
 

XMUT315 Control Systems Engineering 

Note 7: Time Response Analysis  

 

Topic 

• First-order responses analysis (e.g. time constant, rise time, and settling time). 

• Second-order responses analysis (e.g. damping ratio, rise time, settling time, time-to-peak, 

percentage overshoot, and steady-state error). 

• Damping of the systems. 

• Second-order system responses. 

• Trends in second-order system responses. 

 

1. Introduction to Time Response 

It is the time response of a system to an input that sets the criteria for our control systems. Many 

quantitative criteria have been defined to characterise the time response of a system. 

 

Figure 1: Time responses of systems (first-order system (left) and second-order system (right)) 
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Time response of higher order system could be approximated from first and second order systems.  

The term transient response is often used to describe the initial time response of the system that is 

occurring at the beginning of the response as opposed to the steady-state response of the system that 

typically is happening at the end of the response.  

 

2. Time Response of First-Order System 

The time constant and system gain of a first-order system are useful in its analysis, but other criteria 

describe the time response more accurately to an engineer. 

 

Figure 2: Block diagram and s-plane diagram of first-order system 

 

A first-order system may be written as: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝑠𝑇 + 1
          or             

𝐶(𝑠)

𝑅(𝑠)
=

𝑎

𝑠 + 𝑎
 

Where: 𝐾 = 1 and 𝑇 = 1/𝑎 

Rearrange the equation given above: 

𝐶(𝑠) = 𝑅(𝑠) (
𝑎

𝑠 + 𝑎
) 

For a unit step e.g., 𝑅(𝑠) = 1/𝑠: 

𝐶(𝑠) = 𝑅(𝑠) (
𝑎

𝑠 + 𝑎
) =

1

𝑠
(

𝑎

𝑠 + 𝑎
) 

Apply partial fraction: 

𝐶(𝑠) =
1

𝑠
−

1

𝑠 + 𝑎
 

By using Laplace table, we obtain the standard response (note: 𝑓 = forced response and 𝑛 = natural 

response). 

𝑐(𝑡) = 𝑐𝑓(𝑡) + 𝑐𝑛(𝑡) = 1 − 𝑒−𝑎𝑡 
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Figure 3: Exponential time responses of first-order system (increasing (A) and decreasing (B)) 

 

The time response for a first-order system depends on the gain and time constant of the system. 

Generally, the time response of a first-order system is exponential. Changing the gain or constant only 

changes the steady state value and time. Typical parameters are: 

• Time constant (𝜏). 

• Rise time (𝑇𝑟). 

• Settling time (𝑇𝑠). 
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Figure 4: Time response of first-order system 

 

2.1. Time Constant of First-Order System 

For a first-order system response to a unit step, time constant (𝑇) is defined as the time for the step 

response to rise to 63% of its final value.  

𝜏 = 1/𝑎 

It is derived from the time for 𝑒−𝑎𝑡 to decay to 37% of its final value. 

𝑒−𝑎𝑡|𝑡=1/𝑎 = 𝑒−1 = 0.37 

For the given first-order system, the time domain equation of the system is: 

𝑐(𝑡)|𝑡=1/𝑎 = 1 − 𝑒−𝑎𝑡|𝑡=1/𝑎 

    = 1 − 0.37 = 0.63 

 

2.2. Rise Time of First-Order System 

For a first-order system response to a unit step, rise time (𝑇𝑟) is defined as the time for the response to 

go from 0.1 to 0.9 of its final value: 

 

Figure 5: The rise time of first-order system 

 

For 𝑐(𝑡) = 0.1:  
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𝑐(𝑡) = (1 − 𝑒−𝑎𝑇(0.1)) = 0.1 

Taking the natural log on both sides: 

−𝑎𝑇(0.1) = ln(1 − 0.1) 

Rearrange the equation above:  

𝑇(0.1) = 0.11/𝑎 

 

For 𝑐(𝑡) = 0.9:  

𝑐(𝑡) = (1 − 𝑒−𝑎𝑇(0.9)) = 0.9  

Taking natural log on both sides: 

−𝑎𝑇(0.9) = ln  (1 − 0.9) 

Rearrange the equation above: 

 𝑇(0.9) = 2.31/𝑎 

 

So, by subtracting the second equation with the first equation, this will yield the rise time (𝑇𝑟) of first-

order system that is: 

𝑇𝑟 = 𝑇(0.9) − 𝑇(0.1) 

=
2.31

𝑎
−

0.11

𝑎
=

2.2

𝑎
 

 

2.3. Settling Time of First-Order System 

For a first-order system response to a unit step, settling time (𝑇𝑠) is calculated as 4 times the time 

constant (𝜏) of the system. 

𝑇𝑠 = 4𝜏 =
4

𝑎
 

The settling time could be also determined as the time taken by the system to stay within 2 % of its final 

value (typically this 2 % is standard).  
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Figure 6: The settling time of first-order system 

 

For a first-order system, since 𝜏 = 1/𝑎, the response of the system is calculated from: 

𝑐(𝑡) = 1 − 𝑒𝑎𝑡 = 1 − 𝑒−𝑡/𝜏 

Rearrange the equation above: 

𝑒−𝑡/𝜏 = 1 − 𝑐(𝑡) 

To calculate the 2% settling time e.g. 0.98 of final value: 

𝑒−𝑇𝑠/𝜏 = 1 − 0.98 = 0.02 

Thus, the settling time (𝑇𝑠) of the first order system is: 

𝑇𝑠 = −𝜏 ln 0.02 = 3.9𝜏 ≈ 4𝜏 

 

Example for Tutorial 1: Time-Response Analysis of First-Order System 

 

For a first order given as the transfer function given below, calculate the following time-domain 

parameters of the system. 

𝐶(𝑠)

𝑅(𝑠)
=

2.5

𝑠 + 3
 

a. The time constant (𝜏). 
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b. The rise time (𝑇𝑟). 

c. The settling time (𝑇𝑠).  

 

Answer 

a. The time constant (𝜏) is calculated from: 

𝜏 =
1

𝑎
=

1

3
= 0.33 s 

 

b. The rise time (𝑇𝑟) is calculated from: 

𝑇𝑟 =
2.2

𝑎
=

2.2

3
= 0.733 s 

 

c. The settling time (𝑇𝑠) is calculated from:  

𝑇𝑠 = 4𝜏 = 4(0.33) = 1.32 s 

 

3. Time Response of Second-Order System 

The time response of a second order system depends on the characteristics of the system, notably the 

natural frequency (𝜔𝑛) and damping ratio (𝜁) of the system.  

So, it is important that we discuss the details of these two parameters of the second-order system 

before we start covering the other time domain parameters of the second-order system. 

Consider a second-order system with the following transfer function equation: 

𝐶(𝑠)

𝑅(𝑠)
=

𝑘

𝑎′𝑠2 + 𝑏′𝑠 + 𝑐′
 

To work out the natural frequency and damping characteristics, convert the transfer function equation 

to a monic polynomial form with unity in front of the leading coefficient (𝑠2 term) and 𝑘 such that:  

𝐶(𝑠)

𝑅(𝑠)
=

𝑏

𝑠2 + 𝑎𝑠 + 𝑏
 

Note that the constants 𝑎′, 𝑏′, and 𝑐′ are not equivalent to 𝑎 and 𝑏. 

As seen above in the equation, given that there is the transfer function equation of the second-order 

system, we can determine its natural frequency and damping ratio.  

 

3.1. Natural Frequency of Second-Order System 

Natural frequency is when there is no damping in the system (𝑎 = 0 in this case). 
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Figure 7: Transient response of undamped system 

 

We obtain:  

𝐶(𝑠)

𝑅(𝑠)
=

𝑏

𝑠2 + 𝑏
 

With poles:  

𝑠1,2 = ±𝑗√𝑏 

We know that: 𝜔 = √𝑏 = 𝜔𝑛 as a complex number. So, the frequency of oscillation is +𝑗𝜔 , which is 

termed the natural frequency. 

 

3.2. Exponential Decay Frequency 

Exponential decay frequency is when the exponential function shapes up the sinusoidal oscillation 

function of the system response. 

 

Figure 8: Exponential decay response of a system 

 

Considering an underdamped system:  

𝐶(𝑠)

𝑅(𝑠)
=

𝑏

𝑠2 + 𝑎𝑠 + 𝑏
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The real part of 𝑠 = 𝜎 + 𝑗𝜔,  is 𝜎 = −𝑎/2, where |𝜎| is termed the exponential decay frequency. 

 

3.3. Damping Ratio 

Damping ratio (𝜁) is defined as measure describing how oscillations in a system decay after a 

disturbance. It is equated as the ratio of the exponential decay frequency with the natural frequency. 

𝜁 =
|𝜎|

𝜔𝑛
=

(
𝑎
2
)

𝜔𝑛
 

Where: 

• |𝜎| is the exponential decay frequency. 

• 𝜔𝑛 is the natural frequency. 

 

3.4. Natural Frequency and Damping Ratio 

Consider a second order system with the following transfer function equation: 

𝐶(𝑠)

𝑅(𝑠)
= 𝑘 (

𝑐

𝑎𝑠2 + 𝑏𝑠 + 𝑐
) 

The equation above can be written as a standardized equation for second order system in terms of 

damping ratio and natural frequency: 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

Consider the roots of the characteristic equation: 

𝑠1,2 = 𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1 

Depending on the root i.e. technically the natural frequency of the system (𝜔𝑛), or the damping ratio 

(𝜁), you will end up with various types of time response of the second order system.  

The following figure shows damping ratios (𝜁), roots (𝜔𝑛), the location of poles in the s-plane, and the 

step response of various second-order systems based on their damping ratios. 

Notice that the time response is based on the step input that is very commonly used for analysing and 

testing of the second order system. The other types of input are ramp and parabolic inputs. 

Damping 

(𝜻)  

Roots (𝜔𝑛)  Poles in the S-plane Step Response of System 
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𝜁 = 0 ±𝑗𝜔𝑛 

  

0 < 𝜁 < 1 −𝜁𝜔𝑛 ± 𝑗𝜔𝑛√1 − 𝜁2 

   

𝜁 = 1 𝜁𝜔𝑛 

  

𝜁 > 1 −𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1 

  

Table 1: Damping ratios, their root locations in s-plane, and their transient responses 

 

3.4. Determining Natural Frequency and Damping Ratio 

Consider a second order system with the transfer function equation given below: 

𝐶(𝑠)

𝑅(𝑠)
=

𝑘

𝑥𝑠2 + 𝑦𝑠 + 𝑧
            (𝐸𝑞. 1) 

Rearranging the equation so this system is with unity in front of the 𝑠2 term and 𝑘 such that:  

𝐶(𝑠)

𝑅(𝑠)
=

𝑏

𝑠2 + 𝑎𝑠 + 𝑏
           (𝐸𝑞. 2) 

Equating the transfer function equation of the system with the standardized equation for second order 

system. 
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𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜔𝑛𝜁𝑠 + 𝜔𝑛
2            (𝐸𝑞. 3) 

After equating equation (3) with equation (1), the equations for determining the natural frequency and 

damping ratio of the second-order system are determined as follow. 

First, derive the natural frequency is: 

𝜔𝑛
2 = 𝑏           (𝐸𝑞. 4) 

Thus, the natural frequency is:  

𝜔𝑛 = √𝑏         (𝐸𝑞. 5) 

The damping ratio of the second order system is calculated from: 

2𝜔𝑛𝜁 = 𝑎          (𝐸𝑞. 6) 

Substituting equation (5) into equation (6), knowing that 𝜔𝑛 = √𝑏, the damping ratio (𝜁) of the second 

order system is: 

𝜁 =
𝑎

2√𝑏
 

 

Example for Tutorial 2: Time-Response Analysis of Second-Order System 

 

For the following second-order system, determine the following time-domain parameters of the system: 

𝐺(𝑠) =
4

3𝑠2 + 6𝑠 + 9
 

a. Poles and zeros of the system. 

b. Natural frequency (𝜔𝑛). 

c. Damping ratio (𝜁). 

Answer 

a. Convert the transfer function equation of the system into a monic polynomial first. 

𝐺(𝑠) =
4

3𝑠2 + 15𝑠 + 9
=

4

(3)(3)
(

3

𝑠2 + 5𝑠 + 3
) 

Notice that 4/[(3)(3)] = 4/9 term is becoming the gain of the system. 

To determine the poles and zeros of the system, we use the standard equation for determining the 

roots of the second order equation. 

𝑠1,2 = −
𝑏

2𝑎
±

√𝑏2 − 4𝑎𝑐

2𝑎
 

Poles and zeros of the system are determined from: 
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𝑠1,2 = −
(5)

2(1)
±

√(5)2 − 4(1)(3)

2(1)
= −2.5 ±

√13

2
 

 

The poles and zeros of the system are −2.5 + √13/2 and −2.5 − √13/2. 

 

b. To calculate the natural frequency of the system, we use the standardised equation for the second 

order system. 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 =

3

𝑠2 + 5𝑠 + 3
 

Natural frequency (𝜔𝑛) of the system is calculated from: 

𝜔𝑛
2 = 3 

Thus, the natural frequency of the system is √3. 

 

c. Knowing the natural frequency of the system (𝜔𝑛) from part (b), the damping ratio (𝜁) of the system 

is calculated from: 

2𝜁𝜔𝑛 = 5 

Thus 

𝜁 =
5

2𝜔𝑛
=

5

2√3
=

5

6
√3 

As a result, the damping ratio of the system is (5/6)√3. 

 

4. Time Response of Second-Order System 

The time response of the overdamped second-order system is very similar to the time response of first-

order system.  

But, for the underdamped second-order system, its time response is very different from overdamped 

system, and hence from first-order system as well.  

As a result, most of the parameters of the second-order system are derived following the characteristics 

and behaviour of underdamped system.  
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Figure 9: Time response of second-order system 

 

We cannot use equations for determining the characteristics and behavior of the first-order system as 

these are not accurate for second-order system. The following sections will derive these parameters for 

the second-order systems.  

Consider the parameters of time response that are common for the first-order systems and second-

order systems such as: 

•  Rise time (𝑇𝑟). 

•  Settling time (𝑇𝑠). 

But we also have parameters that are specific for second-order system: 

•  Time-to-peak (𝑇𝑝). 

•  Percentage overshoot (%𝑂𝑆). 

•  Steady-state error (𝑒(∞)). 

 

4.1. Rise Time of Second-Order System 

The rise time (𝑇𝑟) is defined as the time for the response to go from 0.1 to 0.9 of its final value. We could 

use the rise time of the first order response – but this is not very accurate. To simplify the mathematics 

required, we consider the rise time of the second-order system as the time response from zero to its 

final value. 
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Figure 10: The rise time of second-order system 

 

For an underdamped second-order system, its time response: 

𝑐(𝑡) = 1 − (
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
) sin(𝜔𝑑𝑡 + 𝜙) 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2    and  𝜙 = tan−1 (
√1−𝜁2

𝜁
) 

The magnitude of the output signal at rise time is approximated to 1 for easy calculation e.g., 𝑐(𝑡) = 1. 

1 − (
𝑒−𝜁𝜔𝑛𝑇𝑟

√1 − 𝜁2
) sin(𝜔𝑑𝑇𝑟 + 𝜙) = 1 

Thus, equating both sides: 

(
𝑒−𝜁𝜔𝑛𝑇𝑟

√1 − 𝜁2
) sin(𝜔𝑑𝑇𝑟 + 𝜙) = 0 

Knowing that sin−1(0) = 𝑛𝜋, then the above given equation becomes: 

𝜔𝑑𝑇𝑟 + 𝜙 = 𝑛𝜋 

The rise time is calculated from: 

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑑
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Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2    and  𝜙 = tan−1 (
√1−𝜁2

𝜁
)          (i. e. convert to rad/s) 

As 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2,  the formulae for calculating rise time (𝑇𝑟) of the second order system is typically a 

function of damping ratio (𝜁) and natural frequency (𝜔𝑛): 

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑛√1 − 𝜁2
 

Where: 𝜙 = tan−1 (
√1 − 𝜁2

𝜁
) 

We have also an alternative formula for calculating rise time (𝑇𝑟) of the second-order system. This 

formula is derived from approximating the experiment results of a second-order system with curve 

fitting techniques. 

𝑇𝑟 =
(1.76𝜁3 − 0.417𝜁2 + 1.039ζ + 1)

𝜔𝑛
 

If analytical method using equation and math do not appeal you, we can also use the graphical method 

to determine the rise time of second-order system. 

To find damping ratio, we can use also the normalized rise time vs. damping ratio for a second-order 

underdamped response (e.g. equation of the curve given in the figure below):  

𝑡𝑟𝜔0 = 2.230𝜁2 − 0.078𝜁 + 1.12 

This approach is quicker to do and without implementing mathematical processes to analyse. 

 

Figure 11: Graph of normalised rise time vs. damping ratio 
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4.2. Settling Time of Second-Order System 

The settling time (𝑇𝑠) is defined as the time for the response to reach and stay within its final steady-

state value. There are several settling time standards that exist in control system engineering e.g. 0.1%, 

0.5%, 1%, 2%, 5%, etc.  

 

Figure 12: The settling time of second-order system 

 

For an underdamped second-order system, its time response: 

𝑐(𝑡) = 1 − (
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
) sin(𝜔𝑑𝑡 + 𝜙) 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2    and  𝜙 = tan−1 (
√1−𝜁2

𝜁
) 

Thus, to find the settling time, sin(𝜔𝑑𝑡 + 𝜙) = 1: 

𝑐(𝑡) = 1 − (
𝑒−𝜁𝜔𝑛𝑇𝑠

√1 − 𝜁2
) 

Rearrange the equation above: 

(
𝑒−𝜁𝜔𝑛𝑇𝑠

√1 − 𝜁2
) = 1 − 𝑐(𝑡) 

 

For 2% settling time standard, therefore 1 − 𝑐(𝑡) = 0.02: 
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(
𝑒−𝜁𝜔𝑛𝑇𝑠

√1 − 𝜁2
) = 0.02 

For underdamped second order system, 𝜁 lies between 0 and 1. As a result, neglect the denominator for 

easy calculation. 

𝑒−𝜁𝜔𝑛𝑇𝑠 = 0.02 

Taking natural log on both sides: 

−𝜁𝜔𝑛𝑇𝑠 = ln0.02 

So, the settling time of the system for 2% standard is: 

𝑇𝑠 =
3.9

𝜁𝜔𝑛
≈

4

𝜁𝜔𝑛
 

 

For 5% settling time standard, therefore 1 − 𝑐(𝑡) = 0.05: 

(
𝑒−𝜁𝜔𝑛𝑇𝑠

√1 − 𝜁2
) = 0.05 

For underdamped second-order system, thus:  

𝑒−𝜁𝜔𝑛𝑇𝑠 = 0.05 

Taking natural log on both sides: 

−𝜁𝜔𝑛𝑇𝑠 = ln0.05 

So, the settling time for 5% standard is: 

𝑇𝑠 =
2.9957

𝜁𝜔𝑛
≈

3

𝜁𝜔𝑛
 

 

4.3. Time-To-Peak of Second-Order System 

The time-to-peak (𝑇𝑝), it is the time required to reach the first peak or maximum peak. For an 

underdamped second-order system, its time response: 

𝑐(𝑡) = 1 − (
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
) sin(𝜔𝑑𝑡 + 𝜙) 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2    and  𝜙 = tan−1 (
√1−𝜁2

𝜁
) 
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Figure 13: The time-to-peak of second-order system 

 

As per definition at the peak time, the response curve reaches to its maximum value. Hence at that 

point,  

𝑑𝑐(𝑡)

𝑑𝑡
= 0 

Now, substitute 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 and perform partial differentiation of the equation above (i.e. 𝑢𝑣’ +

𝑢’𝑣): 

𝑑𝑐(𝑡)

𝑑𝑡
= (

𝑒−𝜁𝜔𝑛𝑇𝑝

√1 − 𝜁2
)𝜔𝑛√1 − 𝜁2 cos (𝜔𝑛√1 − 𝜁2𝑇𝑝 + 𝜙) + [

(−𝜁𝜔𝑛)𝑒−𝜁𝜔𝑛𝑇𝑝

√1 − 𝜁2
] sin (𝜔𝑛√1 − 𝜁2𝑇𝑝 + 𝜙) 

Assign the 𝑑𝑐(𝑡)/𝑑𝑡 to zero, thus: 

(
𝑒−𝜁𝜔𝑛𝑇𝑝

√1 − 𝜁2
)𝜔𝑛√1 − 𝜁2 cos (𝜔𝑛√1 − 𝜁2𝑇𝑝 + 𝜙) + [

(−𝜁𝜔𝑛)𝑒−𝜁𝜔𝑛𝑇𝑝

√1 − 𝜁2
] sin (𝜔𝑛√1 − 𝜁2𝑇𝑝 + 𝜙) = 0 

Rearranging and equating both sides: 

tan (𝜔𝑛√1 − 𝜁2𝑇𝑝 + 𝜙) =
√1 − 𝜁2

𝜁
= tan𝜙  

The equation above becomes: 

(𝜔𝑛√1 − 𝜁2)𝑇𝑝 = 𝑛𝜋 

The time-to-peak of the second-order system is: 
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𝑇𝑝 =
𝑛𝜋

𝜔𝑛√1 − 𝜁2
 

Where: 𝑛 = 𝑛-th peak (𝑛 = 1, first peak; 𝑛 = 2, second peak, …,𝑛 = 𝑛-th peak) 

 

Note: the maximum overshoot of the given second–order system occurs at 𝑛 = 1. 

 

4.4. Percentage Overshoot of Second-Order System 

The percentage overshoot (%𝑂𝑆), is the amount that the waveform overshoots the steady-state or final 

value compared with value at the peak time. It is typically expressed as a percentage of the steady-state 

value.  

 

Figure 14: The percentage overshoot of second-order system 

 

For an underdamped second-order system, its time response: 

𝑐(𝑡) = 1 − (
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
) sin(𝜔𝑑𝑡 + 𝜙) 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2    and  𝜙 = tan−1 (
√1−𝜁2

𝜁
) 

To determine the percentage overshoot, substitute 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2. 

𝑐(𝑡)𝑚𝑎𝑥 = 1 − (
𝑒−𝜁𝜔𝑛𝑇𝑝

√1 − 𝜁2
) sin(𝜔𝑛√1 − 𝜁2𝑇𝑝 + 𝜙) 
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Put the expression of peak time in the expression of output response 𝑐(𝑡). 

𝑐(𝑡)𝑚𝑎𝑥 = 1 −

[
 
 
 
 
 
 

𝑒

−𝜁𝜔𝑛

(

 𝜋

𝜔𝑛√1−2
)

 

√1 − 𝜁2

]
 
 
 
 
 
 

sin(𝜔𝑛√1 − 𝜁2

(

 
𝜋

𝜔𝑛√1 − 2

)

 + 𝜙) 

Since sin(𝜋 + 𝜙) = −sin𝜙, thus: 

𝑐(𝑡)𝑚𝑎𝑥 = 1 −

(

  
 𝑒

−
𝜁𝜋

√1−2

√1 − 𝜁2

)

  
 

sin(𝜋 + 𝜙) = 1 −

(

 
 
 
 

𝑒

−

(

 𝜁𝜋

√1−2
)

 

√1 − 𝜁2

)

 
 
 
 

(−sin𝜙) 

We know that sin𝜙 = √1 − 𝜁2. 

1 + (
𝑒

−
𝜁𝜋

√1−𝜁2

√1 − 𝜁2
)sin𝜙 = 1 + (

𝑒
−

𝜁𝜋

√1−𝜁2

√1 − 𝜁2
)√1 − 𝜁2 = 1 + 𝑒

−
𝜁𝜋

√1−𝜁2
 

Thus, maximum overshoot is: 

𝑀𝑝 = 𝑐(𝑡)𝑚𝑎𝑥 − 1 = 1 + 𝑒
−

𝜁𝜋

√1−𝜁2
− 1 = 𝑒

−
𝜁𝜋

√1−𝜁2
 

The percentage overshoot of the second-order system is:  

%𝑂𝑆 = 𝑒
−

𝜁𝜋

√1−𝜁2
× 100% 

 

4.5. Percentage Overshoot and Damping Ratio 

By rearranging the equation for percentage overshoot, we could find the damping ratio of the system 

from the percentage overshoot. 

%𝑂𝑆 = 𝑒
−(𝜁𝜋/√1−𝜁2)

× 100% 

Equation both sides with natural log. 

−
𝜁𝜋

√1 − 𝜁2
= ln(%𝑂𝑆/100) 

Rearrange the equation. 

𝜁𝜋 = −√1 − 𝜁2 ln(%𝑂𝑆/100) 
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Squaring both sides. 

(𝜁𝜋)2 = 1 − 𝜁2 [ln(%𝑂𝑆/100)]2 

Rearrange the equation. 

𝜁2 =
[ln(%𝑂𝑆/100)]2

(𝜋)2 + [ln(%𝑂𝑆/100)]2
 

The relationship between percentage overshoot (%𝑂𝑆) and damping ratio (𝜁). 

𝜁 = −
−ln(%𝑂 𝑆 100⁄ )

√𝜋2 + [ln(%𝑂 𝑆 100⁄ )]2
 

Selection of the damping ratio is a tradeoff between maximum percentage overshoot (%𝑂𝑆) and time 

where the peak overshoot occurs (time-to-peak). Smaller damping ratio decreases time-to-peak 

(desirable), but it increases %𝑂𝑆 (undesirable). 

 

4.6. Steady-State Error of Second-Order System 

The steady-state error (𝑒(∞)), is the difference between the input (𝑟(𝑡)) and output (𝑐(𝑡)) for a 

prescribed test input at steady-state period (𝑡 → ∞). 

𝑒(∞) = lim
𝑡→∞

[𝑟(𝑡) − 𝑐(𝑡)] 

We will look more closely the steady-state response and steady-state error of the system in the 

subsequent topic in the course. 

 

Figure 15: The steady-state error of second-order system 
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Example for Tutorial 3: Further Time-Response Analysis of Second-Order System 

 

For the following second-order system, determine the following time-domain parameters of the system: 

𝐺(𝑠) =
81

𝑠2 + 15𝑠 + 81
 

a. Natural frequency (𝜔𝑛).        [2 marks] 

b. Damping ratio (𝜁).         [2 marks] 

c. Rise time (𝑇𝑟).         [2 marks] 

d. Settling time (𝑇𝑠).         [2 marks] 

e. Time-to-peak (𝑇𝑝).         [2 marks] 

f. Percentage overshoot (%𝑂𝑆).       [2 marks] 

g. Perform transient response simulation in MATLAB and determine natural frequency (𝜔𝑛), damping 

ratio (𝜁), rise time (𝑇𝑟), settling time (𝑇𝑠), time-to-peak (𝑇𝑝), and percentage overshoot (%𝑂𝑆) of the 

given system. Simulate the transient response of the system and comment on the result.  

           [12 marks] 

Answer 

a. Equating the transfer function equation with the standardised equation for second order system, 

the natural frequency (𝜔𝑛) of the given system is calculated from: 

𝐺(𝑠) =
81

𝑠2 + 15𝑠 + 81
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

Thus, the natural frequency of the system is as: 

𝜔𝑛 = √81 = 9 rad/s 

 

b. Damping ratio (𝜁) is calculated from: 

𝜁 =
15

2𝜔𝑛
=

15

2(9)
= 0.833 

 

c. Rise time (𝑇𝑟) is calculated from: 

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑛√1 − 𝜁2
=

𝜋 − 𝜋(0.664)

9√1 − (0.833)2
= 0.212 s 

Where: 𝜙 = tan−1 (
√1 − 𝜁2

𝜁
) = tan−1 (

√1 − (0.833)2

0.833
) = 0.664 

Using alternative equation for rise time, it is: 
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𝑇𝑟 =
(1.76𝜁3 − 0.417𝜁2 + 1.039𝜁 + 1)

𝜔𝑛
 

     =
(1.76(0.833)3 − 0.417(0.833)2 + 1.039(0.833) + 1)

9
 

     = 0.288 s 

 

d.  If the settling time standard is 2%, the settling time (𝑇𝑠) is calculated from: 

𝑇𝑠 =
3.9

𝜁𝜔𝑛
≈

4

𝜁𝜔𝑛
=

4

(0.833)(9)
= 0.533 s 

 

e. For the first (max) peak (𝑛 = 1), the time-to-peak (𝑇𝑝) is calculated from: 

𝑇𝑝 =
𝑛𝜋

𝜔𝑛√1 − 𝜁2
=

𝜋

9√1 − (0.833)2
= 0.63 s 

Where: 𝑛 = 𝑛-th peak 

 

f. Percentage overshoot (%𝑂𝑆) is calculated from: 

%𝑂𝑆 = 𝑒
−

𝜁𝜋

√1−𝜁2
× 100% = 𝑒

−
(0.833)𝜋

√1−(0.833)2 × 100% = 0.88% 
 

g. The results of the simulation in MATLAB are listed below. 

 

The transient simulation of the system is given in the figure below. 
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It seems that from the plots, the rise time and settling time found to be approximately 0.3 and 0.5 

respectively. The transient response of the system is underdamped and it settles down to amplitude 

of 1 in the end. 

 

5. Step Response of Second-Order System 

For given second-order systems, there are various time response characteristics of these systems 

depending on their damping ratio values.  

Step function is typically used for analysing and testing the response of the system. 

If the second order systems are given a step input, their step responses typically are: 

• 𝜁 = 0 → Undamped response. 

• 0 < 𝜁 < 1 (small 𝜁) → Underdamped response. 

• 𝜁 = 1 → Critically damped. 

• 𝜁 > 1 (large 𝜁) → Overdamped response. 

The following figure outlines graphs of step responses of underdamped second-order system with 

various degrees of damping ratio i.e. from 0.1 to 0.8. 
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Figure 16: Step responses of systems with various damping ratios 

 

5.1. Examples of Step Responses of Second Order System 

There are several types of response of second-order systems. The response of the second order system 

depends on the characteristics of the system and the type of input applied to the system. 

For a step input, the responses of the second order system are overdamped, critically damped, 

underdamped, and undamped. 

 

5.1.1. Undamped Step Response of Second-Order System  

Undamped second-order step responses are typically generated by complex poles that lie on the y-axis 

in the s-plane. 

𝐶(𝑠)

𝑅(𝑠)
=

𝑘

(𝑠 + 𝑗𝑏)(𝑠 − 𝑗𝑏)
 

For a step input (𝑅(𝑠) = 1/𝑠), after implementing partial fraction expansion, the transfer function 

equation is: 

𝐶(𝑠) =
𝐾1

𝑠
+

𝐾2

(𝑠 + 𝑗𝑏)
+

𝐾3

(𝑠 − 𝑗𝑏)
 

Taking the inverse Laplace transform, the pole at origin becomes a constant and a pair of complex roots 

become co-sinusoidal function. The time domain equation of the system is: 

𝑐(𝑡) = 𝐾1 − cos 𝑏𝑡 

As a result, the step response of the system is a constant amplitude sinusoid. 
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Example for Tutorial 4: Step Response of Undamped System 

 

For a given system described as transfer function given below, perform the following tasks: 

 

a. Roots of the characteristic equation.      [2 marks] 

b. Derive the expression for the transient response of the system.   [6 marks] 

c. Illustrate its poles and zeros in the s-plane.      [4 marks] 

d. With a help of diagram, determine the step response of the system.   [4 marks] 

 

Answer 

a. For the given system, factorise its transfer function equation: 

𝐶(𝑠)

𝑅(𝑠)
=

9

𝑠2 + 9
 

          =
9

(𝑠 + 𝑗3)(𝑠 − 𝑗3)
 

Roots of the characteristic equation are: 

𝑠1 = 𝑗3  and 𝑠2 = −𝑗3 

Thus 

𝐶(𝑠)

𝑅(𝑠)
=

9

𝑠2 + 9
=

9

(𝑠 + 𝑗3)(𝑠 − 𝑗3)
 

 

b. Apply step function to the system, the transfer function equation becomes: 

𝐶(𝑠)

(1/𝑠)
=

9

(𝑠 + 𝑗3)(𝑠 − 𝑗3)
 

Implement partial fraction expansion of the transfer function equation. 

𝐶(𝑠) =
9

𝑠(𝑠 + 𝑗3)(𝑠 − 𝑗3)
=

𝐾1

𝑠
+

𝐾2

(𝑠 + 𝑗3)
+

𝐾3

(𝑠 − 𝑗3)
 

When 𝑠 = 0, the value of coefficient 𝐾1 is: 

𝐾1 =
9

(𝑠 + 𝑗3)(𝑠 − 𝑗3)
=

9

(𝑗3)(−𝑗3)
= 1 
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When 𝑠 = 𝑗3, the value of coefficient 𝐾2 is: 

𝐾2 =
9

𝑠(𝑠 + 𝑗3)
=

9

(𝑗3)(𝑗3 + 𝑗3)
= −

9

18
 

When 𝑠 = −𝑗3, the value of coefficient 𝐾3 is: 

𝐾3 =
9

𝑠(𝑠 − 𝑗3)
=

9

(−𝑗3)(−𝑗3 − 𝑗3)
=

9

18
 

So 

𝐶(𝑠)

𝑅(𝑠)
=

9

(𝑠 + 𝑗3)(𝑠 − 𝑗3)
=

1

𝑠
−

1

2(𝑠 + 𝑗3)
+

1

2(𝑠 − 𝑗3)
 

Taking the inverse Laplace transform, the time domain equation of the system is: 

𝑐(𝑡) = 1 − cos 3𝑡 

As a result, the step response of the system is a constant amplitude sinusoid. 

 

c. Using MATLAB for simulation, the location of the poles in the s-plane is illustrated in the following 

figure. Notice a pair of complex poles on the x-axis in the graph. 

  

d. Simulating the system in MATLAB, the step response of the system is shown in the following figure. 

The result of simulation confirms the constant amplitude sinusoid obtained in part (b). 
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5.1.2. Underdamped Step Response of Second-Order System 

Underdamped second-order step responses are typically generated by complex poles. Given a second 

order system with a pair of complex poles as shown below. 

𝐶(𝑠)

𝑅(𝑠)
=

𝑘

(𝑠 + 𝑎 + 𝑗𝑏)(𝑠 + 𝑎 − 𝑗𝑏)
 

For a step input (𝑅(𝑠) = 1/𝑠), after implementing partial fraction expansion, the transfer function 

equation is: 

𝐶(𝑠) =
𝐾1

𝑠
+

𝐾2

(𝑠 + 𝑎 + 𝑗𝑏)
+

𝐾3

(𝑠 + 𝑎 − 𝑗𝑏)
 

Taking inverse Laplace transform, the complex pair of roots become the co-sinusoidal function. 

𝑐(𝑡)

𝑟(𝑡)
= 𝐴𝑒−𝑡 cos(𝑏𝑡 − 𝜙°) 

Where: 

𝜙 = tan−1
𝜁

√1 − 𝜁2
 

As a result, the time response of the under damped second order system is an exponentially decaying 

sinusoidal oscillation. 

 

Example for Tutorial 5: Step Response of Underdamped System 
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For a given system described as transfer function given below, perform the following tasks: 

 

a. Roots of the characteristic equation.      [2 marks] 

b. Derive the expression for the transient response of the system.   [6 marks] 

c. Illustrate its poles and zeros in the s-plane.      [4 marks] 

d. With a help of diagram, determine the step response of the system.   [4 marks] 

 

Answer 

a. For the given system, factorise its transfer function equation: 

𝐶(𝑠)

𝑅(𝑠)
=

9

𝑠2 + 2𝑠 + 9
 

Considering the characteristic equation of the system, apply equation for solving roots of second 

order equation. 

𝑠1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(2) ± √(2)2 − 4(1)(9)

2(1)
 

This gives roots of the characteristic equation: 

𝑠1,2 = −1 ± √−8 = −1 ± 𝑗√8 

Thus 

𝐶(𝑠)

𝑅(𝑠)
=

9

𝑠2 + 2𝑠 + 9
=

9

(𝑠 + 1 + 𝑗√8)(𝑠 + 1 − 𝑗√8)
 

 

b. Apply step response to the system. 

𝐶(𝑠)

(1/𝑠)
=

9

(𝑠 + 1 + 𝑗√8)(𝑠 + 1 − 𝑗√8)
 

Implement partial fraction expansion of the transfer function equation. 

𝐶(𝑠) =
9

𝑠(𝑠 + 1 + 𝑗√8)(𝑠 + 1 − 𝑗√8)
=

𝐾1

𝑠
+

𝐾2

(𝑠 + 1 + 𝑗√8)
+

𝐾3

(𝑠 + 1 − 𝑗√8)
 

When 𝑠 = 0, the value of 𝐾1 coefficient is: 
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𝐾1 =
9

(𝑠 + 1 + 𝑗√8)(𝑠 + 1 − 𝑗√8)
=

9

(1 + 𝑗√8)(1 − 𝑗√8)
= 1 

When 𝑠 = −1 − 𝑗√8, the value of 𝐾2 coefficient is: 

𝐾2 =
9

𝑠(𝑠 + 1 − 𝑗√8)
=

9

(−1 − 𝑗√8)(−1 − 𝑗√8 + 1 − 𝑗√8)
=

9

2𝑗√8 − 16
 

When 𝑠 = −1 + 𝑗√8, the value of 𝐾3 coefficient is: 

𝐾3 =
9

𝑠(𝑠 + 1 + 𝑗√8)
=

9

(−1 + 𝑗√8)(−1 + 𝑗√8 + 1 + 𝑗√8)
=

9

−2𝑗√8 − 16
 

Thus: 

𝐶(𝑠) =
1

𝑠
+

(
9

2𝑗√8 − 16
)

(𝑠 + 1 + 𝑗√8)
+

(
9

−2𝑗√8 − 16
)

(𝑠 + 1 − 𝑗√8)
 

Taking inverse Laplace transform, the real part generates: 𝑒−𝑡. The complex part generates: 

𝑘 cos(√8𝑡 − 𝜙).  

𝑐(𝑡) = 1 − 𝑒−𝑡 (cos√8𝑡 +
√8

8
sin√8𝑡) 

         = 1 − 1.06𝑒−𝑡 cos(√8𝑡 − 19.47°) 

As a result, the step response of the system is a decaying sinusoidal oscillation. 

 

c. Using MATLAB for simulation, the location of the poles in the s-plane is illustrated in the following 

figure. Notice the present of a pair of complex poles in the graph. 
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d. Simulating the system in MATLAB, the step response of the system is shown in the following figure. 

The result of simulation confirms the decaying sinusoidal oscillation obtained in part (b). 

  

 

5.1.3. Overdamped Step Response of Second-Order System 

Overdamped second-order step responses are typically generated by real poles. Consider a second 

order system with real poles as shown below. 
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𝐶(𝑠)

𝑅(𝑠)
=

𝑘

(𝑠 + 𝑎)(𝑠 + 𝑏)
 

For a step input (𝑅(𝑠) = 1/𝑠), after implementing partial fraction expansion, the transfer function 

equation is: 

𝐶(𝑠) =
𝐾1

𝑠
+

𝐾2

(𝑠 + 𝑎)
+

𝐾3

(𝑠 + 𝑏)
 

Taking inverse Laplace transform, the pole at origin becomes a constant and both of the real terms 

become exponential functions. The time domain equation of the system is: 

𝑐(𝑡) = 𝐾1 + 𝐾2𝑒
−𝑎𝑡 + 𝐾3𝑒

−𝑏𝑡 

As a result, the step response of the system is an exponential increase. 

 

Example for Tutorial 6: Step Response of Overdamped System 

 

For a given system described as transfer function given below, perform the following tasks: 

 

a. Roots of the characteristic equation.      [2 marks] 

b. Derive the expression for the transient response of the system.   [6 marks] 

c. Illustrate its poles and zeros in the s-plane.      [4 marks] 

d. With a help of diagram, determine the step response of the system.   [4 marks] 

 

Answer 

a. For the given system, factorise its transfer function equation: 

𝐶(𝑠)

𝑅(𝑠)
=

9

𝑠2 + 9𝑠 + 9
 

Considering the characteristic equation of the system, apply equation for solving roots of second 

order equation. 

𝑠1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−(9) ± √(9)2 − 4(1)(9)

2(1)
= −

9

2
±

√45

2
 

The roots of the characteristic equation are: 

𝑠1 = −7.854  and 𝑠2 = −1.146 
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Thus 

𝐶(𝑠)

𝑅(𝑠)
=

9

𝑠2 + 9𝑠 + 9
=

9

(𝑠 + 7.854)(𝑠 + 1.146)
 

 

b. Apply step response (1/𝑠) to the system. 

𝐶(𝑠)

(1/𝑠)
=

9

(𝑠 + 7.854)(𝑠 + 1.146)
 

Implement partial fraction expansion of the transfer function equation. 

𝐶(𝑠) =
9

𝑠(𝑠 + 7.854)(𝑠 + 1.146)
=

𝐾1

𝑠
+

𝐾2

(𝑠 + 7.854)
+

𝐾3

(𝑠 + 1.146)
 

When 𝑠 = 0, the value of 𝐾1 coefficient is: 

𝐾1 =
9

(𝑠 + 7.854)(𝑠 + 1.146)
=

9

(7.854)(1.146)
= 1 

When 𝑠 = -1.146, the value of 𝐾2 coefficient is: 

𝐾2 =
9

𝑠(𝑠 + 7.854)
=

9

(−1.146)(−1.146 + 7.854)
= 0.17 

When 𝑠 = -7.854, the value of 𝐾3 coefficient is: 

𝐾3 =
9

𝑠(𝑠 + 1.146)
=

9

(−7.854)(−7.854 + 1.146)
= −1.17 

Thus 

𝐶(𝑠) =
1

𝑠
+

0.17

(𝑠 + 7.854)
+

−1.17

(𝑠 + 1.146)
 

Taking the inverse Laplace transform, the time domain equation of the system is: 

𝑐(𝑡) = 1 + 0.17𝑒−7.854𝑡 − 1.171𝑒−1.146𝑡 

As a result, the step response of the system is an exponential increase. 

 

c. Using MATLAB for simulation, the location of the poles in the s-plane is illustrated in the following 

figure. Notice the two real poles in the graph. 
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d. Simulating the system in MATLAB, the step response of the system is shown in the following figure. 

The result of simulation confirms the exponential increase obtained in part (b). 

  

 

5.2. Summary of Second Order Time Response 

For a given second-order system, we might expect the following responses of the system: 

 

Undamped responses:  

• Poles: 𝑠1,2 = ±𝑗𝜔0 
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• Response: 𝑐(𝑡) = 𝐴 cos(𝜔0𝑡 − 𝜙) 

 

Underdamped responses:  

• Poles: 𝑠1,2 = −𝜎𝑑 ± 𝑗𝜔𝑑  

• Response: 𝑐(𝑡) = 𝐴𝑒−𝜎𝑑𝑡 cos(𝜔𝑑𝑡 − 𝜙)      where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 

 

Critically damped responses:  

• Poles: 𝑠1,2 = −𝜎0 

• Response: 𝑐(𝑡) = 𝐾1𝑒
−𝜎0𝑡 + 𝐾2𝑡𝑒

−𝜎0𝑡 

 

Overdamped responses: 

• Poles: 𝑠1 = −𝜎1, 𝑠2 = −𝜎2 

• Response: 𝑐(𝑡) = 𝐾1𝑒
−𝜎1𝑡 + 𝐾2𝑒

−𝜎2𝑡 

 

The time responses of the systems with various damping ratios are shown in the figure below. 

 

Figure 17: Transient responses of various systems with different response characteristics 

 

6. Trends in Time Responses of Second-Order System  
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The following diagram shows the locations of the pole in the s-plane and their corresponding transient 

response. Notice the difference between the response of the poles on the left-hand side (stable 

response) with the response of the poles on the right-hand side (unstable response). 

 

Figure 18: Locations of poles in s-plane and their transient responses 

 

It can be observed in the figure above the difference between the response of a real pole e.g. along the 

x-line (damped response) with the response of a pair of complex poles (oscillatory response). 

 Then, in the following sections, we evaluate step responses of second-order systems as poles move 

with: 

• constant real part. 

• constant imaginary part. 

• constant damping ratio. 

 

6.1. Moving Poles in a Vertical Direction 

Frequency increases, but the envelope remains the same since the real part of the pole is not changing. 

Constant exponential envelope, even though the sinusoidal response is changing frequency. Since all 

curves fit under the same exponential decay curve, the settling time is virtually the same for all 

waveforms. Overshoot increases, the rise time decreases.  
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Figure 19: Systems with poles moving in a vertical direction 

 

The following figure shows the transient response of the system based on the movement of the poles in 

a vertical direction in the s-plane as outlined above. 

 

Figure 20: Transient response of systems with poles moving in a vertical direction 

 

6.2. Moving Poles to the Right or Left 

Imaginary part is now constant. Frequency is constant over the range of variation of the real part. As the 

poles move to the left, the response damps out more rapidly, while the frequency remains the same. 

Peak time is the same for all waveforms because the imaginary part remains the same. 
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Figure 21: Systems with poles moving from right or left 

 

The following figure shows the transient response of the system based on the movement of the poles 

from right or light in the s-plane as outlined above. 

 

Figure 22: Transient response of systems with poles moving from right or left 

 

6.3. Moving Poles along a Constant Radial Line 

Percent overshoot remains the same. The responses look exactly alike, except for their speed. The 

farther the poles are from the origin, the more rapid the response.  

 

 



Note 7: Time Response Analysis 

XMUT315 – Note 7 - 39 

Figure 23: Systems with poles moving along a constant radial line 

 

The following figure shows the transient response of the system based on the movement of the poles 

along a constant radial line in the s-plane as outlined above. 

 

Figure 24: Transient response of systems with poles moving along a constant radial line 

 

 

 


