
 

XMUT315 Control Systems Engineering 

Note 3: Physical Systems Modelling 

 

Topics 

• Modelling physical systems. 

• Lumped parameters models. 

• LTI models. 

• Linearization. 

• Modelling aspects and process. 

• Modelling mechanical systems. 

• Modelling electrical systems. 

• Modelling electromechanical systems. 

 

1. Modelling Physical Systems 

Modelling the physical systems is required in control system engineering to represent the system for its 

analysis and design. 

 

1.1. How to Model Physical Systems 

Often to model a physical system we employ a scaled physical model that is a proportional to the actual 

model. As illustrated in the figure below, a scaled down version of a car is used to model the car when it 

undergoes air flow experiment in each car manufacturer’s laboratory.  

With the miniature model, it is easier to analyse and design the air flow and the model might be able to 

fit the limited space of the wind tunnel laboratory. But beware that this approach will not be as 

comprehensive as the experiment with the actual car. 
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Figure 1: Modelling of a physical system with scaled physical model 

 

On the other hand, to represent the physical system in addition to scaled model, we often use 

mathematical and numerical models. Mathematical model is described as function and variable in 

mathematical equation. Whereas numerical model is represented as a set of numbers to describe 

system characteristic and behaviour.  

 

1.2. Modelling of Physical Systems 

We also could develop mathematical models, i.e. ordinary differential equations that describe the 

relationship between input and output characteristics of a system. These equations can then be used to 

forecast the behaviour of the system under specific conditions.  

All systems can normally be approximated and modelled by one of several models, e.g. mechanical, 

electrical, thermal, or fluid. We also find that we can translate a system from one model to another to 

facilitate the modelling.  

->     

Figure 2: Translation of non-linear model to linear model 
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1.3. Lumped Parameter Models 

Lumped parameter models apply the use of standard laws of physics and break a system down into 

several building blocks.  

 

Figure 3: Lumped parameter model of a walking robot 

 

Each of the parameters (property or function) is considered independently. Furthermore, the analysis 

and design will be conducted on these parts. The figure above shows lumped parameter model 

decomposition of walking robot, whereas the figure given below represents a lumped parameter model 

for a connection bridge for footpath. 

 

Figure 4: Lumped parameter model of a bridge 

 

The bridge given in the figure above is a millennium bridge that was notoriously wobbly when it was 

initially constructed, see further for its details: http://www.youtube.com/watch?v=eAXVa__XWZ8 

http://www.youtube.com/watch?v=eAXVa__XWZ8
http://www.youtube.com/watch?v=eAXVa__XWZ8
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1.4. Linear Time Invariant Models 

For modelling of the systems, to simplify the analysis and design, we often assume the property of 

linearity for these models. A linear system will have two properties: 

• Superposition – evaluate parts of the system and conclude the characteristics and behaviour of 

the overall system as consisted of those of these parts.  

• Homogeneity (uniformity of material) – for a given system, there is uniform characteristics and 

behaviour of the same part of the system.  

Then, this allows us to use standard mathematical operations to simplify our models. 

 

Figure 5: Superposition of several waves 

 

The figure above shows the superposition of several waves to make up a complex signal. The overall 

characteristics and behaviour of this signal is evaluated based on the characteristics and behaviour of its 

individual components that constitute itself. 

The figure shown below illustrates that the characteristic and behaviour of a given damper is uniform 

throughout itself. When the damper is stretched, it will stretch uniformly, rather than stretching 

differently at different parts like illustrated in the figure.    

 

Figure 6: Damper with uniform (left) and non-uniform (right) materials. 
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Assuming that the system is time-invariant, constants stay constant in the timescales of our model. We 

acknowledge that proportionality between variables does not change throughout the life span of the 

system. Note that our shock absorbers do not wear out in our car suspension model as it often happens 

in practice! 

 

Figure 7: Worn out in the shock absorbers. 

 

1.5. Linearisation  

Linearisation is finding the linear approximation to a function at a given point. The linear approximation 

of a function is the first order Taylor expansion around the point of interest.  

In the study of dynamical systems, linearisation is a method of choice for assessing the local stability of 

an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems.  

Intuitively, linearisation is performed with order reduction, tangent, or Taylor series. 

Order reduction method: A finite number of terms will give an approximation of the function e.g. the 

first two terms will give a linear approximation. 

𝑦 = 𝑓(𝑥0) + [
𝑑𝑦

𝑑𝑥
]

𝑥0
(𝑥 − 𝑥0) + [

𝑑2𝑦

𝑑𝑥2
]

𝑥0

(𝑥 − 𝑥0)

2!
+ ⋯  

Tangent method: Using a linear function evaluated at a given point (i.e. tangent of the curve) instead of 

higher order function. 
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Figure 8: Linearisation using the tangent of a point in the curve method. 

 

Forms of linearisation of a function are typically lines e.g. usually those that can be used for purposes of 

calculation. Linearisation is an effective method for approximating the output of a function 𝑦 = 𝑓(𝑥) at 

any 𝑥 = 𝑎 based on the value and slope of the function at 𝑥 = 𝑏, given that 𝑓(𝑥) is differentiable 

on [𝑎, 𝑏] (or ) [𝑏, 𝑎] and that 𝑎 is close to 𝑏. In short, linearisation approximates the output of a function 

near 𝑥 = 𝑎.  

Taylor series method: Suppose we know that 𝑦 is a function of 𝑥 and we know the values of 𝑦 and 𝑦′ 

when x = a, that is 𝑦(𝑎) and 𝑦′(𝑎) are known. We can use 𝑦(𝑎) and 𝑦′(𝑎) to determine a linear 

polynomial which approximates to 𝑦(𝑥). Let this polynomial be: 

𝑝1(𝑥) =  𝑐0 +  𝑐1𝑥 

Thus 

𝑝1(𝑥) = 𝑦(𝑎) + 𝑦′(𝑎)(𝑥 − 𝑎) 

The 𝑝1(𝑥) is the first-order Taylor polynomial generated by 𝑦 at 𝑥 = 𝑎. 

 

Example for Tutorial 1: Approximation and Linearisation 

 

1. Consider the force acting in a spring during the plastic zone condition that can be described as a 

third-order function of extension (𝜀): 𝑓(𝜀) = 2𝜀 + 5𝜀3.  
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At its operating point at 𝜀 = 1, this function can be approximated as: 𝑓(𝜀) ≅ −10 + 17𝜀. 

Answer  

Model the spring force as 𝑓(𝜀) = −10 + 17𝜀 around the point 𝜀 = 1.0 and the linearised spring 

forced constant would be given by:  

𝑑𝑓

𝑑𝜀
=  17(1) = 17 N/m 

 

2. Find a linear approximation to a function 𝑦(𝑡) = 𝑡2 near 𝑡 = 3 using Taylor series. 

Answer  

We require the equation of the tangent to 𝑦 = 𝑡2 at 𝑡 = 3, that is the first-order Taylor polynomial 

about 𝑡 = 3. Note that 𝑦(3) = 9 and 𝑦′(3) = 6. 

𝑝1(𝑡) = 𝑦(𝑎) + 𝑦′(𝑎)(𝑡 − 𝑎) = 𝑦(3) + 𝑦′(3)(𝑡 − 3) 

          = 9 + 6(𝑡 − 3) = 6𝑡 − 9 

At 𝑡 = 3, 𝑝1(𝑡) and 𝑦(𝑡) have an identical value. Near to 𝑡 = 3, 𝑝1(𝑡) and 𝑦(𝑡) have similar values, 

for example 𝑝1(2.8) = 7.8, and on the other hand 𝑦(2.8) = 7.84. 

 

2. Components of Physical Modelling 

Once the physical system or entity is model, we need to represent it for its analysis and design. In 

control system engineering, the most common approach is to model it in the block diagram modelling. 

 

2.1. Signals 

In block diagram modelling, components relate to each other by signals. Signals have many different 

forms depending on their characteristics and behaviours as shown in the figure below. Signals must also 

have direction and name when they are modelled in the clock diagram modelling. 
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Figure 9: Several examples of common signal in control system 

 

Signals will continue to flow until interrupted. In the modelling, signals and components are considered 

ideal. We add other signals and components to alter the signals. Often, during modelling, we wish to 

know how the output signal varies with an input signal for a fixed (invariant) system as illustrated in the 

figure below. Also, we may plot two signals against each other invariant of time (system relationship). 

 

Figure 10: Input and output signals  

 

2.2. Constants 

System constants are the time invariant for the given system. For a spring example given in the figure 

below, the constant of a spring is unique for the given spring. We consider a different system as the 

spring has been changed. However, the analysis stays the same. 
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Figure 11: Spring system with different spring constant values 

 

2.3. Differentiation 

Consider differentiation as alternative method for modelling. Levels of the water in the smaller tank, 𝐿, 

and water in the larger tank, 𝐼, change because of the flow of liquid. Mathematically, change of the level 

(Δ𝐿) with time (Δ𝑡) is calculated as:  

Δ𝐿

Δ𝑡
=

𝑑𝐿

𝑑𝑡
 

 

Figure 12: Water tank system 

 

In fact, the change in 𝐿 is proportional to flow, 𝐹 and inversely proportional to the cross-sectional area 

of the connecting conduit, 𝐶 (e.g.: the pipe): 

𝑑𝐿

𝑑𝑡
= (

1

𝐶
) 𝐹           and              𝐹 =

𝐼 − 𝐿

𝑅
 

Where: 𝑅 is the radius of the conduit. Flow is related to difference in levels, combining the two 

equations given above, thus. 

𝑑𝐿

𝑑𝑡
= (

1

𝐶
) (

𝐼 − 𝐿

𝑅
) =

𝐼 − 𝐿

𝐶𝑅
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Where: 𝐶𝑅 is the time constant of the system, 𝑇.  

Note: the above case is a differential equation. It has the differential of 𝐿 being a function including 𝐿. 

 

2.4. Differentiation: Slopes 

Consider the graph of level or height of the water (𝐿) against time as shown in the figure given below. At 

any instant of time, we can see value of 𝐿 observed in the graph. The change in 𝐿 is the slope of the 

graph, which varies with time.  

 

Figure 13: Slopes in graph 

 

But, initially the slope is steep (high value), then becoming less, and becoming finally least. Thus, slope 

of 𝐿 is like 𝐹, but slope is change of 𝐿.  In fact, 𝐹 is proportional to derivate of  𝐿 with time. 

 

2.5. Integration: Area 

The reverse process of differentiation is integration.  Its graphical interpretation is the area under a 

graph.  Consider the flow graph of the water level of two tanks: the area at different times is shown as in 

the figures given below.   

 

Figure 14: Integration of area under a graph 

 

After a short time, the area is as shown in the figure on the left. Later, area has grown, but by less, etc. 

Consider the height of water in the tank in the right figure. Thus, 𝐿 like area under 𝐹 e.g.: 

𝐿 ∝ ∫ 𝐹 𝑑𝑡 

The water level, 𝐿 is proportional to integral of 𝐹 with time. In fact, for this system, we have:            

L

t

F F F

t t t
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𝑑𝐿

𝑑𝑡
= (

1

𝐶
) 𝐹                   and              𝐿 =

1

𝐶
∫ 𝐹 𝑑𝑡 

The flow, 𝐹 is differential of the level 𝐿 and 𝐿 is integral of 𝐹. Differentiation and integration are 

opposites.  

Note: here they are used to model a water system. It can also model electronic circuits, mechanical 

systems, motors, etc. In fact, the differential equation has the same form, and hence the same 

exponential response as that for many systems.  

There are analogies between water systems and electronics: pipe like a resistor, tank like a capacitor. 

Also, for thermals, walls have thermal resistance and rooms have thermal capacity.   

 

3. Mechanical System Modelling 

Simple mechanical systems can be represented as models from their standard components. 

We know that distance (𝑥(𝑡)) is related to velocity (𝑣(𝑡)) is related to acceleration (𝑎(𝑡)) through 

differentiation. 

Displacement: 

Distance = 𝑥(𝑡) 

Velocity: 

𝑣(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
 

Acceleration: 

𝑎(𝑡) =
𝑑𝑣

𝑑𝑡
=

𝑑 (
𝑑𝑥(𝑡)

𝑑𝑡
)

𝑑𝑡
=

𝑑2𝑥(𝑡)

𝑑𝑡2
 

 

If we derive the model from first principles, it gets messy writing 𝑑/𝑑𝑡 all the time. Therefore, we use 

Laplace transform and will write in term of ‘𝑠’ instead. 

Displacement: 

Distance = 𝑋(𝑠) 

Velocity: 

𝑉(𝑠) = 𝑠𝑋(𝑠) 

Acceleration: 

𝐴(𝑠) = 𝑠𝑉(𝑠) = 𝑠2𝑋(𝑠) 

Note: both with respect to the variable. 
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Component Force-Velocity Force Displacement Impedance 

 

𝑓(𝑡) = 𝐾 ∫ 𝑣(𝜏)
𝑡

0

𝑑𝜏 𝑓(𝑡) = 𝐾𝑥(𝑡) 𝐾 

 

𝑓(𝑡) = 𝑓𝑣𝑣(𝑡) 𝑓(𝑡) = 𝑓𝑣

𝑑𝑥(𝑡)

𝑑𝑡
 𝑓𝑣𝑠 

 

𝑓(𝑡) = 𝑀
𝑑𝑣(𝑡)

𝑑𝑡
 𝑓(𝑡) = 𝑀

𝑑2𝑥(𝑡)

𝑑𝑡2
 𝑀𝑠2 

Note: Impedance is 𝑍𝑚 = 𝐹(𝑠)/𝑋(𝑠) 

Table 1: Standard basic mechanical components 

 

Example for Tutorial 2: Modelling of Mechanical System 

 

For the mechanical system given below, it consists of mass, spring, and damper.  

• We assume the mass (𝑀) is displaced by 𝑥(𝑡) toward the right.  

• Note that taking into consideration the zero initial condition, just like the spring (with spring 

constant, 𝐾), the damper (with damper constant, 𝑓𝑣) will also oppose the force (𝑓(𝑡)).  

• Thus, only the applied force points to the right. 

• All other forces impede the motion and act to oppose it e.g. the spring, damper, and the force 

due to acceleration point to the left. 
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Determine the transfer function equation of the system in the time domain.  [6 marks] 

 

Answer 

Write the differential equation of motion using the second Newton's law to sum to zero all the forces 

that exist in the given mechanical system. 

𝑀 (
𝑑2𝑥(𝑡)

𝑑𝑡2 ) + 𝑓𝑣 (
𝑑𝑥(𝑡)

𝑑𝑡
) + 𝐾𝑥(𝑡) = 𝑓(𝑡) 

 Taking the Laplace transform, assuming zero initial conditions, the equation above becomes: 

𝑀𝑠2𝑋(𝑠) + 𝑓𝑣𝑠𝑋(𝑠) + 𝐾𝑋(𝑠) = 𝐹(𝑠) 

As a result, the transfer function equation of the given mechanical system is: 

𝐺(𝑠) =
𝑋(𝑠)

𝐹(𝑠)
=

1

𝑀𝑠2 + 𝑓𝑣𝑠 + 𝐾
 

Or, as represented in the block diagram as shown in the figure below. 

 

 

4. Electrical Systems Modelling 

Like mechanical systems, electrical systems can be modelled from their standardised components. 

We know that to find the reactance of electrical devices such inductor and capacitor requires integration 

and differentiation respectively. 

• Voltage across resistor: 

𝑣𝑅(𝑡) = 𝑅𝑖(𝑡) 

• Voltage across capacitor: 

𝑣𝐶(𝑡) =
1

𝐶
∫ 𝑖(𝑡)

𝑡

0

 

• Voltage across inductor: 

𝑣𝐿(𝑡) = 𝐿 (
𝑑𝑖(𝑡)

𝑑𝑡
) 

By applying Laplace transform, we have the following: 

• Voltage across resistor: 

𝑉𝑅(𝑠) = 𝑅𝑖(s) 
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• Voltage across capacitor: 

𝑉𝐶(𝑠) = (
1

𝑠𝐶
) 𝑖(𝑠) 

• Voltage across inductor: 

𝑉𝐿(𝑠) = 𝑠𝐿𝑖(𝑠) 

Note: both components and their Laplace transforms are with respect to the variable. 

Component Voltage-current Current-voltage Impedance 

 
𝑣(𝑡) =

1

𝐶
∫ 𝑖(𝜏)𝑑𝜏

1

0

 𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 

1

𝐶𝑠
 

 
𝑣(𝑡) = 𝑅𝑖(𝑡) 𝑖(𝑡) =

1

𝑅
𝑣(𝑡) 𝑅 

 
𝑣(𝑡) = 𝐿

𝑑𝑖(𝑡)

𝑑𝑡
 𝑖(𝑡) =

1

𝐿
∫ 𝑣(𝜏)

1

0

𝑑𝜏 𝐿𝑠 

Note: Impedance is 𝑍(𝑠) = 𝑉(𝑠)/𝐼(𝑠) 

Table 2: Standard basic electrical components 

 

Example for Tutorial 3: Modelling of Electrical System 

 

For an electrical system as shown below, it consists of inductor (𝐿), resistor (𝑅) and capacitor (𝐶) that is 

supplied with a voltage source (𝑒(𝑡)). The current that flows in the circuit is 𝑖(𝑡). 

• It is a series RLC circuit.  

• Assume in this case that the capacitor voltage as the output and the applied voltage as the 

input. 

• Assume zero initial conditions (no prior conditions before modelling existed). 

 

Determine the time-domain expression for the output voltage over the input voltage for the given 

circuit.           [12 marks] 
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Answer 

Summing the voltages around the loop, assuming zero initial conditions, yields the integral-differential 

equation for this network as: 

𝐿 [
𝑑𝑖(𝑡)

𝑑𝑡
] + 𝑅𝑖(𝑡) +

1

𝐶
∫ 𝑖(𝜏)𝑑𝜏 = 𝑣(𝑡)

𝑡

0

 

Changing variables from current to charge using 𝑖(𝑡) = 𝑑𝑞(𝑡)/𝑑𝑡 yields: 

𝐿 [
𝑑2𝑞(𝑡)

𝑑𝑡2
] + 𝑅 [

𝑑𝑞(𝑡)

𝑑𝑡
] + (

1

𝐶
) 𝑞(𝑡) = 𝑣(𝑡) 

From the voltage-charge relationship for a capacitor, the charge in the capacitor is: 

𝑞(𝑡) = 𝐶𝑣𝐶(𝑡) 

Substituting Eq. (2) into Eq. (1) yields: 

𝐿𝐶 [
𝑑2𝑣𝐶(𝑡)

𝑑𝑡2
] + 𝑅𝐶 [

𝑑𝑣𝐶(𝑡)

𝑑𝑡
] + 𝑣𝐶(𝑡) = 𝑣(𝑡) 

Taking the Laplace transform assuming zero initial conditions, the s-domain equivalent circuit of the RLC 

circuit is as shown in the figure below. 

 

Rearranging terms and simplifying yields: 

(𝐿𝐶𝑠2 + 𝑅𝐶𝑠 + 1)𝑉𝐶(𝑠) = 𝑉(𝑠) 

 Solving for the output voltage over input voltage transfer function, 𝑉𝐶(𝑠)/𝑉(𝑠), we obtain: 

𝑉𝐶(𝑠)

𝑉(𝑠)
=

(
1

𝐿𝐶)

𝑠2 + (
𝑅
𝐿) 𝑠 + 1/𝐿𝐶

 

 

5. Electromechanical System Modelling 

Since it is consisted of mechanical and electrical systems, modelling of electromechanical system could 

typically be performed using the standardised components of the mechanical and electrical systems. As 

an example, DC motor is commonly used to illustrate the modelling of the electromechanical systems. 
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Figure 15: Cross-sectional cut of a typical DC motor 

 

The modelling components of a DC motor are illustrated and derived as outlined in the following 

sections. It is divided into three parts e.g. electrical system, mechanical system and overall 

electromechanical system. 

 

5.1. Electrical System of DC Motor 

Typically, there are two windings in the DC motor e.g. armature winding and field excitation winding. 

 

Figure 16: Schematic diagram of a DC motor 

 

Applying the KVL in the armature winding.  

𝑒𝑎(𝑡) = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎 [
𝑑𝑖𝑎(𝑡)

𝑑𝑡
] + 𝑣𝑏(𝑡) 
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Using Laplace transform, the equation for the circuit is: 

𝐸𝑎(𝑠) = 𝑅𝑎𝐼𝑎(𝑠) + 𝐿𝑎(𝑠)𝑠𝐼𝑎(𝑠) + 𝑉𝑏(𝑠)        (𝐸𝑞. 1) 

Where 𝐾𝑏 is the back EMF constant and 𝑑𝜃𝑚(𝑡)/𝑑𝑡 = 𝜔𝑚(𝑡), for a given motor, the back EMF of the 

motor is calculated from: 

𝑣𝑏(𝑡) = 𝐾𝑏 [
𝑑𝜃𝑚(𝑡)

𝑑𝑡
] 

So 

𝑉𝑏(𝑠) = 𝐾𝑏𝑠𝜃𝑚(𝑠)            (𝐸𝑞. 2) 

The torque developed by motor is proportional to armature current where 𝐾𝑡 is a motor torque 

constant, thus, it is determined from: 

𝑇𝑚(𝑡) = 𝐾𝑡𝑖𝑎(𝑡) 

So 

𝑇𝑚(𝑠) = 𝐾𝑡𝐼𝑎(𝑠)                (𝐸𝑞. 3) 

Thus 

𝐼𝑎(𝑠) = (
1

𝐾𝑡
) 𝑇𝑚(𝑠)               (𝐸𝑞. 4) 

 

5.2. Mechanical System of DC Motor 

The following figure shows the equivalent mechanical loading that typically connected to a DC motor. 

 

Figure 17: Equivalent mechanical loading on a motor 

 

Where: 𝐽𝑚 is the equivalent inertia of the motor (e.g.: both of inertia of the armature and load) and 𝐷𝑚 

is the vicious damping (e.g.: both of vicious damping of the armature and load).  

The torque of the DC motor is calculated from: 

𝑇𝑚(𝑡) = 𝐽𝑚 [
𝑑2𝜃𝑚(𝑡)

𝑑𝑡2
] + 𝐷𝑚 [

𝑑𝜃𝑚(𝑡)

𝑑𝑡
] 

Thus 

𝑇𝑚(𝑠) = (𝐽𝑚𝑠2 + 𝐷𝑚𝑠)𝜃𝑚(𝑠)           (𝐸𝑞. 5) 
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For a DC motor connected with a mechanical load as given in the figure below, these are the modelling 

components of the system: 

• Motor is used to drive a mechanical load (𝐽𝐿) pushing a damper (𝐷𝐿). 

• Motor has inertia (𝐽𝑎) and damping factors (𝐷𝑎). 

• Gear ratios of the DC motor (𝑁1) and mechanical load (𝑁2). 

 

Figure 18: DC motor driving a rotational mechanical load 

 

Knowing inertia (𝐽𝑚) and damping factor (𝐷𝑚) of the motor are related through: 

𝐽𝑚 = 𝐽𝑎+𝐽𝐿 (
𝑁1

𝑁2
)

2

 

And 

𝐷𝑚 = 𝐷𝑎 + 𝐷𝐿 (
𝑁1

𝑁2
)

2

 

Substituting equations (2) and (4) into equation (1), with 𝐿𝑎 = 0, yields: 

(
𝑅𝑎

𝐾𝑡
) 𝑇𝑚(𝑠) + 𝐾𝑏𝑠𝜃𝑚(𝑠) = 𝐸𝑎(𝑠) 

As 𝑠𝜃𝑚(𝑠) = 𝑑𝜃𝑚(𝑡)/𝑑𝑡 = 𝜔𝑚(𝑡), applying the inverse Laplace transform, we get: 

(
𝑅𝑎

𝐾𝑡
) 𝑇𝑚(𝑡) + 𝐾𝑏𝜔𝑚(𝑡) = 𝑒𝑎(𝑡) 

Rearrange the equation, the equation above becomes: 

𝑇𝑚 = − (
𝐾𝑏𝐾𝑡

𝑅𝑎
) 𝜔𝑚 + (

𝐾𝑡

𝑅𝑎
) 𝑒𝑎 

When the equation above is plotted, it becomes a straight-line graph, 𝑇𝑚 vs. 𝜔𝑚, as shown in the figure 

below. 
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Figure 19: Torque-speed curves with an armature voltage, 𝑒𝑎, as a parameter 

 

From the torques-speed curve diagram, with the armature voltage is set at 𝑒𝑎1
, the DC motor is set to 

operate at the extreme conditions.  

In this case, these are the stalling state when 𝜔𝑚 = 0 (e.g.: motor stop rotating and maximum current is 

drawn) and the no-load state when 𝑇𝑚 = 0 (e.g.: maximum speed with no load).  

The intercepts in the torques-speed curve diagram correspond to these extreme conditions as follows. 

Stall torque, 𝑇stall: 

𝑇stall = (
𝐾𝑡

𝑅𝑎
) 𝑒𝑎(𝑡) 

No load speed, 𝜔no−load: 

𝜔no−load =
𝑒𝑎(𝑡)

𝐾𝑏
 

We could obtain the electrical constants, 𝐾𝑡/𝑅𝑎 and 𝐾𝑏 from the torques-speed curve diagram given 

above. 

𝐾𝑡

𝑅𝑎
=

𝑇stall

𝑒𝑎(𝑡)
 

And 

𝐾𝑏 =
𝑒𝑎(𝑡)

𝜔no−load
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5.3. Electromechanical System of DC Motor 

The transfer function equation of the DC motor, preferably in terms of the angular speed of the given DC 

motor (𝜃𝑚(𝑠)) is determined from the voltage applied across its armature (𝐸𝑎(𝑠)).  

Or, in the block diagram shown below, the DC motor is typically illustrated as a block diagram (𝐺(𝑠)) 

with armature voltage, 𝐸𝑎(𝑠) as input and angular speed of the motor, 𝜃𝑚(𝑠) as output. 

 

Figure 20: Electromechanical system of a DC motor with load 

 

As a result, substitute equations (4) and (2) into equation (1), the equation becomes: 

(𝑅𝑎 + 𝐿𝑎𝑠)𝑇𝑚(𝑠)

𝐾𝑡
+ 𝐾𝑏𝑠𝜃𝑚(𝑠) = 𝐸𝑎(𝑠)       (𝐸𝑞. 6) 

Then, substitute equation (5) into equation (6), it is: 

(𝑅𝑎 + 𝐿𝑎𝑠)(𝐽𝑚𝑠2 + 𝐷𝑚𝑠)𝜃𝑚(𝑠)

𝐾𝑡
+ 𝐾𝑏𝑠𝜃𝑚(𝑠) = 𝐸𝑎(𝑠) 

Considering that the armature inductance (𝐿𝑎) is small compared to armature resistance (𝑅𝑎) which is 

common for a DC motor, the equation above becomes: 

[
𝑅𝑎

𝐿𝑎

(𝐽𝑚𝑠 + 𝐷𝑚) + 𝐾𝑏] 𝑠𝜃𝑚(𝑠) = 𝐸𝑎(𝑠) 

Rearrange the equation above into a ratio of 𝜃𝑚(𝑠)/𝐸𝑎(𝑠), it becomes: 

𝜃𝑚(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑡/(𝑅𝑎𝐽𝑚)

𝑠 [𝑠 +
1

𝐽𝑚
(𝐷𝑚 +

𝐾𝑡𝐾𝑏
𝑅𝑎

)]
 

 

Example for Tutorial 4: Modelling of Electromechanical System 

 

Given the DC motor connected to a mechanical load as shown in part (a) in the figure below used as an 

example of electromechanical system and torque-speed curve shown in part (b), find the transfer 

function, 𝜃𝐿(𝑠)/𝐸𝑎(𝑠).         [20 marks] 
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a. DC motor and load 

 

b. The torque-speed  

 

Answer 

Begin by finding the mechanical constants, 𝐽𝑚 and 𝐷𝑚. From equation given below, the total inertia at 

the armature of the motor is: 

𝐽𝑚 = 𝐽𝑎 + 𝐽𝐿 (
𝑁1

𝑁2
)

2

= 5 + 700 (
1

10
)

2

= 12             (𝐸𝑞. 1) 

The total damping at the armature of the motor is: 

𝐷𝑚 = 𝐷𝑎 + 𝐷𝐿 (
𝑁1

𝑁2
)

2

= 2 + 800 (
1

10
)

2

= 10            (𝐸𝑞. 2) 

Now, we will find the electrical constants, 𝐾𝑡 = 𝑅𝑎 and 𝐾𝑏. From the torque-speed curve of the part (b) 

in the figure above, 
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𝑇𝑠𝑡𝑎𝑙𝑙 = 500                 (𝐸𝑞. 3) 

𝜔no−load = 50             (𝐸𝑞. 4) 

𝑒𝑎(𝑡) = 100                 (𝐸𝑞. 5) 

Hence, the electrical constants are: 

𝐾𝑡

𝑅𝑎
=

𝑇𝑠𝑡𝑎𝑙𝑙

𝑒𝑎(𝑡)
=

500

100
= 5                 (𝐸𝑞. 6) 

and 

𝐾𝑏 =
𝑒𝑎(𝑡)

𝜔𝑛𝑜−𝑙𝑜𝑎𝑑
=

100

50
= 2                 (𝐸𝑞. 7) 

Substitute the values obtained in the equations (1), (2), (6), and (7) into the equation below. 

𝜃𝑚(𝑠)

𝐸𝑎(𝑠)
=

𝐾𝑡

(𝑅𝑎𝐽𝑚)

𝑠 [𝑠 +
1

𝐽𝑚
(𝐷𝑚 +

𝐾𝑡𝐾𝑏
𝑅𝑎

)]
 

            =
5/12

𝑠 {𝑠 +
1

12
[10 + (5)(2)]}

=
0.417

𝑠(𝑠 + 1.667)
 

In order to find 𝜃𝐿(𝑠)/𝐸𝑎(𝑠), we use the gear ratio, 𝑁1/𝑁2 = 1/10, and find: 

𝜃𝐿(𝑠)

𝐸𝑎(𝑠)
=

0.0417

𝑠(𝑠 + 1.667)
 

Or, as shown as a block diagram in the figure below. 

 

 

 


