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Note 7: Time Response Analysis

Topic
* First-order responses analysis (e.g. time constant, rise time, and settling time).

* Second-order responses analysis (e.g. damping ratio, rise time, settling time, time-to-peak,
percentage overshoot, and steady-state error).

¢ Damping of the systems.
¢ Second-order system responses.

* Trends in second-order system responses.

1. Introduction to Time Response

It is the time response of a system to an input that sets the criteria for our control systems. Many
guantitative criteria have been defined to characterise the time response of a system.
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Figure 1: Time responses of systems (first-order system (left) and second-order system (right))



Note 7: Time Response Analysis

Time response of higher order system could be approximated from first and second order systems.

The term transient response is often used to describe the initial time response of the system that is
occurring at the beginning of the response as opposed to the steady-state response of the system that
typically is happening at the end of the response.

2. Time Response of First-Order System

The time constant and system gain of a first-order system are useful in its analysis, but other criteria
describe the time response more accurately to an engineer.
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Figure 2: Block diagram and s-plane diagram of first-order system

A first-order system may be written as:

Cs) K C(s) a
@_ST+1 m_s+a

Where: K =1andT =1/a

Rearrange the equation given above:

C(s) = R(s) (Hia)

For a unit stepe.g., R(s) = 1/s:

1
C(s) = R (< i ) ==(; f: -)

Apply partial fraction:

1
s+a

1
C(S) =§—

By using Laplace table, we obtain the standard response (note: f = forced response and n = natural
response).

c() =ce(t) +cp(t) =1 - e—at
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Figure 3: Exponential time responses of first-order system (increasing (A) and decreasing (B))

The time response for a first-order system depends on the gain and time constant of the system.
Generally, the time response of a first-order system is exponential. Changing the gain or constant only
changes the steady state value and time. Typical parameters are:

¢ Time constant (z).
* Rise time (T}.).

* Settling time (Ty).
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Figure 4: Time response of first-order system

2.1. Time Constant of First-Order System

For a first-order system response to a unit step, time constant (T') is defined as the time for the step
response to rise to 63% of its final value.

t=1/a
It is derived from the time for e ~% to decay to 37% of its final value.
e z1/q =1 =037
For the given first-order system, the time domain equation of the system is:
c(®)li=1ja =1— e %|i=1/q

=1-0.37=0.63

2.2. Rise Time of First-Order System

For a first-order system response to a unit step, rise time (T,.) is defined as the time for the response to
go from 0.1 to 0.9 of its final value:

clr)

I Initial slope ]

time constant

1.0 ./ JRRS——
0.9 v

0.8 |t rd
0.7
0.6 7
0.5
0.4
0.3
0.2
0.1 R

63% of final value
at § = one timeg constant

)

0

2w -

Figure 5: The rise time of first-order system

Forc(t) =0.1:
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c) =(1—e o) =0.1
Taking the natural log on both sides:
—aTp1) =In(1-0.1)
Rearrange the equation above:

T(O.l) = 011/a

For c(t) =0.9:
c®) =(1—e Te2) =09
Taking natural log on both sides:
—aTpo =1In (1 —-0.9)
Rearrange the equation above:

T(0.9) = 231/(1

So, by subtracting the second equation with the first equation, this will yield the rise time (T;.) of first-
order system that is:

T, = T(0.9) - T(0.1)
_ 231 0.11 _ 2.2

a a a

2.3. Settling Time of First-Order System

For a first-order system response to a unit step, settling time (T5) is calculated as 4 times the time
constant (7) of the system.

The settling time could be also determined as the time taken by the system to stay within 2 % of its final
value (typically this 2 % is standard).
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Figure 6: The settling time of first-order system

For a first-order system, since T = 1/a, the response of the system is calculated from:
ct)=1—e%* =1—¢7t/7
Rearrange the equation above:
e T =1—c(t)
To calculate the 2% settling time e.g. 0.98 of final value:
e Ts/T=1-0.98 = 0.02
Thus, the settling time (T) of the first order system is:

T =—1In0.02 =397 = 471

Example for Tutorial 1: Time-Response Analysis of First-Order System

For a first order given as the transfer function given below, calculate the following time-domain
parameters of the system.

C(s) 25
m_s+3

a. The time constant (t).
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b. Therise time (T}.).
c. The settling time (T§).

Answer

a. The time constant () is calculated from:

—1—1—033
T=—=7=033s

b. The rise time (T}.) is calculated from:

c. The settling time (T§) is calculated from:

T, = 4t = 4(0.33) = 1.32 s

3. Time Response of Second-Order System

The time response of a second order system depends on the characteristics of the system, notably the
natural frequency (w,,) and damping ratio ({) of the system.

So, it is important that we discuss the details of these two parameters of the second-order system
before we start covering the other time domain parameters of the second-order system.

Consider a second-order system with the following transfer function equation:

C(s) B k
R(s) a's2+b's+c’

To work out the natural frequency and damping characteristics, convert the transfer function equation
to a monic polynomial form with unity in front of the leading coefficient (s? term) and k such that:

C(s)_ b
R(s) s2+as+b

Note that the constants a’, b’, and ¢’ are not equivalent to a and b.

As seen above in the equation, given that there is the transfer function equation of the second-order
system, we can determine its natural frequency and damping ratio.

3.1. Natural Frequency of Second-Order System

Natural frequency is when there is no damping in the system (a = 0 in this case).
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c(t)

Undamped

Figure 7: Transient response of undamped system

We obtain:
@ _ b
R(s) s%?+b
With poles:
s12 = +jVb

We know that: w = /b = wy, as a complex number. So, the frequency of oscillation is +jw , which is
termed the natural frequency.

3.2. Exponential Decay Frequency

Exponential decay frequency is when the exponential function shapes up the sinusoidal oscillation
function of the system response.

c(r)

1 Exponential decay generated by

real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

L}

Figure 8: Exponential decay response of a system

Considering an underdamped system:

C(s)_ b
R(s) s2+as+b

XMUT315 - Note 7 -8
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The real partof s = 0 + jw, iso = —a/2, where |g| is termed the exponential decay frequency.

3.3. Damping Ratio

Damping ratio ({) is defined as measure describing how oscillations in a system decay after a
disturbance. It is equated as the ratio of the exponential decay frequency with the natural frequency.

ol (3)
= o
Where:

e |o|is the exponential decay frequency.
® w, is the natural frequency.

3.4. Natural Frequency and Damping Ratio

Consider a second order system with the following transfer function equation:

C(S) _ k( c )
R(s) ~\as2+bs+c
The equation above can be written as a standardized equation for second order system in terms of
damping ratio and natural frequency:
C(s) w?
R(s) s2+42{w,s + w?

Consider the roots of the characteristic equation:

512 = (wp T wpy -1

Depending on the root i.e. technically the natural frequency of the system (w,,), or the damping ratio
(¢), you will end up with various types of time response of the second order system.

The following figure shows damping ratios ({), roots (w,,), the location of poles in the s-plane, and the
step response of various second-order systems based on their damping ratios.

Notice that the time response is based on the step input that is very commonly used for analysing and
testing of the second order system. The other types of input are ramp and parabolic inputs.

Damping Roots (wy,) Poles in the S-plane Step Response of System

()
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(=0 tijw, Jaw elr)
}jﬂ, s-planc
-a
fia . r
Undamped
0<0<1 | —¢w, + jwp/1— 2 jo  s-plane e(r)
X 1 jo1-¢2
- (T
L,
X o 1= 2 Underdamped ‘
¢=1 {wn jo o(r)
l s-plane
_}F —
_cu% .
Critically damped
¢>1 —(wp + Wy (2 -1 Jew e
={m+,
a
f :
-, VO2-1 Overdamped

Table 1: Damping ratios, their root locations in s-plane, and their transient responses

3.4. Determining Natural Frequency and Damping Ratio

Consider a second order system with the transfer function equation given below:

Cc(s) B k

(Eq.1)

R(s) xs?+ys+z
Rearranging the equation so this system is with unity in front of the s2 term and k such that:

C(s) b
R(s) s24as+b

(Eq.2)

Equating the transfer function equation of the system with the standardized equation for second order

system.
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C(s) w?
R(s) s%+ 2w,{s + w?

(Eq.3)
After equating equation (3) with equation (1), the equations for determining the natural frequency and
damping ratio of the second-order system are determined as follow.
First, derive the natural frequency is:
w2 =hb (Eq.4)

Thus, the natural frequency is:

w, =Vb  (Eq.5)
The damping ratio of the second order system is calculated from:

2w, = a (Eq.6)

Substituting equation (5) into equation (6), knowing that w,, = Vb, the damping ratio (¢) of the second
order system is:

Example for Tutorial 2: Time-Response Analysis of Second-Order System

For the following second-order system, determine the following time-domain parameters of the system:

4
() =3276+9
a. Poles and zeros of the system.
b. Natural frequency (w,,).
c. Damping ratio ({).

Answer

a. Convert the transfer function equation of the system into a monic polynomial first.

o - 4 4 3
§) =327 15549~ 3B (52 + 55+ 3)

Notice that 4/[(3)(3)] = 4/9 term is becoming the gain of the system.
To determine the poles and zeros of the system, we use the standard equation for determining the
roots of the second order equation.

b +Vb2 — 4ac

S =
1.2 2a™ 2a
Poles and zeros of the system are determined from:
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__ & VO -4WE) VI3
T C) S TC) B

The poles and zeros of the system are —2.5 + v13/2 and —2.5 — v13/2.

b. To calculate the natural frequency of the system, we use the standardised equation for the second
order system.
c(s) w? B 3
R(s) s?2+2lw,s+w? s2+5s5+3

Natural frequency (w,,) of the system is calculated from:

w? =3

Thus, the natural frequency of the system is v/3.

c. Knowing the natural frequency of the system (w,,) from part (b), the damping ratio ({) of the system
is calculated from:
2(w, =5
Thus
5 5 5

T 20, 23 6

As a result, the damping ratio of the system is (5/6)\/?.

¢

4. Time Response of Second-Order System

The time response of the overdamped second-order system is very similar to the time response of first-
order system.

But, for the underdamped second-order system, its time response is very different from overdamped
system, and hence from first-order system as well.

As a result, most of the parameters of the second-order system are derived following the characteristics
and behaviour of underdamped system.
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Figure 9: Time response of second-order system

We cannot use equations for determining the characteristics and behavior of the first-order system as
these are not accurate for second-order system. The following sections will derive these parameters for
the second-order systems.

Consider the parameters of time response that are common for the first-order systems and second-
order systems such as:

*  Risetime (T;).
*  Settling time (Ty).
But we also have parameters that are specific for second-order system:
*  Time-to-peak (T}).
*  Percentage overshoot (%0S).

*  Steady-state error (e(0)).

4.1. Rise Time of Second-Order System

The rise time (T;.) is defined as the time for the response to go from 0.1 to 0.9 of its final value. We could
use the rise time of the first order response — but this is not very accurate. To simplify the mathematics
required, we consider the rise time of the second-order system as the time response from zero to its
final value.
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Figure 10: The rise time of second-order system

For an underdamped second-order system, its time response:

e—(wnt
J1-02
Where: wy = wpy/1—7% and ¢ =tan™! (_@(—(2)

The magnitude of the output signal at rise time is approximated to 1 for easy calculation e.g., c(t) = 1.

c(t)y=1- ( >sin(wdt + ¢)

e_fwnTr
1- <—> sin(wgTr +¢) =1

i

Thus, equating both sides:

—SwnTy
<ﬁ> sin(wdTT + (]5) =0

Knowing that sin~1(0) = nm, then the above given equation becomes:
wqT +¢ =nm

The rise time is calculated from:
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Where: wy = wy/1— 7% and ¢ =tan™?! (—‘15_@) (i.e.convert to rad/s)

As wy = wp/1 — 2, the formulae for calculating rise time (T}.) of the second order system is typically a
function of damping ratio ({) and natural frequency (wy,):

T —
T_

" _wnw/l—fz

¢

We have also an alternative formula for calculating rise time (T.) of the second-order system. This

Where: ¢ = tan™?! (

=)

formula is derived from approximating the experiment results of a second-order system with curve
fitting techniques.

_ (1.76¢3 — 0.417¢% + 1.039C + 1)

r

Wn

If analytical method using equation and math do not appeal you, we can also use the graphical method
to determine the rise time of second-order system.

To find damping ratio, we can use also the normalized rise time vs. damping ratio for a second-order
underdamped response (e.g. equation of the curve given in the figure below):

trwy = 2.230¢2 — 0.078¢ + 1.12

This approach is quicker to do and without implementing mathematical processes to analyse.

Damping | Normalized
A ratio rise time
30 0.1 1.104
B 0.2 1.203
2y 2.8 0.3 1.321
526 0.4 1.463
o
2 24 0.5 1.638
—_ 0.6 1.854
E22r 0.7 2.126
<
X 0.9 2.883
Q
£
2
Z
| | | |

T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Damping ratio

Figure 11: Graph of normalised rise time vs. damping ratio
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4.2, Settling Time of Second-Order System

Note 7: Time Response Analysis

The settling time (T) is defined as the time for the response to reach and stay within its final steady-
state value. There are several settling time standards that exist in control system engineering e.g. 0.1%,

0.5%, 1%, 2%, 5%, etc.

e(r)
[ 1
Cmax -
1.02¢ fipgy
AN
Cfinal ;-'-_— ';r AN
0.98¢gipal /
0.9¢fipal
0.1¢ipal -
- T = T, T,

Figure 12: The settling time of second-order system

For an underdamped second-order system, its time response:

e—(wnt
J1-22
Where: g = onyT=¢2 and ¢ = tan™ (125)

Thus, to find the settling time, sin(wyt + ¢) = 1:

c(t)=1—(

Rearrange the equation above:

e—(wnTs
(\/?{2) =1- C(t)

For 2% settling time standard, therefore 1 — ¢(t) = 0.02:

XMUT315 - Note 7 - 16
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e_zwnTs
—1=0.02
J1-—2¢2
For underdamped second order system, { lies between 0 and 1. As a result, neglect the denominator for
easy calculation.
e SonTs = 0.02
Taking natural log on both sides:
—(w, T, =1In0.02
So, the settling time of the system for 2% standard is:
B 3.9 4

y (wp,  Cwy

For 5% settling time standard, therefore 1 — ¢(t) = 0.05:

e—anTs
——]=10.05
J1-—-202
For underdamped second-order system, thus:
e~¢@nTs = 0.05
Taking natural log on both sides:
—(w, T, =In0.05
So, the settling time for 5% standard is:

29957 3

(wp  Cwn

N

4.3. Time-To-Peak of Second-Order System

The time-to-peak (T}), it is the time required to reach the first peak or maximum peak. For an
underdamped second-order system, its time response:

—{wnt
Vi-¢

Where: wy = wy/1—7% and ¢ =tan™?! (—“1;(2)

c(t) =1- ( >sin(wdt + ¢)
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c(r)
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Figure 13: The time-to-peak of second-order system

As per definition at the peak time, the response curve reaches to its maximum value. Hence at that
point,
dc(t)
ac

Now, substitute w; = wy+/1 — {? and perform partial differentiation of the equation above (i.e. uv’ +
u'v):

de(t) (e S@nTp (—Cwy
al =<1_(meﬁi?%mQ%JTfﬁQ+¢)+ —

Assign the dc(t)/dt to zero, thus:

e tenTy (@weww
<\/ﬁ>wnw/1 (Zcos(wm/ - (2T, +¢) ]sm Wy 1= (2T, +¢)

Rearranging and equating both sides:

tan(wnwll - (2T, +¢) 217_(2 =tan¢

The equation above becomes:

)e_(wnTp

sin (/1= (2T, + ¢

(wn,/l - Zz) T, =nm

The time-to-peak of the second-order system is:
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nm
wpA/1— 72

Where: n = n-th peak (n = 1, first peak; n = 2, second peak, ...,n = n-th peak)

T, =

Note: the maximum overshoot of the given second—order system occurs at n = 1.

4.4. Percentage Overshoot of Second-Order System

The percentage overshoot (%0S), is the amount that the waveform overshoots the steady-state or final
value compared with value at the peak time. It is typically expressed as a percentage of the steady-state

value.

c(t)

A
('mux o
1.02¢ fipal \

N
Cfinal !f \\ —
0.98¢ (a1 7
0.9¢ fipai
0.1¢ipal -—
Ll &
- T = 7, T,

Figure 14: The percentage overshoot of second-order system

For an underdamped second-order system, its time response:

—Cwnt

‘=1-(F=5
Where: wg; = wyy/1—7% and ¢ =tan™?! (x/lgiz)

To determine the percentage overshoot, substitute wg; = wy+/1 — 2.

> sin(wgt + @)

e_qwnTp .
C(t)max =1- (\/1—_—(2> Sll’l(a)n\/ 1-— (sz + ¢)
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Put the expression of peak time in the expression of output response c(t).

o)
e \“’"\/E / i

c(Omax =1- — sin(wpy/1 - Pl——|*+¢)
1- Zz wm’l - gz
Since sin(r + ¢p) = —sin ¢, thus:
i _/ ¢ \
[ 2
cOmax = \ — (2/ sin(m+¢) =1- ﬁ (=sin¢)
We know that sin¢ = /1 — (2.
{m {n
1+ —61—62 sing = 1+ —el_(z J1-2=1+e V1-C

Thus, maximum overshoot is:

__Gr _m
My=c(®max—1=1+e V1= —1=¢ V1€
The percentage overshoot of the second-order system is:

_m
%0S = e V1=¢* x 100%

4.5. Percentage Overshoot and Damping Ratio

By rearranging the equation for percentage overshoot, we could find the damping ratio of the system
from the percentage overshoot.

%05 = e~ V1) 5« 100%

Equation both sides with natural log.

2 In(%0S/100)

i-¢

Rearrange the equation.

—J/1—7%21n(%0S/100)
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Squaring both sides.
((m)? =1 - % [In(%0S/100)]?
Rearrange the equation.

[In(%0S/100)]2

‘= ()2 + [In(%0S/100)]2

The relationship between percentage overshoot (%0S) and damping ratio ({).
—In(%0 $/100)
Jm2 + [In(%0 S/100)]?

{:

Selection of the damping ratio is a tradeoff between maximum percentage overshoot (%0S) and time
where the peak overshoot occurs (time-to-peak). Smaller damping ratio decreases time-to-peak
(desirable), but it increases %0S (undesirable).

4.6. Steady-State Error of Second-Order System

The steady-state error (e(2)), is the difference between the input (r(t)) and output (c(t)) for a
prescribed test input at steady-state period (t — o).

e(e0) = lim[r(t) — c(t)]
t—>oo
We will look more closely the steady-state response and steady-state error of the system in the
subsequent topic in the course.

(i)

A
(.]'I'lil_t —\
REZEN _ / \
Cfinal | ‘,"r \\- ——
0.98¢ 00 7
0.9¢final
0.1¢ipal -—
-
- 7 = T, T,

Figure 15: The steady-state error of second-order system
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Example for Tutorial 3: Further Time-Response Analysis of Second-Order System

For the following second-order system, determine the following time-domain parameters of the system:

G(s) = 81

Y T ST 1155+ 81

a. Natural frequency (w,,). [2 marks]

b. Damping ratio ({). [2 marks]

c. Risetime (T}). [2 marks]

d. Settling time (Ty). [2 marks]

e. Time-to-peak (Tp). [2 marks]

f. Percentage overshoot (%0S). [2 marks]

g. Perform transient response simulation in MATLAB and determine natural frequency (w,), damping
ratio ({), rise time (T.), settling time (Ty), time-to-peak (T}), and percentage overshoot (%0S) of the
given system. Simulate the transient response of the system and comment on the result.

[12 marks]

Answer

a. Equating the transfer function equation with the standardised equation for second order system,
the natural frequency (w,,) of the given system is calculated from:

81 w?
G(s) == = 2
s2+ 1554+ 81 5?2+ 2{w,s + w;
Thus, the natural frequency of the system is as:
w, =V81 =9rad/s
b. Damping ratio ({) is calculated from:
15 15 0.833
2w, 209
c. Risetime (T;) is calculated from:
T — m — 1(0.664
T. ¢ ( ) _ 0.212s

T on/1-2 91— (08332

Where: ¢ = tan™? (1—_62> =tan~! <L833)2> = 0.664

7 0.833

Using alternative equation for rise time, it is:
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- (1.76¢% — 0.417% + 1.039¢ + 1)
r wn
_ (1.76(0.833)* — 0.417(0.833)* + 1.039(0.833) + 1)

9

= 0.288s

d. If the settling time standard is 2%, the settling time (T%) is calculated from:

_ 3.9 _ 4 _ 4
" {w,  {w,  (0.833)(9)

T, = 0.533s

e. For the first (max) peak (n = 1), the time-to-peak (T},) is calculated from:

T n z 0.63
— = pry S
w132 91— (0.833)2

Where: n = n-th peak

f. Percentage overshoot (%0S) is calculated from:

_Gm __ (0.833)m
%0S = e V1=¢% x 100% = e V1-(0:833)? x 100% = 0.88%

g. The results of the simulation in MATLAB are listed below.

Workspace ®

Value

[1,15,81]
81

9

0.8773
Ix1tf
0.6315
0.2883
0.5333
0.8333

The transient simulation of the system is given in the figure below.
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Time response of system
1 .2 T T T T T T

e e
o) o
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o
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0 = . . . . . .
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Time (seconds)

It seems that from the plots, the rise time and settling time found to be approximately 0.3 and 0.5
respectively. The transient response of the system is underdamped and it settles down to amplitude
of 1in the end.

5. Step Response of Second-Order System

For given second-order systems, there are various time response characteristics of these systems
depending on their damping ratio values.

Step function is typically used for analysing and testing the response of the system.
If the second order systems are given a step input, their step responses typically are:
* {=0-— Undamped response.
* 0<{<1(small {) > Underdamped response.
* ( =1— Critically damped.
* {>1(large {) - Overdamped response.

The following figure outlines graphs of step responses of underdamped second-order system with
various degrees of damping ratio i.e. from 0.1 to 0.8.
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Figure 16: Step responses of systems with various damping ratios

5.1. Examples of Step Responses of Second Order System

There are several types of response of second-order systems. The response of the second order system
depends on the characteristics of the system and the type of input applied to the system.

For a step input, the responses of the second order system are overdamped, critically damped,
underdamped, and undamped.

5.1.1. Undamped Step Response of Second-Order System

Undamped second-order step responses are typically generated by complex poles that lie on the y-axis
in the s-plane.

C(s) k

R(s) (s +jb)(s — jb)
For a step input (R(s) = 1/s), after implementing partial fraction expansion, the transfer function
equation is:

C()_K1+ K K
V=S T s +jb) T 5—jb)

Taking the inverse Laplace transform, the pole at origin becomes a constant and a pair of complex roots
become co-sinusoidal function. The time domain equation of the system is:

c(t) = K; — cos bt

As a result, the step response of the system is a constant amplitude sinusoid.
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Example for Tutorial 4: Step Response of Undamped System

For a given system described as transfer function given below, perform the following tasks:

Gis)
1
R(s)= 3 9 (5}
- -
2+9
Lindamped
a. Roots of the characteristic equation. [2 marks]
b. Derive the expression for the transient response of the system. [6 marks]
c. lllustrate its poles and zeros in the s-plane. [4 marks]
d. With a help of diagram, determine the step response of the system. [4 marks]
Answer

a. Forthe given system, factorise its transfer function equation:
Cs) 9
R(s) s?+4+9
9
T G +/3)(—)3)

Roots of the characteristic equation are:
sy =j3 and s, = —j3
Thus

cs) 9 9
R(s) s24+9 (s+j3)(s—j3)

b. Apply step function to the system, the transfer function equation becomes:
Cc(s) 9
(1/s) ~ (s +j3)(—3)
Implement partial fraction expansion of the transfer function equation.

~ 9 K, K K
_s(s+j3)(s—j3)_ s  (s+j3) (s—j3)

C(s)

When s = 0, the value of coefficient Kj is:

K, = k S S
U436 —)3) 0 G3)(—i3)
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When s = j3, the value of coefficient K, is:

P 9 9
27 s(s+j3)  (3)(G3+j3) 18

When s = —j3, the value of coefficient K3 is:

9 9 9

K= S6-3 " D 3-j3) 18

So

c(s) 9 1 1 1
R(s) (s+j3)(s—j3) s 2(s+j3) * 2(s — j3)

Taking the inverse Laplace transform, the time domain equation of the system is:
c(t) =1-—cos3t

As a result, the step response of the system is a constant amplitude sinusoid.

c. Using MATLAB for simulation, the location of the poles in the s-plane is illustrated in the following
figure. Notice a pair of complex poles on the x-axis in the graph.

S-plane diagram of undamped system
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d. Simulating the system in MATLAB, the step response of the system is shown in the following figure.
The result of simulation confirms the constant amplitude sinusoid obtained in part (b).
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Step response of undamped system
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5.1.2. Underdamped Step Response of Second-Order System

Underdamped second-order step responses are typically generated by complex poles. Given a second
order system with a pair of complex poles as shown below.

C(s) B k
R(s) (s+a+jb)(s+a—jb)

For a step input (R(s) = 1/s), after implementing partial fraction expansion, the transfer function
equation is:

C()_K1+ K K
S_s (s+a+jb) (s+a—jb)

Taking inverse Laplace transform, the complex pair of roots become the co-sinusoidal function.

c®) . _ .
@—Ae tcos(bt — ¢°)

Where:
L ¢
¢ = tan 1—\/1_7(2

As a result, the time response of the under damped second order system is an exponentially decaying
sinusoidal oscillation.

Example for Tutorial 5: Step Response of Underdamped System
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For a given system described as transfer function given below, perform the following tasks:

o 0 T W

: Gis)
Ris)= 5, 9 C(s)
425 +9

-

Underdamped

Roots of the characteristic equation. [2 marks]
Derive the expression for the transient response of the system. [6 marks]
Illustrate its poles and zeros in the s-plane. [4 marks]
With a help of diagram, determine the step response of the system. [4 marks]

Answer

a.

For the given system, factorise its transfer function equation:

C(s)_ 9
R(s) s2+4+2s+9

Considering the characteristic equation of the system, apply equation for solving roots of second
order equation.

o —b £ Vb%—4ac  —(2) £/(2)? - 4(1)(9)
Lz~ 2a - 2(1)

This gives roots of the characteristic equation:
s10=-1+V-8=-14,V8
Thus

C(S)_ 9 B 9
R(s) s2+25+9 (s+1+/v8)(s+1—jV8)

Apply step response to the system.
C(s) B 9
(1/s)  (s+1+jV8)(s+1—jV8)

Implement partial fraction expansion of the transfer function equation.

9 kL K K
s(s+1+jV8)(s+1—jv8) s (s+1+V8) (s+1-,V8)

When s = 0, the value of K, coefficient is:

C(s) =
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9 9
K1:(s+1+j\/§)(s+1—j\/§):(1+j\/§)(1—j\/§): '
Whens = —1 —j\/§, the value of K, coefficient is:
K, = 9 _ 9 _ 9
s(s+1-jv8) (-1—jV8)(-1—,V8+1—jV8) 2jV8—16
Whens = —1 +j\/§, the value of K; coefficient is:

9 9 9
K3:s(s+1+j\/§):(—1+j\/§)(—1+j\/§+1+j\/§):—Zj\/§—16

Thus:

9 9
1 (2]\/§— 16) (—2j\/§— 16>
C(S)_§+(s+1+j\/§)+ (s +1—jV8)

Taking inverse Laplace transform, the real part generates: et. The complex part generates:

k cos(V8t — ¢).
ct)y=1—-et <c05\/§t + ?sin@t)
=1—1.06e~* cos(V8t — 19.47°)

As a result, the step response of the system is a decaying sinusoidal oscillation.

Using MATLAB for simulation, the location of the poles in the s-plane is illustrated in the following
figure. Notice the present of a pair of complex poles in the graph.
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S-plane diagram of underdamped system
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d. Simulating the system in MATLAB, the step response of the system is shown in the following figure.
The result of simulation confirms the decaying sinusoidal oscillation obtained in part (b).

Step response of underdamped system
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5.1.3. Overdamped Step Response of Second-Order System

Overdamped second-order step responses are typically generated by real poles. Consider a second

order system with real poles as shown below.
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C(s) k
R(s) (s+a)(s+Db)

For a step input (R(s) = 1/s), after implementing partial fraction expansion, the transfer function
equation is:

K K, K
e e Py A

Taking inverse Laplace transform, the pole at origin becomes a constant and both of the real terms
become exponential functions. The time domain equation of the system is:

C(t) = K1 + Kze_at + K3e_bt
As a result, the step response of the system is an exponential increase.

Example for Tutorial 6: Step Response of Overdamped System

For a given system described as transfer function given below, perform the following tasks:

Gis)
1
Ris)= 3 g Cls)

405 +0

Orverdamped
a. Roots of the characteristic equation. [2 marks]
b. Derive the expression for the transient response of the system. [6 marks]
c. lllustrate its poles and zeros in the s-plane. [4 marks]
d. With a help of diagram, determine the step response of the system. [4 marks]
Answer

a. Forthe given system, factorise its transfer function equation:

C(s) 9
R(s) s2+9s+9

Considering the characteristic equation of the system, apply equation for solving roots of second
order equation.

o _ThEVbr—dac (£ -4MO) _ 9 V45
12— 2a - 2(1) T 27 2

The roots of the characteristic equation are:

s, = —7.854 and s, = —1.146
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Thus

C(s) 9 - 9
R(s) s24+95s+9 (s+7.854)(s + 1.146)

Apply step response (1/s) to the system.

C(s) 9

(1/s) (s + 7.854)(s + 1.146)
Implement partial fraction expansion of the transfer function equation.

B 9 K N K, N K;
" s(s+7.854)(s +1.146) s = (s+7.854) (s + 1.146)

C(s)

When s =0, the value of K; coefficient is:

9 9
K = = = 1
17 (5 +7.854)(s + 1.146)  (7.854)(1.146)

When s = -1.146, the value of K, coefficient is:
9 9

K, = = =0.17
2 s(s+7.854) (—1.146)(—1.146 + 7.854)
When s = -7.854, the value of K; coefficient is:
9 9
—-1.17

K = = =
7 s(s+1.146)  (—7.854)(—7.854 + 1.146)
Thus

oy oty 017 -7
s T (s +7854) " (s+ 1.146)

Taking the inverse Laplace transform, the time domain equation of the system is:
c(t) =1+ 0.17e7 7854 — 11711146t

As a result, the step response of the system is an exponential increase.

Using MATLAB for simulation, the location of the poles in the s-plane is illustrated in the following
figure. Notice the two real poles in the graph.
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d. Simulating the system in MATLAB, the step response of the system is shown in the following figure.
The result of simulation confirms the exponential increase obtained in part (b).

Step response of overdamped system
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5.2. Summary of Second Order Time Response

For a given second-order system, we might expect the following responses of the system:

Undamped responses:

e Poles:s;, = Hjw,
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e Response: c(t) = Acos(wot — @)

Underdamped responses:

e Poles:s;, = —04 * jwg
e Response: c(t) = Ae %4t cos(wyt — p)  where: wy = wp/1 — {2

Critically damped responses:

e Poles:s;, = —0
e Response: ¢(t) = K;e™ %" + K,te %!

Overdamped responses:

e Poles:s; = —0y, 5, = —0,
e Response: ¢c(t) = K;e %1t + K e~ %t

The time responses of the systems with various damping ratios are shown in the figure below.

c(t)

A
Undamped
20
1.8 [
1.6
14 Under-
12k damped
Critically
1.0 damped
0.8 F
06
04 | Overdamped
02
1 1 1 1 ] 1 j - t
0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 17: Transient responses of various systems with different response characteristics

6. Trends in Time Responses of Second-Order System
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The following diagram shows the locations of the pole in the s-plane and their corresponding transient
response. Notice the difference between the response of the poles on the left-hand side (stable
response) with the response of the poles on the right-hand side (unstable response).

A 3(s)
i b X
i | M\/}
L e = (5D
L 0 . .
] Z
b4
x
< stable region unstable region >

Figure 18: Locations of poles in s-plane and their transient responses

It can be observed in the figure above the difference between the response of a real pole e.g. along the
x-line (damped response) with the response of a pair of complex poles (oscillatory response).

Then, in the following sections, we evaluate step responses of second-order systems as poles move
with:

* constant real part.
* constant imaginary part.

* constant damping ratio.

6.1. Moving Poles in a Vertical Direction

Frequency increases, but the envelope remains the same since the real part of the pole is not changing.
Constant exponential envelope, even though the sinusoidal response is changing frequency. Since all
curves fit under the same exponential decay curve, the settling time is virtually the same for all
waveforms. Overshoot increases, the rise time decreases.
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Figure 19: Systems with poles moving in a vertical direction

The following figure shows the transient response of the system based on the movement of the poles in
a vertical direction in the s-plane as outlined above.

c(t)
A

Envelope the same

-

Figure 20: Transient response of systems with poles moving in a vertical direction

6.2. Moving Poles to the Right or Left

Imaginary part is now constant. Frequency is constant over the range of variation of the real part. As the
poles move to the left, the response damps out more rapidly, while the frequency remains the same.
Peak time is the same for all waveforms because the imaginary part remains the same.
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Figure 21: Systems with poles moving from right or left

The following figure shows the transient response of the system based on the movement of the poles
from right or light in the s-plane as outlined above.

c(t)
A

Frequency the same

Figure 22: Transient response of systems with poles moving from right or left

6.3. Moving Poles along a Constant Radial Line

Percent overshoot remains the same. The responses look exactly alike, except for their speed. The
farther the poles are from the origin, the more rapid the response.
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Figure 23: Systems with poles moving along a constant radial line

The following figure shows the transient response of the system based on the movement of the poles
along a constant radial line in the s-plane as outlined above.
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A

Same overshoot
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>

Figure 24: Transient response of systems with poles moving along a constant radial line
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