratio of the closed 

loop response. For a standardised second order equation as shown in the figure below, the open-loop 

transfer function of the plant is: 

𝐺(𝑠) =
𝜔𝑛
2

𝑠(𝑠 + 2𝜁𝜔𝑛)
 

 

Figure 7: Standard second-order system 

 

The closed-loop transfer function of the system is: 
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𝑇(𝑠) =
𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

To evaluate the phase margin, find the frequency for which |𝐺(𝑗𝜔)| = 1. 

|𝐺(𝑗𝜔)| =
𝜔𝑛
2

−𝜔2 + 𝑗2𝜁𝜔𝑛𝜔
= 1 

The frequency, 𝜔1, that satisfies the equation above is:  

𝜔1 = 𝜔𝑛√−2𝜁
2 +√1 + 4𝜁4 

The phase angle of 𝐺(𝑗𝜔) at this frequency is: 

∠𝐺(𝑗𝜔) = −90° − tan−1 (
𝜔1
2𝜁𝜔𝑛

) 

Substitute the equation for 𝜔1 into the equation above. 

∠𝐺(𝑗𝜔) = −90° − tan−1

(

 
√−2𝜁2 +√1 + 4𝜁4

2𝜁

)

  

The difference between the angle of the equation above and -180° is the phase margin, 𝜙𝑚.  

𝜙𝑚 = 90° − tan
−1

(

 
√−2𝜁2 +√1 + 4𝜁4

2𝜁

)

  

The accurate relation of damping ratio with the phase margin of the system over the full range is: 

𝜙𝑚 = tan
−1

2𝜁

√2𝜁2 +√1 + 4𝜁4
 

To keep the damping reasonable, we generally try to preserve a phase margin of about 60°. 

Rearrange the equation given above, the damping ratio is: 

𝜁 =
√

1

(
4

tan2𝜙𝑚
+ 2)

2

− 4

4  

The relationship between phase margin and damping ratio is as shown in the graph below. 
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Figure 6: Graph of phase margin vs. damping ratio 

 

For damping ratios less than 0.65, we can use the approximate relation 𝜙𝑚 = 100𝜁 as shown in the 

graph above. 

 

2.3. Bandwidth of Control Systems 

The magnitude or gain of the frequency response of the given control system is given as: 

|𝑇(𝑗𝜔)| =
𝜔𝑛
2

√(𝜔𝑛
2 −𝜔2)2 + 4𝜁2𝜔𝑛

2𝜔2
 

To determine the transient response of the control system, we need to find the closed-loop bandwidth 

from the Bode plots.  

For an open-loop system, the bandwidth of the control systems (𝜔𝐵𝑊) is the width of frequency of gain 

of the system from DC (0 rad/s) to the half-power point (i.e. -3 dB). 

For a typical second-order system, the gain plot of the equation given above is shown in the figure 

below. The bandwidth is located at 𝜔𝐵𝑊, or in log frequency scale, it is log𝜔𝐵𝑊. 
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Figure 8: Peak gain and bandwidth of the second order system in the Bode plot 

 

2.4. Closed-Loop Bandwidth 

The bandwidth of the standardised control systems (𝜔𝐵𝑊) is determined by finding the frequency for 

which 𝑀 = 1/√2 (that is -3 dB). 

𝑀 =
𝜔𝑛
2

√(𝜔𝑛
2 −𝜔2)2 + 4𝜁2𝜔𝑛

2𝜔2
 

Equate the equation above to be equal to 1/√2 that happens when 𝜔 = 𝜔𝐵𝑊: 

𝜔𝑛
2

√(𝜔𝑛
2 −𝜔𝐵𝑊

2 )2 + 4𝜁2𝜔𝑛
2𝜔𝐵𝑊

2
=
1

√2
 

Rearranging the equation above, the bandwidth of the control system is: 

𝜔𝐵𝑊 = 𝜔𝑛√(1 − 2𝜁
2) + √4𝜁4−4𝜁2 + 2 

The closed-loop bandwidth, 𝜔𝐵𝑊 is the frequency at which the closed-loop gain response is -3 dB. As 

shown in the figure below, if the open-loop phase response is between -135° and -225°, this equals the 

frequency at which the open-loop gain response is approximated to be between -6 and -7.5 dB. 
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Figure 9: Graph of open-loop gain (in dB) vs. open loop phase (in degree) 

 

Given the Bode plots of a control system as shown in the figure below, we can determine the phase 

margin and bandwidth of the system. From the plots, phase margin (PM) is 180° - 150° = 30°. Also, we 

found that gain margin (GM) is 10 dB at 4 rad/s. Considering the open-loop system and looking at the 

frequency when the gain of the system is -7.5 dB, the bandwidth (𝜔𝐵𝑊) is approximately 3.5 rad/s. 

 

Figure 10: Bandwidth in the Bode plots 
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2.5. Transient Response Parameters in Bode Plots 

We could determine the transient response parameters of the system from the normalised bandwidth 

vs. damping ratio for settling time, peak time, and rise time. 

 

2.5.1. Settling Time in Bode Plots 

The settling time of a second order system (𝑇𝑠) is: 

𝑇𝑠 =
4

𝜔𝑛𝜁
 

Rearranging the equation above 

𝜔𝑛 =
4

𝑇𝑠𝜁
 

Substituting the 𝜔𝑛 in the bandwidth equation, the bandwidth equation becomes: 

𝜔𝐵𝑊 =
4

𝑇𝑠𝜁
√(1 − 2𝜁2) + √4𝜁4 − 4𝜁 2 + 2 

Where:  𝜁 is the damping ratio. 

Hence, the settling time is: 

𝑇𝑠 =
4

𝜔𝐵𝑊𝜁
√(1 − 2𝜁2) + √4𝜁4 − 4𝜁2 + 2 

The following figure shows the damping ratio vs. normalised settling time (𝑇𝑠) of the system. 

 

Figure 11: Graphs of settling time (𝑇𝑠) vs. damping ratio 

 

2.5.2. Peak Time in Bode Plots 
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Like settling time, we can determine also the time-to-peak (𝑇𝑝) from the Bode plots through the 

bandwidth of the closed loop system (𝜔𝐵𝑊). For a given second order system, the peak time is: 

𝑇𝑝 =
𝜋

𝜔𝑛√1− 𝜁
2

 

Rearranging the equation above 

𝜔𝑛 =
𝜋

𝑇𝑝√1 − 𝜁
2

 

Substituting 𝜔𝑛 in the bandwidth equation, the bandwidth equation becomes: 

𝜔𝐵𝑊 =
𝜋

𝑇𝑝√1 − 𝜁
2
√(1 − 2𝜁2) + √4𝜁4 − 4𝜁2 + 2 

Where: 𝜁 is the damping ratio. 

Hence, rearranging the equation, the peak time is: 

𝑇𝑝 =
𝜋

𝜔𝐵𝑊√1 − 𝜁
2
√(1 − 2𝜁2) + √4𝜁4 − 4𝜁2 + 2 

The following figure shows the damping ratio vs. normalised peak time (𝑇𝑝) of the system. 

 

Figure 12: Graph of peak time (𝑇𝑝) vs. damping ratio 

 

2.5.3. Rise Time in Bode Plots 

To relate the bandwidth to rise time (𝑇𝑟), knowing the desired 𝜁, we can calculate it from: 

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑛√1− 𝜁
2
 

Where:  
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𝜙 = tan−1 (
√1 − 𝜁2

𝜁
) 

Rearranging the equation above 

𝜔𝑛 =
𝜋 − 𝜙

𝑇𝑟√1 − 𝜁
2
 

Thus, substituting 𝜔𝑛 into the bandwidth equation 

𝜔𝐵𝑊 =
𝜋 − 𝜙

𝑇𝑟√1 − 𝜁
2
√(1 − 2𝜁2) + √4𝜁4 − 4𝜁2 + 2 

Or 

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝐵𝑊√1− 𝜁
2
√(1 − 2𝜁2) + √4𝜁4 − 4𝜁2 + 2 

The following figure shows the damping ratio vs. normalised rise time (𝑇𝑟) of the system. 

 

Figure 13: Graph of rise time (𝑇𝑟) vs. damping ratio 

 

Alternatively, the following figure shows the damping ratio vs. normalised rise time (𝑇𝑟) of the system. 

Using this graph, we could determine the bandwidth of the system graphically. 
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Figure 14: Normalised rise time versus damping ratio for a second-order underdamped response 

 

For example, assume 𝜁 = 0.4 and 𝑇𝑟 = 0.2 second.  

Using the graph given above, the ordinate 𝑇𝑟𝜔𝑛 = 1.463, from which 𝜔𝑛 = 1.463/0.2 = 7.315 rad/s.  

𝜔𝐵𝑊 = 𝜔𝑛√(1 − 2𝜁
2) + √4𝜁4−4𝜁2 + 2 

Using the above given equation, 𝜔𝐵𝑊 = 10.05 rad/s. 

 

Example for Tutorial 2 – Transient Response Analysis with Bode Plots 

 

The Bode plots for a plant, 𝐺(𝑠), used in a unity feedback system are shown in the figure below. Do the 

following: 

a. Find the gain margin, phase margin, 0 dB frequency (unity gain), 180 frequency, and the closed-

loop bandwidth.         [10 marks] 

b. Use your results in part (a) to estimate the damping ratio, percent overshoot, settling time, and peak 

time.          [10 marks] 
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Answer 

From the Bode plots given below, the gain margin, phase margin, 0 dB frequency (unity gain), 180 

frequency, and the closed-loop bandwidth are determined from the plots.  
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The results estimated from the graphs given above: 

• Gain margin = 14.96 dB.  

• Phase margin = 49.57.  

• 0 dB frequency = 2.152 rad/s. 

• 180 frequency = 6.325 rad/s. 

• Bandwidth (@-7 dB point) = 3.8 rad/s.  

From the equation given below, the damping ratio of the system can be calculated. 

𝜁 =
√

1

(
4

tan2 𝜃𝑀
+ 2)

2

− 4

4 =
√

1

(
4

tan2 49.57
+ 2)

2

− 4

4 = 0.48 

The damping ratio of the system, 𝜁 is 0.48. 

Or, from the graph given below, the damping ratio of the system, 𝜁 is estimated to be 0.5. 
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From the equation given below, the percentage overshoot of the system can be calculated from:  

%𝑂𝑆 = 𝑒

𝜋𝜁

√1−𝜁2 × 100% = 𝑒

𝜋(0.48)

√1−(0.48)2 × 100% = 17.93% 

The percentage overshoot of the system, %𝑂𝑆 is 17.93%. 

From the equation given below, the settling time of the system (2% standard) can be calculated from: 

𝑇𝑠 =
4

𝜔𝐵𝑊𝜁
√(1 − 2𝜁2) + √4𝜁4 − 4𝜁2 + 2 

     =
4

(3.8)(0.48)
√(1 − 2(0.48)2) + √4(0.48)4 − 4(0.48)2 + 2 = 2.84 s 

The settling time of the system, 𝑇𝑠 is 2.84 s. 

From the equation given below, the time-to-peak (𝑛 = 1) can be calculated from:  

𝑇𝑝 =
𝜋

𝜔𝐵𝑊√1− 𝜁
2
√(1 − 2𝜁2) + √4𝜁4 − 4𝜁2 + 2 

      =
𝜋

(3.8)√1 − (0.48)2
√(1 − 2(0.48)2) + √4(0.48)4 − 4(0.48)2 + 2 

      = 1.22 s 

The time-to-peak of the system, 𝑇𝑝 is 1.22 s. 

 

3. Steady-State Characteristics in Bode Plots 

From the given Bode plots, we can determine a variety of steady-state parameters. Steady-state 

parameters that can be derived and approximated from the Bode diagrams are: 
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• System type. 

• Steady-state static error constants (𝐾𝑝, 𝐾𝑣, and 𝐾𝑎).  

• Steady-state errors. 

With these parameters, we could analyse the characteristics and behaviour of the control system at 

steady-state conditions: 

 

 

Table 1: Steady-state analysis of control system 

 

3.1. System Type on a Bode Plot 

The type of a system is defined to be equal to the number of integrators in the open loop transfer 

function. We can find the type of a system by examining its Bode plot. 

a. A type 0 system has a slope of 0 and a phase of 0° at low frequencies. 

b. A type 1 system has a slope of -20 dB/decade and a phase of -90° at low frequencies. 

c. A type 2 system has a slope of -40 dB/decade and a phase of -180° at low frequencies. 

“Low frequencies” in this context means in the frequency range below any of the system zeros or poles. 

Note that examination of an experimental frequency response allows you to determine the system type 

without needing a transfer function. 

As illustrated in the diagram below, the type of the system can be determined as follows: 

• For the first system 1/(𝑠 + 10) with blue line, the gain of the frequency response at low frequency 

is 0 dB and the phase shift at low frequency is 0 degree. So, the system is a type 0. 

 

• For the second system 1/𝑠 with orange line, the gain of the frequency response at low frequency is 

a slope with -20 dB/decade and the phase shift at low frequency is -90 degree. So, based on these 

results, the system is defined as a type 1 system. 
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• For the second system 1/𝑠2 with yellow line, the gain of the frequency response at low frequency is 

a -40 dB/decade slope and the phase shift at low frequency is -180 degree. As a result, the system is 

a type 2. 

 

 

Figure 15: System’s types as determined in Bode plot 

 

3.2. Steady-State Errors from a Bode Plot 

The system type is related to the error that a closed loop system will exhibit when attempting to follow 

a reference signal. Reminder: 

a. A type 0 system will have an error 1/(1 + 𝐾𝑝) for a step input and infinite error for ramps and 

paraboloids. 

b. A type 1 system will have zero error for a step, an error of 1/𝐾𝑣 for a ramp and an infinite error 

for an input paraboloid. 

c. A type 2 system will have zero error when tracking input steps or ramps, but an error 1/𝐾𝑎 

when tracking a command paraboloid. 

 

3.2.1. Steady-State Error with a Step Input 

The error to a steady-state unity gain step is given by: 

𝑒(∞) =
1

1 + 𝐾𝑝
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Where: 𝐾𝑝 is the position-error constant.  

For a type 0 system, 𝐾𝑝 is equal to the value of the open loop gain of the system. Thus, if our Bode plot 

indicates a type 0 system (zero slope at low frequency), we can directly read off the 𝐾𝑝 value.  

For systems of higher type, the DC gain of the system is infinite, so the value of 𝐾𝑝 is also infinite. This 

corresponds to zero static error to a step function for systems including one or more integrators in the 

forward path. The position error constant is the DC gain of the system. 

 

Figure 16: Position-error constant in Bode plots. 

 

For the system given in the figure above, the magnitude of the low-frequency gain extended to 1 rad/s is 

20 dB. So, the position error constant (𝐾𝑝) is found to be 𝐾𝑝 = log
−1(|𝐺(𝑠)|/20) = log−1(20/20) = 10. 

Alternatively, we could find the position error constant from the intersection of the low-frequency slope 

with the frequency axis. For a given type 0 system, the transfer function of the system is: 

𝐺(𝑠) = 𝐾
∏ (𝑠 + 𝑧𝑖)
𝑛
𝑖=1

∏ (𝑠 + 𝑝𝑖)
𝑚
𝑖=1

 

 

Figure 17: Determining the position-error constant (𝐾𝑝) from Bode plot 
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The initial value of the gain plot of the frequency response is: 

20 log|𝐺(𝑠)| = 20 log𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

∏ 𝑝𝑖
𝑚
𝑖=1

 

The value of position-error constant is: 

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠)𝐻(𝑠) = lim
𝑠→0

𝐾
∏ (𝑠 + 𝑧𝑖)
𝑛
𝑖=1

∏ (𝑠 + 𝑝𝑖)
𝑚
𝑖=1

= 𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

∏ 𝑝𝑖
𝑚
𝑖=1

 

This is actually the same as the value of the low-frequency gain of the system for type 0 system. 

20 log𝐾𝑝 = |𝐺(𝑠)| 

Thus 

𝐾𝑝 = log
−1 [

|𝐺(𝑠)|

20
] 

 

3.2.2. Steady-State Error with a Ramp Input 

The error in the presence of a unit ramp input is specified as:  

𝑒(∞) = 𝐾𝑣 

Where: 𝐾𝑣 is the velocity error constant.  

Recall that 𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠). For a type 1 system, the multiplication by 𝑠 would result in a level gain curve 

at low frequencies. If we were to plot a gain plot of 𝑠𝐺(𝑠), then 𝐾𝑣 would be the low frequency gain.  

Rather than plot this explicitly, we can instead examine the gain that the 1/𝑠 part of the transfer 

function has at a frequency of 1 rad/s.  

Similarly, we can find the velocity error constant by determining the gain of the 1/𝑠 part of the transfer 

function if extended to 𝜔 = 1. 

 

P
h
a
s
e
 (

d
e
g
) 
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Figure 18: Velocity-error constant in Bode plots 

 

For the system given in the figure above, the magnitude of the low-frequency gain extended to 1 rad/s is 

20 dB. So, the velocity error constant (𝐾𝑣) is found to be 𝐾𝑣 = log
−1(|𝐺(𝑠)|/20) = log−1(20/20) = 10. 

Alternatively, we could find the velocity error constant from the intersection of the low-frequency slope 

with the frequency axis. For a given type 1 system, the transfer function of the system is: 

𝐺(𝑠) = 𝐾
∏ (𝑠 + 𝑧𝑖)
𝑛
𝑖=1

𝑠∏ (𝑠 + 𝑝𝑖)
𝑚
𝑖=1

 

 

Figure 19: Determining the velocity-error constant (𝐾𝑣) from Bode plot 

 

The initial value of the gain plot of the frequency response is: 

20 log |𝐺(𝑠)| = 20 log𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

𝜔0∏ 𝑝𝑖
𝑚
𝑖=1

 

With a type 1 system, the -20 dB/decade slope of the frequency response can be considered as 

originated from a function: 

𝐺′(𝑠) = 𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

𝑠∏ 𝑝𝑖
𝑚
𝑖=1

 

The 𝐺′(𝑠) intersects the frequency axis when the frequency of the frequency response is: 

𝜔 = 𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

∏ 𝑝𝑖
𝑚
𝑖=1

 

Thus, the velocity-error constant of the system is:  

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) = 𝑠 (𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

𝑠∏ 𝑝𝑖
𝑚
𝑖=1

) = 𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

∏ 𝑝𝑖
𝑚
𝑖=1

 

Hence 
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𝜔 = 𝐾𝑣          or         𝐾𝑣 = 𝜔 

This is actually the same as the frequency-axis intercept. Extending the initial -20 dB/decade slope to the 

frequency axis will give you the velocity-error constant. 

 

3.2.3. Steady-State Error with a Parabolic Input 

The error in the presence of a unit parabolic input is specified as:  

𝑒(∞) = 𝐾𝑎 

Where: 𝐾𝑎 is the parabolic error constant.  

Recall that 𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠). For a type 2 system, the multiplication by 𝑠2 would result in a level gain 

curve at low frequencies.  If we were to plot a gain plot of 𝑠2𝐺(𝑠), then 𝐾𝑎 would be the low frequency 

gain.  

Rather than plot this explicitly, we can instead examine the gain that the 1/𝑠2 part of the transfer 

function has at a frequency of 1 rad/s.  

Similarly, we can find the acceleration error constant by determining the gain of the 1/𝑠2 part of the 

transfer function if extended to 𝜔 = 1. 

 

Figure 20: Parabolic-error constant in Bode plots 

 

For the system given in the figure above, the magnitude of the low-frequency gain extended to 1 rad/s is 

45 dB. So, the parabolic error constant (𝐾𝑎) is found to be 𝐾𝑎 = log
−1(|𝐺(𝑠)|/20) = log−1(45/20) = 

177. 

Alternatively, we could find the parabolic error constant from the intersection of the low-frequency 

slope with the frequency axis. For a type 2 system, the transfer function of the system is: 

𝐺(𝑠) = 𝐾
∏ (𝑠 + 𝑧𝑖)
𝑛
𝑖=1

𝑠2∏ (𝑠 + 𝑝𝑖)
𝑚
𝑖=1

 

10m                  100m                    1                        10                     100 
Angular Frequency (rad/s) 
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Figure 21: Determining the parabolic-error constant (𝐾𝑎) from Bode plot 

 

The initial value of the gain plot of the frequency response is: 

20 log |𝐺(𝑠)| = 20 log𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

𝜔0
2∏ 𝑝𝑖

𝑚
𝑖=1

 

With a type 1 system, the -20 dB/decade slope of the frequency response can be considered as 

originated from a function: 

𝐺′(𝑠) = 𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

𝑠2∏ 𝑝𝑖
𝑚
𝑖=1

 

The 𝐺′(𝑠) has an intersection with the frequency axis when the frequency of the frequency response is: 

𝜔 = √𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

∏ 𝑝𝑖
𝑚
𝑖=1

 

But, since the acceleration-error constant of the system is:  

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠) = 𝑠2 [𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

𝑠2∏ 𝑝𝑖
𝑚
𝑖=1

] = 𝐾
∏ 𝑧𝑖
𝑛
𝑖=1

∏ 𝑝𝑖
𝑚
𝑖=1

 

Hence 

𝜔 = √𝐾𝑎             or        𝐾𝑎 = 𝜔
2 

Consider the above two equations, extending the initial -40 dB/decade slope to the frequency axis will 

give you the velocity-error constant at √𝐾𝑎. 

 

Example for Tutorial 3 – Steady-State Analysis with Bode Plots 
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The open-loop frequency response shown in the figure below was experimentally obtained from a unity 

feedback system.  

 

 

a. Estimate the percent overshoot of the closed-loop system.    [20 marks] 

b. Estimate the steady-state error of the closed-loop system.    [20 marks] 

 

Answer 

a. The phase margin of the closed-loop system is determined from following frequency response 

diagram. 
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From the Bode plots given above, the phase margin (PM) of the given closed-loop system is 20 and 

the gain margin is 5 dB. 

The damping ratio of the system is calculated from the following equation: 

𝜁 =
√

1

(
4

tan2𝜙𝑀
+ 2)

2

− 4

4    =
√

1

(
4

tan2 20
+ 2)

2

− 4

4 = 0.176 

Or using the graph below, the damping ratio can be estimated from the system phase margin. 
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Using the equation or the graph given above, the damping ratio, 𝜁 is 0.176 or 0.18 respectively.  

The percentage overshoot of the system is calculated from the following equation: 

%𝑂𝑆 = 𝑒

𝜋𝜁

√1−𝜁2 × 100% = 𝑒

𝜋(0.176)

√1−(0.176)2 × 100% = 57% 

The equation given above yields 57% overshoot.  

 

b. The system is Type 1 since the initial slope is - 20 dB/dec and extending this slope intersection with 

the gain at 1 rad/s is 12 dB. Continuing the low frequency slope down to the 0 dB line yields 4 rad/s.  
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Knowing that we found the intersection of low frequency slope with 1 rad/s is 12 dB. So, the 

velocity-error constant is: 

 

𝐾𝑣  = log
−1 [

|𝐺(𝑠)|

20
] = log−1 (

12

20
) =  4 

 

Or, from the intersection with the frequency axis (i.e. zero dB line), the velocity error constant is: 

 

𝐾𝑣 = 4 

 

As a result, for 𝐾𝑣 = 4 and given relevant inputs, the steady-state errors of the system are: 

 

• For a unit step input is zero.  

 

• For a unit ramp input is:  

𝑒(∞)𝑟𝑎𝑚𝑝 =
1

𝐾𝑣
= 0.25 

• For a parabolic input is infinite. 

 


