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Topic
* Steady-state error.
* Derivation of steady-state error.
* Steady-state analysis of step input.
* Steady-state analysis of ramp input.
* Steady-state analysis of parabola input.
* Steady-state error of other types of system.

* Sensitivity of system parameters towards steady-state errors.

1. Steady State Analysis

Steady-state analysis looking at the condition and characteristics of the system as it is settling down. It is
a specialised type of time domain analysis with regard analysis of the steady-state condition of the
systems.

1.1. Error in Control Systems

For the following feedback control system, the system error e(t) for a feedback control system is given
by the difference between the demanded output r(t) and the actual output c(t).

e(t) =r(t) —c(t)

The error in the equation above is illustrated in the following diagram.
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Note 8: Steady-State Analysis

Figure 1: Error in feedback control system

1.2. Steady-State Error

The steady-state error is then defined as the difference between demanded and actual output when the
system is in steady-state e.g. t — oo.

In this course, the steady-state error is now defined for specific test inputs (there are other types of
input tests available in control system engineering e.g. sinusoidal, square wave, etc.):

* Stepinput
* Rampinput
* Parabolainput

Figure 2: Steady-state errors

1.3. Test Inputs for Steady-State Error Analysis

For steady-state analysis, the following table lists and described common test inputs: step, ramp and
parabola.

Name Waveform Physical Interpretation | Time Function | Laplace Transform

Step e Constant position 1 1
& E

| —
Ramp i) Constant velocity t 1
s2

I

Parabola Hi) Constant acceleration ltz 1
2 s3

()
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Figure 3: Test inputs for steady-state error analysis

Example for Tutorial 1 — Steady-State Errors

Figure given below shows the ramp input r(t) and the output c(t) of a system. Assuming the output’s
steady state can be approximated by a ramp, find:

a. Steady-state error. [2 marks]
b. Steady-state error if the input becomes r(t) = tu(t). [2 marks]
Mag
A
r(r)
S e
3p—----- - I-:"(I)
|
I
|
|
|
|
|
|
I
|
I
|
L > f(sec)
2
Answer

a. From the figure, the steady-state error of the system is:

() =7(0) —c(0) =5-3=2

b. Since the system is linear, and because the original input was r(t) = 2.5tu(t), the new steady-state
error is:

2
6(00) = E =0.8

2. Steady-State Errors

Depending on the input reference, steady-state errors refer to the difference between the output of the
system with the intended final value outcome.
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2.1. Steady-State Error of Step Input
For a step input, compare the time response of different systems:

e Output 1: e;(c0) = 0 because Output 1 is equal to Input at t = oo and the steady-state error is
thus zero.

e Output 2: e, () # 0 because Output 2 is NOT equal to Input at t = oo and the steady-state
error is thus non-zero.

'}
Input 3

“— Qutput 1 e3(e2)

c(t)

~— Qutput 2

Time

Figure 4: Steady state error of step input

2.2. Steady-State Error of Ramp Input

For a ramp input:

e Output 1: e;(c0) = 0 because Output 1 = Input at t = oo and the steady-state error is thus zero.

e Output 2: Although the response has the same slope as the ramp input, e, () # 0 because
there will be a finite error at t = oo and the steady-state error is thus non-zero.

e Output 3: e5(0) = oo because the error will increase with time as the response has a different
slope than the ramp input.
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e(=)

(1)

= Qutput 2
Input

Output 1

<— Output 3

Time

Y

Figure 5: Steady-state error of ramp input
2.3. General Closed Loop (Unity Feedback System)
The system error (in both cases) is then given as by the definition as:

E(s) =R(s) — C(s)
non-unity feedback.

We will now derive expressions for the steady-state error in unit feedback systems and then expand to

Rix)

£()

R(s) +4

Ei(s)

{"‘ 5
Ges) (s)_

Figure 6: General closed loop systems

2.4. Sources of Steady-State Error

Consider steady-state errors due to system configuration. System with pure gain element.
System output:

C(s) = KE(s)

Ri(s)

E(5) Cis)
K

Figure 7: Feedback control system
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Css(t) = Kegg(t)

For a unity-feedback control system as shown above, error will diminish K increases.

Example for Tutorial 2 — Steady-State Error of Unity Feedback Systems

The steady-state error can then never be equal to zero, nor the output of the system will be zero.

There will thus always be a steady-state error present. If C is the steady-state value of the output and
e is the steady-state value of the error, then:

Determine the steady-state error of the unity feedback system as shown below if the plant G(s) is

given a step input (1/s):

2
T s(s+2)

G(s)

Clis
- (s)

Answer

The steady-state error of the unity feedback system is determined from:

lim sE I SR(s)
o) = = —_—
e(e) = lim sE(s) s201+G(s)

[4 marks]

Entering the transfer-function equation of the plant to the equation above, it becomes:

i s(1/s) . s(s+2) —0o
e(m)‘s‘i%l [ 2 ]‘s‘i‘&s(s+2)+2_
s(s+2)

The steady-state error of the given unity feedback system is 0.

A Type 3 unity feedback system has applied r(t) = 10¢3 to its input.

a. Derive the equation for error of a unity feedback system.

b. Find the steady-state error for this input if the forward transfer function is:

1030(s% + 8s + 23)(s? + 21s + 18)
s3(s+6)(s +13)

G(s) =

Answer
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Note 8: Steady-State Analysis

a. Foragiven unity feedback system as given below, derive the equation for error in the system.

Ri(s) Ei(s) G(s) C [.\']__

The error of the system is determined from:

E(s) = R(s) = C(s) (1)

And
C(s) =E(s)G(s) (2)
Thus, substituting equation (2) into (1), the equation for error in the system is:
R(s)
E(s) =————
©) =176

b. Thus, steady-state error of the closed -loop system is:

e(e0) = lim sE(s)

i [ R(s)
T 50 |1+ G(s)
60
=lims (5_4)
5—0 14 1030(s?2 + 8s + 23)(s%2 + 21s + 18)
| s3(s+6)(s+ 13)

i 60(s + 6)(s + 13)

~ 52053(s + 6)(s + 13) + 1030(s2 + 8s + 23)(s2 + 215 + 18)
_60(6)(13)
~1030(23)(18)

= 0.011

3. Steady-State Equation Derivation

In this section, several steady-state equations for control systems are derived.

3.1. Steady-State Error in Terms of G(s)
For the system:
E(s) = R(s) — C(s)
Thus:
E(s) =R(s) —E(s)G(s)
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C(s)

(%) -

Figure 8: Steady-state error in terms of G(s)

So that:

E(s) = R(s)
YT 14 6(0)
From the final value theorem:
e() = lim sE(s)
5s—-0
-1 SR(s)
~ 501+ G(s)

Above equation will thus allow us to calculate the steady-state error given a particular input R(s)

3.2. Steady-State Error of Step Input
For a step Input, with R(s) = 1/s, we have:
e(e) = €step (o)
1
= lim —S (E)
5201+ G(s)
B 1
~ 1+1imG(s)
s—0
For zero steady-state error, we need:
limG(s) =
s—0
To satisfy the above equation, G(s) must have the form:

(s+2z)(+2z)..
s*(s +p)(s+p2) -

The G(s) — o in the limit s = 0, as the denominator will become zero. To have a zero steady-state

G(s) =

error, we must have at least one pole at the origin so thatn > 1.

The term s in the denominator of the equation for G (s) represents an integrating element in the
feedforward path. Division by s in the frequency domain represents integration in the time domain.
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At least one integrating element must be present in the forward path in order to ensure a zero steady-
state error. If there are no integrations, thenn = 0 and

. Z1Zy ...
limG(s) =
5—0 P1D2 .-

This will be finite and will thus produce a finite steady-state error.

In order to have a zero steady-state error for a step input, we thus need at least one integrating element
in the forward path.

3.3. Steady-State Error of Ramp Input

For a ramp input, we have r(t) = tu(t), where r(t) =t fort > 0 and r(t) = 0 elsewhere. With R(s) =

1/s? we have:
1
)
e() = lim

s-01 4+ G(s)
= lim;
s-0S + sG(s)
1
- lim sG(5)
In order to have zero steady-state error, we need:

limsGy(s) = o
s—0

For this condition, we need n > 2, i.e. we need at least two integrators in the open-loop transfer
function.

If there is one integrator (n = 1):

i sKz,z, ... o
limsGy(s) = ——— = finite
s—0 pP1P2 ---
This will lead to a finite steady-state error.
If there are no integrators (n = 0):
i sKziz, ...
limsGy(s) =— =0
s—0 pP1bP2 -
So that, we have an infinite steady-state error.
3.4. Steady-State Error of Parabolic Input
For a parabolic input, we have:
r(t) = 0.5¢t2
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Thus, R(s) = 1/s3, the steady-state error is then:
()
@) =IT3 60
_ 1
=z rs260)
1
= W
In order to have zero steady-state error, we need:
£i_r)r6 s2Gy(s) = oo
We will thus require three integrators in the open-loop transfer functionn > 3. If n = 2, there will be a
finite steady-state error and for n < 2 there will be an infinite steady-state error.

3.5. Summary of Steady-State Errors
Expressions for the steady-state error (for unity feedback) to different inputs:
e(o0) = limsE(s)
s-0
| SR(s)
=lim—————
s=01+ G(s)
Where:

1

() = T im G (5)
S—

1

rame () = T i s (5)
S—

1
eparabola(®) = W
S—

For a zero steady-state error, we need:

* At least one integrator in the transfer function for a step.
* At least two integrators in the transfer function for a ramp.

* At least three integrators in the transfer function for a parabola.
Example for Tutorial 3 — Steady-State Errors and Inputs

For the unity feedback system shown in the figure below, where:
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G(s) = 450(s + 8)(s + 12)(s + 15)
) = =5 T38)(Z 125 £ 28)

Find the steady-state errors for the following test inputs: 25u(t), 37tu(t), and 47t2u(t). [6 marks]

R(s) + 8 E(s) Gls) Cls)

Answer

The steady-state error of the system is calculated from:

i rer — g SR
e(c0) = limsE(s) = lim7—77r5

Where:
450(s + 8)(s + 12)(s + 15)

G(s) =
) =G T38)G6Z 125 +28)
For step input, 25u(t), R(s) = 25/s. Thus, the steady-state error of the system is:
_ SR(s)
) =I5

25

S —
= lim ( S )

204 450(s + 8)(s + 12)(s + 15)
s(s +38)(s? + 2s + 28)

i 25[s(s + 38)(s? + 25 + 28)] B
T 5505(s + 38)(s2 + 25 + 28) + 450(s + 8)(s + 12)(s + 15)

0

For ramp input, 37tu(t), R(s) = 37/s?. Thus, the steady-state error of the system is:
SR(s)

e(e) =lm=7775

5 (2)

- £1_r}r& 14+ 450(s + 8)(s + 12)(s + 15)
s(s +38)(s? + 2s + 28)
_ 37
= lim

50 450(s + 8)(s + 12)(s + 15)
St (s 138)(s? + 25 + 28)
- 37
~450(8)(12)(15)
(38)(28)

= 6.075 x 1072

For parabolic input, 47t2u(t), R(s) = 47/s3. Thus, the steady-state error of the system is:
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 SR(s)
e() =m0

47

= lim 5(53)

20 o 450(s + 8)(s + 12)(s + 15)
s(s +38)(s? + 2s + 28)

| 47
R e [450(5 TG+ 1D F15)]
(s +38)(s% + 25 + 28)

[00)

4. Steady-State Error Constant and Systems Type

The characteristics and behaviour of control system at steady state can be analysed through the steady-
state error constant and system types.

4.1. Static Error Constants

Static error constant and system type. The term in the denominator of the definition of the steady-state
error for each input type is taken to limit the steady-state error. These are then called the static error
constants and are defined as follows:

* Position constant (Kp):

K, = lsl_I)’% G(s)
* Velocity constant (K,):

K, = £1_r>13 sG(s)
*  Acceleration constant (K,):

Kq = lim s2G(s)

These constants depend on the form of G (s) and will determine the value of the steady-state error.
Error decreases as the value of the static error constant increases.

4.1.1. Static position error constant (K,,)

It is associated with step input signal applied to a closed-loop system. For a given step input signal:

R(s)=A4/s (Eq. 1)
Steady-state error is given as:

— lim—RE) Eq. 2
ess = I T G()H(s) (Eq. 2)
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Put equations (1) into (2):

A
egs = lim > (E)

s-01+ G(s)H(s)
B A
14 lim G(s)H(s)

1+K,
Where: K, = lim G(s)H(s)
s—0

4.1.2. Static velocity error constant (K,)

It is associated with ramp input signal applied to a closed loop system. The ramp input signal is:
R(s) =A/s?* (Eq. 3)

Steady state error is given as:

— i SR(s)
¢s = I T G H ) (Eq. 4)

Put equations (3) into (4):

A
s
ess = lim ———>———
5201+ G(s)H(s)
_ A
" lim(1)s + lim sG(s)H(s)
s—0 s—0

Where:

K, = lirré sG(s)H(s)
S—

4.1.3. Static acceleration error constant (K )

It is associated with parabolic input signal applied to a closed loop system. The parabolic input signal is:
R(s) =A/s® (Eq.5)

Steady state error is given as:

i SR(s)
¢ss = M T G ()H() (Eq. 6)
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Put equations (5) into (6):
A
55 5501+ G(s)H(s)

A
" lim(1)s2 + lim s2G(s)H(s)
s—0 s—-0

A
K,
Where:

Kq =lim s2G(s)H(s)
S—
Example for Tutorial 4 — Steady-State Error Constants

For a system that has the open-loop transfer function as given below.

20(s + 1)

G(s) =
) s(s+2)(s+5)
a. Determine the position, velocity and acceleration error constants (K, K,, and K;) and steady-state
errors. [12 marks]
b. Comment on influence of the input on the tracking of the output of the system. [2 marks]
Answer

a. The steady-state error constants and steady-state errors for the given system are calculated and
determined as follows:

e Stepinput:

K lim (s = i 206D 200D _
p =BG = G +5) - Q6

“TT¥K, 1+

e Ramp input:

e . (®20(s+1)  (20)(1)
Ky = lmsG(s) = Im e G+ 8 - @)
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e Parabolic input:

o (8205 +1)  (0)(20)(1)
Ko =Ims™G0) = I s G +5) . D6

b. Since the open-loop transfer function of this system has one integrator, the output of the closed-
loop system can perfectly track only the unit step.

4.2, System Type

The system type is taken to be the number of integrations in the feed-forward path. The value of n in s™
of the denominator. This value of n (the system type) then determines the steady-state error of a unit
feedback system for a particular type of input.

In general, the system transfer function can be written as:

M
6(s) K]_[l, _ 1(5 + z;)

Q

n

s*T, Z (s +Pi)
Where: [] denotes a multiplication of factors.

The index ‘n’ denotes the system type number (if n = 0, the system type is 0; if n = 1, the system type is
1, etc.)

4.3. Steady-State Error Constant & System Type

The relationships between types of inputs, steady-state error constants and system types can be
summarised as in the following table:

Type O Type 1 Type 2
Steady-state yp yp P
| t
npu error Static error Error Static error | Error Static error | Error
formula
constant constant constant
Step, u(t) 1 K, 1 K, = o 0 K, = 0
1+K, = Constant | 1+ K,
Ramp, 1 K,=0 oo K, 1 K, = 0
tu(t) K, = Constant | K,
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Parabola, 1 K,=0 00 K,=0 oo K, 1
1/2t%u(t) K, = Constant | K,

Table 1: Steady-state error and constants in steady-state analysis

Example for Tutorial 5 — Steady-State Errors and System Modes

Consider the second-order system whose open-loop transfer function is given below.

(s+3)

() =GTDe+2)

a. Sketch the time response of the system. [5 marks]
Calculate the position error constant (K,) and steady-state error of the system toward unit-step
input. [6 marks]

c. What type of system is the system? Can you eliminate the steady-state error of this system?

[4 marks]

Answer

a. The unit-step response of the system is presented in the figure given below, from which it can be
clearly seen that the steady-state output is equal to 0.6, hence the steady-state error is equal to:
e(0)=1-0.6=04
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1 , T : 1 r 1 : T T

08f ]
o8f S — SN - R — FIRR AR
o7k .......... .......... .......... .......... .......... .......... .......... .......... ........ .

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
time t [sec]

b. The position error constant for this system is calculated from:

K, = lim G(s) = lim (s +3) )

g MerD6+ @

So, that the corresponding steady-state error.

1 1

s =11 K, 1415 °

The unit-step response of the system is presented in the figure in part (a), from which it can be
clearly seen that the steady-state output is equal to 0.6.

Hence, the steady-state error is equal to:

e(0)=1-06=04

c. The system is a Type 0 system as it does not have any integral. The steady-state error of the system
can be eliminated by introducing an integral into the system.

5. Steady-State Error for Other Types of Feedback System

We look into steady-state error for other types of feedback control system such as feedback control
system with disturbances and feedback control system with non-unity feedback system.
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5.1. Steady-State Error for Disturbances

Feedback control systems are often used to compensate for disturbances or unwanted inputs that enter

asystem.
D(s)
Controller l Plant
+
R(s) + < E(s) + < C(s)
—»::}@r—— (,‘1(5) —NX—’ (_,‘l(y) -

Figure 9: Feedback control system with reference input and disturbance

For a feedback control system with a disturbance, D(s), injected between the controller and the plant,
the transform of the output is:

C(s) =R(s) —E(s)
Thus
C(s) = E(s)G1(s)G2(s) + D(s)G,(s)

The equation for deriving steady-state error is:

E(s) = —————R(s) G2(5)

H606e O Trae6ae O F 7

The first part is relating E(s) to R(s) and the second term relating E (s) to D(s). Apply final value
theorem to find steady-state value of the error:

e(e) = limsE(s)

R(s) — lim&D(s)

=i
& 5501+ G;(5)Gy(s)

s
s~01 + G1(s)G2(s)
The equation for the steady-state error for disturbance is:

e(e) = eg(c) + ep ()

Where:
_ s
R SR ACTAC R
And
ep(®) = lim _ SGE) D(s)

5201+ G1(5)Gz(s)
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The first term eg (o) is the steady-state error due to R(s) and the second term ep (o) is the steady-
state error due to disturbance D(s).

Assume a step disturbance D(s) = 1/s. Substitute this value of step disturbance into the second term
of equation (7), ep (), the steady-state error due to a step disturbance is:

1

ep(o) = — _ _
YA R L)
The steady-state error produced by a step disturbance can be reduced by increasing the dc gain of G, (s)
or decreasing the dc gain of G, (s).
If we want to minimize the steady-state value of E (s), (the output), we must increase the dc gain of

G, (s) so that a lower E(s) be fed back to match the steady-state value of D(s), or decrease the dc
value of G,(s), which yields a smaller value of e(), as predicted by the feedback formula.

Plant
D(s) + <= " —E(s)
e yj—» Gs(s) -
G(s) |

Controller

Figure 10: Rearranged feedback control system with disturbance e.g. disturbance as input and error as

output (with R(s) = 0)
Example for Tutorial 6 — Steady-State Error for Disturbances

Find the total steady-state error due to a unit step input and a unit step disturbance in the system of the

figure below. [8 marks]
D(s)
R(s) + 1 4 100 C(s)
—— | -
s+ 35 s+2

Answer

From the given block diagram of the system, the equation for the steady-state error of the system is:
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¢(o0) = lim SR(s) —sD(s)G,(s)
520 14 6G1(8)G2()

Where:

1 100
Gl(S) = S+—5 and GZ(S) = m

From the problem statement, the input signal is:

1
R(s) = D(s) =—

s
Hence, the steady-state error of the system is:

o DB E) G e

B Gy o B R = ) M

5.2. Steady-State Error for Non-Unity Feedback

A general feedback system, showing the input transducer, G4 (s), controller and plant, G,(s), and
feedback, H;(s), is shown in Figure (a).

Pushing the input transducer to the right past the summing junction yields the general non-unity
feedback system shown in Figure (b), where G(s) = G;(s)G,(s) and H(s) = H,(5)/G,(5).

Unlike a unity feedback system, where H(s) = 1, the error in non-unity feedback is not the difference
between the input and the output. For this case we call the signal at the output of the summing junction
the actuating signal, E,(s). If r(t) and c(t) have the same units, we can find the steady-state error,
e(o0) = 1r()-c().

To find out the steady-state value of the actuating signal, E,4 (s), in Figure (a), there is no restriction

that the input and output units be the same, since we are finding the steady-state difference between
signals at the summing junction, which do have the same units.

The steady-state actuating signal for Figure (a) is:

eq1() = lim SREG)
al T 550 1+ GZ(S)Hl(S)

The first step is to show explicitly E(s) = R(s)- C(s) on the block diagram. Then, we form an equivalent
unity feedback system from a general non-unity feedback system as illustrated below.
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Ris) - = Cls)
— () l,:ixl .
H:L\l -
la)
Ris) 4 Cls) y C(s)
(As) - (ix) -
Hix) His)
| -
(b) (c)

Cls) Ris) 4 Els) (As) Cis)
Gls) - —.®—. >
| + Gl H(s) - Gis)

-4

His)- 1

(d) (e)

Figure 11: Forming an equivalent unity feedback system from a general non-unity feedback system

Take the non-unity feedback control system shown in Figure (b) and form a unity feedback system by
adding and subtracting unity feedback paths, as shown in Figure (c). This step requires that input and
output units be the same. Next, combine H(s) with the negative unity feedback, as shown in Figure (d).
Finally, combine the feedback system consisting of G (s) and [H(s) — 1], leaving an equivalent forward
path and a unity-feedback, as shown in Figure (e). Notice that the final figure shows E(s) = R(s) —
C(s) explicitly.

Example for Tutorial 7 — Non-Unity Feedback
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Given the non-unity feedback system as shown in the figure given below, find the following:

R(s) +8 (s+1) Cls)
s2(s+2) -

a. The system type. [4 marks]

b. The value of K to yield 0.1% error in the steady state. [14 marks]

Answer

a. Produce a unity-feedback system of the system as shown in the figure below.

R(s) = (s+1) C
. (s) >
s=(s+2)
K-1 -
Thus, the unity-feedback system of the system is:
(s+1)
G.(s) = s?(s+2) B s+1
T L GEDE =D T s 4252+ (K- Ds+ (K- 1)
s2(s+2)

As shown above, the system is Type O.

b. Since the system is Type O, the appropriate static error constant is Kj,. Thus, the steady-state error
due to step input is:

estep(*2) = 0001 = 3=

Therefore,
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Hence, K =1.001001.

Check stability: Using original block diagram, the closed-loop transfer function of the system is:

(s+1)
2 s+1
T(s) = s?(s+2) _ ' i
1+K(s+1) s3+2s?2+Ks+K
s2(s+2)
Making a Routh table:
s3 1 K
s? 2 K
st K 0
2
s K 0

Therefore, system is stable and steady-state error calculations are valid.

5.3. Steady-State Error for Non-Unity Feedback with Disturbance

Let us look at the general system of the figure below which has both a disturbance and non-unity
feedback.

D(s)

+ .
Ris) + + Cis
{—-- =l G(s) e =l Gols) ) o

H(s) [=

Figure 12: Non-unity feedback control system with disturbance

We will derive a general equation for the steady-state error and then determine the parameters of the
system in order to drive the error to zero for step inputs and step disturbances.

The steady-state error for this system, e(c0) = r(o0) — c(0), is:

e(o0) = limsE(s)
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= lim
5-0

{[1 _ G1(s)Go(s) G2(s)

YA (s)H(s)] R(s) = [1 T 66O (5)}

Now limiting the discussion to step inputs and step disturbances, where R(s) = D(s) = 1/s, the above
equation becomes:

e(o0) = limsE(s)
lim Gy (s)G2(s)

Li_f;% G (s)
B [1 1+ lim G, ()G (5)H (5)

1+ lsl_r% G,(s)G,(s)H(s)

For zero error,

lim G, (5)G,(s) lim G, (s)
s—-0 s—-0

=1 d =0
1+1im G, ()G, (HH() an 1+1im G, ()G, (H ()
S— N
The two equations above can always be satisfied if:
(1) the system is stable,
(2) G1(s) is a Type 1 system,
(3) G5 (s) is a Type 0 system, and
(4) H(s) is a Type 0 system with a dc gain of unity.
Example for Tutorial 8 — Non-Unity Feedback with Disturbance
Given the system shown in the figure below, do the following:
a. Derive the expression for the error, E(s) = R(s) — C(s), in terms of R(s) and D(s). [8 marks]
Derive the steady-state error, e(), if R(s) and D(s) are unit step functions. [4 marks]
c. Determine the attributes of G;(s), G,(s), and H(s) necessary for the steady-state error to become
zero. [2 marks]

R(s C(s
% G(s) =1 Gs(s) _@7(_3).,

Answer

a. The errorin the system is calculated from:
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E(s) =R(s) — C(s)

But, taking into account the disturbance, the output of the system is:
C(s) = [R(s) — C(s)H(5)]G1(s)G,(s) + D(s)

Solving for C(s):
R(5)G1(s)G(s) D(s)
1+ G1(9G2()H(s) 1+ G1(5)G2(s)H(s)

C(s) =

Substituting the above equation into E (s), the equation becomes:

G1(5)G2(s)

E&=11"136,m06, (S)H(s)] RO~ |3 G1(5)G2 () H (s)

D(s)

b. For R(s) = D(s) = 1/s, the steady-state error of the system is:

e(w) = lim sE(s)
3 151_{% G1(5)G,(s) 1
=1-17 lim G ()G, ()H () 1+ lim G (5)G, ()H ()

c. Zero errorif Gy (s) and/or G,(s) is Type 1. Also, H(s) is Type 0 with unity DC gain.
6. Sensitivity of System Parameters Towards Steady-State Errors

Sensitivity is the degree to which changes in system parameters affect system transfer functions, and
hence performance. A system with zero sensitivity (that is, changes in the system parameters have no
effect on the transfer function) is ideal. The greater the sensitivity, the less desirable the effect of a
parameter change.

For example, assume the function of:

Fe K
(K +a)

If K=10and a = 100, then F = 0.091. If parameter a triples to 300, then F = 0.032. We see that a
fractional change in parameter a of (300-100)/100 = 2 (e.g. 200% change) yields a change in the
function F of (0.032 — 0.091)/0.091 = 0.65 (e.g. 65% change). Thus, the function F has reduced
sensitivity to changes in parameter a.

As we proceed, we will see that another advantage of feedback is that in general it affords reduced
sensitivity to parameter changes. Based upon the discussion, given above formal definition of sensitivity
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is the ratio of the fractional change in the function to the fractional change in the parameter as the
fractional change of the parameter approaches zero. That is,

Fractional change in the function, F

Sp.p = lim - ;
F:P ™ Ap>0 Fractional change in the parameter, P

AF/F

= M 3PP
_ o PAF
- A}lar—r}o FAP

G P(SF)

Example of Tutorial 9 — Sensitivity of System Parameters

Which reduces to:

For a system as shown in the figure below, assume it is given a step input.

R(s) + 8 K Cls)
sis+ D(s+4) -

(s +a)

A

a. Find the sensitivity of the steady-state error to parameter a. [6 marks]
b. Plot the sensitivity of the system as a function of parameter a. [5 marks]
Answer

a. First, find the forward transfer function of an equivalent unity-feedback system.

K
s(s+1D(s+4) K
K(s+a—1) s345s2+(K+4)s+K(a—1)
s(s+1D(s+4)

Ge(s) =
1+

Thus, steady-state error of the system is:

1 1 a—1
1+K, K a

e(0) =

Finding the sensitivity of e(00), it is:
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a /be a a—(a-1] a-1
Se:a:Z<E>:(agl)[ a? ]: a?

b. The plot of sensitivity of the system as a function of parameter a is as shown in the figure below.

3

23
-
05 Grrrrrsssisieiaaaaas [EEEE R Frreressaaiaiiiiiaes
L] " L}
L] . L}
L] . L}
L}
| i N
0 - | | v
_05-- .................................... fitsssssasasasasasas Fesssssssssssnsnnnns Srrsrsiaaniaiaaaaaas
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Appendix: Steady-State Analysis of Control Systems

Type 0 Type 1 Type 2
Input Input Steady-state
Name Parameters Error Formula Static Error Error Static Error Error Static Error Error
Constant Constant Constant
Step u(t) 1 K, = 1 K, = o 0 K, = o 0
1+K, Constant 1+K,
Ramp tu(t) 1 K,=0 o K, = 1 K, = 0
K, Constant K,

Parabola ltzu(t) 1 K,=0 o K,=0 o0 K, = 1

2 K, Constant K,
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