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Note 9a: Introduction to Controllers and Compensators

Topics:
* Controller and Compensator in the Feedback Control Systems.

* Controllers’ Characteristics (e.g. Proportional Controller, Proportional-Integral Controller,
Proportional-Derivative Controller, and Proportional-Derivative-Integral Controller).

* Compensators’ Characteristics (e.g. Lead Compensator, Lag Compensator, and Lead-Lag
Compensator).

* Intro to Compensator Design.

1. Introduction to Controller and Compensator

A controller is an element whose role is to maintain a physical quantity at a desired level. On the other
hand, the compensator is an element for modification of system dynamics, to improve characteristics of
the open-loop plant so that it can safely be used with feedback control.

Input Error Output
Ge(s) —» Gp(s)

Note: G, = controller or compensator and G, = plant.

Figure 1: Controller or compensator in the feedback control systems

Three main types of controllers and their practical combinations:
* P (Gain or Proportional) controller.

* I (Integral) controller
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¢ D (Derivative) controller

* PD (Proportional-Derivative) controller

* Pl (or Proportional Integral) controller

* PID (Proportional, Integral, and Derivative) controller.

Three main types of compensators:

* Lag.
* Lead.
* Lead-lag.

When observing the influence of controllers or compensators on the control systems:
* They change the natural response of the system.
* They adjust the poles of the system.

* They help achieve the desired output from a given input.

Casacade Chrigrinal
compensaiar pordraller Plant

Criginal
contraller PFlami

K5l # o Cisd
'}g Lryi7] L]

Feilback
SO nsERar

Mokl |

1]

Figure 2: Controllers and compensators: abstract (left) and practical representations (right)

2. Controllers
In this section, we look into more detailed coverage of the controllers as stated above.

Based on its purpose, controllers are typically implemented to control or manage the control systems.
This is different from the compensators that are commonly used to attend a specific issue or problem in
the control systems.
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Note 9a: Introduction to Controllers and Compensators

Controllers for electronic systems are commonly constructed using active components such as op amp.
These active components are needed due to the amplification nature of the proportional controller and
integration and differentiation operations of the integral and differential controllers.

2.1. P Controller

Given a gain or proportional controller (G.(s)) implemented in series with the plant (G (s)) in a control
system as shown in the figure below.

R(s) + — E(s) C(s)

—-—®—> K = G(s) =

Figure 3: Proportional controller in the control system

The transfer function of the proportional controller is:
G.(s) =K
Thus

_ G(s)G(s)  KG(s)
T 14+G.(5)G(s) 1+KG(s)

T(s)

For a proportional controller (G.(s)) attached in the feedback loop, consider a plant in the forward path

(G(s)).

R(s) 4 — E(s5) C(s)

— G(s) -

K

Figure 4: Feedback control systems

The transfer function of the closed-loop feedback system is:

C(s) _ G(s) _ G
R(s) 1-—(=G.(s)G(s)) 1+KG(s)

T(s) =

Notice the negative sign in the equation for the transfer function equation of the feedback system. If the
size of the loop gain is large, that is if:
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IKG(s)| » 1

Then, the gain of the closed-loop system approximately depends on the gain of the controller:

2.1.1. Characteristics of P Controllers

The frequency response of a P controller is as shown below.

p controller Bods Plot

0 k=10

Gain  [48)

10° 10" 10" 10" w 10’

[degl

Phazo
3

107 10" 10° 10’ 10° 10
Froquency |[redfssc)

Figure 5: Frequency response of P controller

*  Magnitude plot:
* All frequency: 20 log K
¢ Phase-shift plot:

¢ All frequency: 0°

With these characteristics given above, the P controller is often used to improve transient response (up
to a point).
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It can increase the gain of the system and often result in a non-zero steady-state error. Practically, it is
relatively easy to implement.

2.1.2. Application of P Controller in First-Order System

For a proportional controller (G.(s)) is attached in the feedback loop as shown in the figure below, the
plant in the forward path is a first-order system G (s).

R(s) 4 — E(5) C(s)

— G(s) =

Figure 6: Proportional controller in first-order system

The transfer function equations of both the controller and the plant are:

Ge(s) =K, and G(s) = (1 n sT)

Interm of T(s) = C(s)/R(s), closed-loop transfer function equation of the system is:

C(s) G
R() 1~ (=Ge(s))G(s)

T(s) =
— (1 fsT) _ A
A
1— (_K)(1+5T) 1+ sT + AK

Thus, we can see that the time constant of the closed-loop first-order system depends on both gains of
the plant A and controller K. The gain of the closed-loop system depends on the gain of the plant A.

Example for Tutorial 1: P-Controller for First-Order System

The open-loop transfer function equation of a first-order system is given below.

50
G(s)=—— and Ge(s) =K
() =5 ¢(s)
a. Determine the time constant of the open loop system. [2 marks]
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b. If a proportional controller connected in series with the system as shown below, determine the gain
of proportional controller (K) that will change the time constant () of the closed-loop system to
become 0.1 second. [6 marks]

Ris) + 50 Cis)
(s+1)

Answer

a. The time constant of the open-loop first-order system is:

50K
G(s):s+a
Thus
1 1
T:a:I::lS

b. The gain of the proportional controller (K) that will change the time constant of the closed-loop
first-order system to become 0.1 second is determined as follows.

50
() = 1+ GG((SS))H(S) - - (S +510) s+ i(:—KSOK
1+ K ()
Thus
_ 1 _ 1
a 1+50K

For the time constant of 0.1 second, the gain of the proportional controller is calculated from:

1
0.1l=———
14+ 50K
Rearrange the equation above, the value of K is:
10—-1
K = =0.18

50

2.1.3. P Controller in Second-Order Systems

There are several further applications of P controller in the control systems, especially for higher order
systems. These are described in the following sections.
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2.1.3.1. Second-Order Systems
For a second-order system (G (s)) with a proportional controller (H(s)) added as shown below.

D(s)

R E(s C(5)
__ﬁLiég__ii H(s) - G (s) S

Figure 7: P controller in a second-order system with unity feedback

Unless told otherwise, assume D(s) = 0. Thus, the transfer function of unity feedback second-order
system with P controller is:

C(s)  G(s)H(s)

Te) = e = T+ GOHG)

Considering G(s) = w?/(s? + 2w, {s + w2) and H(s) = K, then the equation above becomes:

[rmsranl :
T(s) = (52 + 2w, (s + w?) _ wn K
1+[ w? ] s2 4+ 2wpds + (1 + K)w?
(s2 + 2w, (s + w?)

Considering the characteristics equation, determine values for 1 + K to make the system:
e Undamped
e Overdamped
e (Critically damped
e Overdamped

Higher gain is typically yielding a faster response, but it is at the expense of a more oscillatory response.
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aolr)
A
Undamped
20 = =
1.8 -
1.6 -
1.4+ Under- \
12 L damped
Critically \
1.0 - d.’ln'lpf}i_,, ———————— —
08+
0.6
04 - Overdamped
02}
1 ! i 1 1 1 ! >
0 0.5 1 1.5 2 25 3 35 -

Figure 8: Time responses of the second-order system

As proven for first-order system before, higher gain is typically yielding a faster response, but it is at the
expense of a more oscillatory response.

1.0
0.5 /\
g 0-0 . /\I /-\ /I\ /‘\ . /_"""'--1
= 5 0 15\/ 20 %5 36 35
(7
—0.5 1
—1.0 -

Figure 9: Damped oscillatory response of second order system

If the transient response of the system is too oscillatory, it will take time before the system settles to its
final value. We cannot, therefore, just increase the controller gain.
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2.1.3.2. Second-Order Systems, Non-Unity Feedback

For a second-order system with a proportional controller (M (s)) and non-unity feedback as shown
below.

D(s)

RI E(s C(s)
Lt@—s}n H(5) R G(5) ’ .

T M(5) |-

Figure 10: P controller in a second-order system with non-unity feedback

If D(s) = 0, the open-loop gain of the system is:
H(s)G(s)
The closed-loop transfer function of the system is:

C(s) H(s)G(s)
R(s) 1+ M(s)H(s)G(s)

T(s) =

Focusing on the characteristic equation of the transfer function, it is:
14+ M(s)H(s)G(s)

Notice that M (s) influences the characteristic equation. The variable M (s) affects transient response of
the closed-loop system as specified above.

Applying final value theorem, the steady-state equation for the system for a step input is:

H(s)G(s)  lms (l) H(s)G(s) . 1
14+ M(s)H(s)G(s) -0 \s/\1+ M(s)H(s)G(s)) ~ M(s)

C(e) =lims (R(s))
S—
Thus, the variable M (s) influences also the steady-state response of the closed loop system for a given
step input.

Example for Tutorial 2: P-Controller in Second-Order System

For an open-loop control system described as the transfer function equation given below, attempt the
following tasks.
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5
G(s =——
() s24+10s+5
a. Derive the transfer function equation of the closed-loop system is a proportional controller H(s) =
M is added in the feedback loop as shown below. [4 marks]
C \
G(s) ®
H(s) [
b. If Mis9, determine the transient response of the closed-loop system. [6 marks]
c. As part of design specification for the system, for a step input response, determine the feedback
gain (M) if we wish the steady-state error condition of the closed-loop system to be 0.6.
[8 marks]
Answer
a. Forthe given second-order system with non-unity feedback, the transfer function of the closed-loop
system is:
G(s)
T(GS) =——7F——-—
(s) 1+ G(s)H(s)
5
_ s2+10s+5 _ 5
5 s?+10s+5(1 + M)
1+(52 +1OS+5)M
b. The transient response of the closed-loop system when M is 9 is:
T(s) 5 5
S) = =
s2+10s+5(1+9) s%2+10s+50
Evaluating the characteristics equation of the closed loop system, its roots are:
o _hEVb?—dac_-104 V(10)% —4(1)(50) _ ey
ootz = 2a - 2(1) -
The roots are complex pair, so the response of the closed-loop system is underdamped.
c. Forastepinput, the steady-state error of the closed-loop system is:
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1
S —_—
Estep () = P—{% %;25)

‘£%+ 5
s2+10s+5(1+ M)

. s?+10s+5(1+M) 1+M
T 0s2+10s+ 52+ M) 2+ M

To achieve a steady-state error of 0.6 for the step response of the system, the gain of proportional
controller M is calculated from:

1+M
24+ M

€step () = 0.6

Thus, the gain of the proportional controller that meets the design specification is:

12-1
1-06

0.5

2.1.4. P Controller in Practice

In practice, the P controller is realised as a non-inverting amplifier with R; and R, forming the voltage
divider part of the circuit.

Non-Inverting Amplifier

Figure 11: Non-inverting op amp amplifier circuit for realising P controller.

Voltage at the non-inverting input is:
Vp =V
Due to potential divider arrangement in the circuit, the voltage at the inverting pin of the op amp is:

R,

%:%WQ+R>
1 2

As an example, consider a non-inverting amplifier with an open-loop gain of A(s) as shown in the figure
below.
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Vi Vo
A >

Ry

R1+R2

Figure 12: P controller circuit (left) and block diagram (right)

The transfer function equation of the amplifier is:

Vo(s) A ARy +Ry)

= R =
VI(S) 1— (—A) (Rl +2R2) Rl + RZ + AR2

If the loop gain AR, /(R + R,) is large, AR, > R, + Ry:

Vo (s) _ AR, +Ry) _ R, +R,
Vi(s) - AR, B R,

In the above equation, feedback gain, § = R, /(R; + R;), so if loop gain is large:

Vo(s) _l_R1+R2
Vi(s) _ﬂ B R,

Example for Tutorial 3: Practical Implementation of P-Controller

For example, given specification of a non-inverting operational amplifier circuit as shown below,
perform the following tasks:

e Gain, A(s) = 10°.
e Feedback resistors: R; = 6 kQ, R, =4 kQ),:
a. Derive the transfer function equation of the amplifier. [6 marks]

b. Determine whether the forward-loop gain of the amplifier is larger than the feedback-loop gain.
[4 marks]

c. Determine the gain of the amplifier. [4 marks]

Answer

a. The transfer function equation of the operational amplifier circuit is derived from:

XMUT315 - Note 9 - 12



Note 9a: Introduction to Controllers and Compensators
W=V (Eq.1)

V—V( R, )—V( it )—041/ Eq.2
n=Y\R, +R,)  °\aka+ekq) 0 (Eq.2)

And

For a given non-inverting amplifier with an open-loop gain of A4, the output voltage is:
V, = A(V, — V) = A(V; — 0.4V)) (Eq.3)

Substituting equations 1 and (2) into equation (3), the transfer function equation of the op amp
circuit is:

Vo A
Vi (1+0.44)

b. For the given operational amplifier circuit, the forward-loop gain of the amplifier is:
AR, = (10°)(4 x 103) = 4 x 108
The feedback-loop gain of the amplifier is:
Ri+R,=6x10%+4x10%=10*

As a result, the forward loop gain of the amplifier is larger than the feedback-loop gain of the
amplifier:

A(S)R, » Ry + R,

c. Thus, for a non-inverting amplifier circuit, the gain of the amplifier is calculated from:

Vo(s)_R1+R2=6><103+4><103:

= 2.5
2.2. Pl Controllers
Given a Pl controller in the control system as shown in the figure below.
Integral (I)
Ky
B
Proportional (P) Plant
R(s) + + % C(s)
K, G(s) =
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Figure 13: Pl controller in the control system

For a Pl Controller, its transfer function can be written as:

Ge(s) = P(s) +1(s) =K1.|_?2:

Here, P(s) = K; and I(s) = K, /s.

2.2.1. Characteristics of Pl Controllers

The frequency response of a Pl controller is as shown below.

Pl Compensator Bode Plot
40 T T T T

a0r 1

20¢ 1

[@B]

10

Gain

-10 : : : - _
& 2 3

[deg]

-40

-60

Phase

-100 ! ! !
10" 10° 10’ 10
Frequency [rad/sec]

10

Figure 14: Frequency response of Pl controller

* Magnitude plot:
* Low: -slope gain.
e Cut-off: half gain.
* High: zero gain.

*  Phase-shift plot:

XMUT315 - Note 9 - 14



Note 9a: Introduction to Controllers and Compensators

* Low:-90°.
*  Cut-off: -45°,
* High: 0°.
With these characteristics, Pl controller is used for improving steady-state error.

It increases system type and hence steady-state error becomes zero. In this controller, zero at z, is small
and negative. In practice, this controller needs active circuits to implement.

2.2.2. Applications of PI Controllers

The functions P(s) and I(s) can be chosen so the s + K, /K, term (controller zero) cancels plant pole.
Suppose a plant of a second-order system is:

1

60 = A sma+smy)

If we apply Pl to this plant, and make K, /K; = T,, then

0(s) (s + Kl/K2> 1 1

E(s) = Ge(s)G(s) = (1 +sT)(1 + sT,) - s(s+Ty)

For a closed-loop system, the transfer function is:

1
208 __G06E) _ SGHTy 1
VTIG) T T4 6(66) 4L sPtsT+1
s(s+T;)

Note, the I(s) term means that the steady-state value is 1.

2.3. PD Controllers

For a PD controller in a given control system as shown in the figure below.

K>s

Y

\J

R(s) + + C(s)

Figure 15: PD controller in the control system
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For a PD controller, its transfer function equation is:
Gl(S) = P(S) + D(S) = K1 + Kzs = Kz(s + KI/KZ)

Where: P(s) = K; and D(s) = K,s.

2.3.1. Characteristics of PD Controllers
The frequency response of a PD controller is as shown below.

PD Compensator Bode Plot
GD T T T T T

401 -
30+

Gain [dB]

-10 I 1 1 1
X X 1 2

10 10

100 S —

80 b

G0

40

Phase [deg]

20

sial PSP | PR | M | M|
1

10* 107 10" 10° 10 10
Frequency [rad/sec]

Figure 16: Frequency response of PD controller

*  Magnitude plot:
* Low: zero gain.
e Cut-off: half gain.
e High: +slope gain.

*  Phase-shift plot:

Low: 0°.

Cut-off: +45°,
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* High: +90°.
The PD controller is often used to improve transient response.

In its design, its zero at —z,. is selected to indicate the design point. It requires active circuits to
implement; implemented with rate feedback or with a pole (lead). Furthermore, this controller can
cause noise and saturation.

2.3.2. Applications of PD Controllers

We could make s + K; /K, term to cancel the plant pole. If the transfer function equation of the plant of
a second-order system is:

G(S) =——=
) s(s+T)
If PD is applied, time constant K; K, = T then:

0(s) 1 1

Ty = G060 = A+sD mrm =3

The transfer function of the closed-loop system is:

0(s)  1/s 1

T(S)ZI(S) _1+1/s=s+1

2.4. PID Controllers

For a PID controller as shown in the figure below

—=] K33
- &
[
+
Y
+ C(s)
= Kl — G(s) { =

Figure 17: PID controller in the control system

For a PID controller, its transfer function equation is:
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K
G.(s) = P(s) +I(s) + D(s) = K; + ?2 + K3s
Where: P(s) = Ky, I(s) = K,/s,and D(s) = K3s
This gives:

K3s®? + Kis + K,
S

Ge(s) =

2.4.1. Characteristics of PID Controllers

The responses of the PID controllers against the step and sinusoidal inputs are as shown in the figure
below.

100 100
95 05

90 90 0 .
& t Derivative response 8 vative respon.
w0 =
70
p Integral response = rhetatrbdpbrs
60 60
55

.
“ I Proportional response . Opo al response
X

Time —> Time —>

(0 0 PID response
: PID response . —K\_/]
% s % s

Time — Time —=

Figure 18: Response of PID controllers with the step and sinusoidal inputs

The PID controller is used to improve steady-state error and transient response.

In its design, its lag zero at —z;,4 and pole at the origin improve steady-state error. Its lead zero at
—Zjeqq IMproves transient response. The lag zero at —z;, is close to, and to the left of, the origin and
the lead zero at —z,,, is selected to indicate the design point. Its implementation requires active
circuits; implemented with rate feedback or with an additional pole. It can cause noise and saturation.
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2.4.2. Applications of PID Controllers

For a given second-order system with two poles, its transfer function is:

1

G(s) =————
(s) 1+ bs + as?

If K3 = aand K; = b,and K, = 1, then

_0(s) _ (K3s® +Kis+ K, 1 3 1
CE(s) ( s )(1 + bs + asz) = GG = s

T(s)

In all these examples, by careful arrangement, systems are first or second order. Cancellation may not
give the best response, but analysis of systems is easier!

3. Compensators

Compared with the controllers, compensators are different in terms of their purposes and
constructions. They are intended to be used for specific area of control system improvement and
solution. Typically, they are made up of passive components in electronic systems.

3.1. Lead Compensator

For a lead compensator as shown in the figure below, the zero is located near y-axis compared with its
polei.e. P, > Z,.

Compensator Plant
R(s) + E(s) | K(s +z,.) N (S+Z)5+2) - C(s) N
A (s+p) - S+ ps+py) e e -

Jjo

Figure 19: Lead compensator in the control system

The transfer function equation of a lead compensator is:
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1
1 S+T
Ge() = 5| —7 B<1)
S+
BT
Or
s+z .
Greaa(s) = s+ pz with |pc| > |Zc|

This consists of 1 pole and 1 zero with the magnitude of the pole is bigger than the magnitude of the
zero.

3.1.1. Characteristics of Lead Compensators

Frequency response plot of lead compensator is as shown in the figure below.

Lead Compensator Bode Plot
25 T . ;

15+ .

[dB]

10

Gain

10’ 10° 10°

[deg]

Phasea

4 sal sl il
uﬁ 7] i ] 1 2 3

10 10° 10 10 10 10
Frequency [radisec]

Figure 20: Frequency response of lead compensator

* Magnitude plot:

* Low: zero gain.
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e Cut-off: half gain.

* High: +finite gain.
* Phase-shift plot:

* Low:0°.

*  Cut-off: +45°.

High: 0°.

The following figure shows frequency response plot of lead compensator with various values of £5.

20 TTT] =
:8 p=0.17>
( |1
: T
= 12 A 03
210 LA
=~ A1 =04
. A L 5=05
=
4 P
i)
0
0.1 1 10 100
T
60 e
50 % il B i N
_ 1 =02 TN
3 40 4 I N
3] A
= =03 ™
.L;j 30 » ’,//'/__—L 0 \\ \
2 20 Pz7% T 5 N \\
m 3 S S N
10 — T —_—=
0
0.1 1 10 100

wl

Figure 20: Frequency response of lead compensator with various values of 8

The lead compensator is used to improve transient response.

Its design typically places zero at —z, and pole at —p,. at are selected to indicate design point. Its pole at
—p. is more negative than zero at —z.. Active circuits are not required to implement this compensator.
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3.1.2. Applications of Lead Compensators
In lead compensator, the zero is closer to the origin than the pole, that is:
Ze <P
The lead compensator influences transient response (e.g. % overshoot and settling times).

The following diagram compares the transient responses of the uncompensated system with the
compensated system. The lead compensator influences transient response (e.g. percentage overshoot
and settling times) with a, b, and ¢ = increasing distance of the poles from origin.

A 3

Compensation a, b
14| Compensation ¢
Uncompensated

(1)

0.8 |-

04 L

Time (seconds)

Figure 21: Transient responses of compensated and uncompensated systems

3.2. Lag Compensators

For a lag compensator as shown in the figure below, the pole is located closer to y- axis than its zero i.e.
Z.>P..
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Compensator Plant
R(s) + E(s) | K(s +2.) | G+ C(s)
= (s +p) S(S + (S +py) e e

Figure 22: Lag compensator in the control system

The transfer function equation of a lag compensator is:

S+T
Ge(s) = 1 (a>1)
S+W
Or
s+z .
Grag(s) = - +pc with Ipel < lz|
C

This compensator consists of 1 pole and 1 zero with the magnitude of the pole is smaller than the
magnitude of the zero.

3.2.1. Characteristics of Lag Compensators

Frequency response plot of lag compensator is as shown in the figure below.
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Lag Compensator Bode Plot
25 T T

[dE]
o

Gain

10 10 107

Phase [deg]

Frequency [rad/sec]

Figure 23: Frequency response of lag compensator

*  Magnitude plot:
*  Low: +finite gain.
*  Cut-off: half gain.
e High: zero gain.

¢ Phase-shift plot:
* Low:0°.
*  Cut-off: -45°.

*  High: 0°.

The following figure shows frequency response plot of lag compensator with various values of «.
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20
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Figure 24: Frequency response of lag compensator with various values of a

The lag compensator is used to improve steady-state error.

When implementing this controller in the system, error is improved, but not driven to zero. Its pole at
—p. is small and negative and its zero at —z_ is close to, and to the left of, the pole at —p_. Active
circuits are not required to implement this compensator.

3.2.2. Applications of Lag Compensators
In the lag compensator, the pole is closer to the origin than the zero, that is:

Ze > P

The lag compensator reduces steady-state error as shown in the figure below.
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Figure 25: Transient responses of lag compensated and uncompensated system

3.3. Lead-Lag Compensator

For a lead-lag compensator as shown in the figure below, for its lead part, the zero is closer to the origin
than the pole and for its lag part, the pole is closer to the origin than the zero.

Compensator Compensator Plant
Rs) + A EO | Kis+2) | | Kis +2) S+2)s+2)++ | C
] — | -
= (s+p0) (s +p.) S(s +ps +py) e

Jjo

s-plane

. (s+2z) (s+20
G(,(‘S) =

(s+p.) (s+p)

Figure 26: Lead-lag compensator in the control system

The transfer function equation of a lead-lag compensator is:

s+Tl s+Tl
Ge($) = | — a3 ¥>1
T yT,
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s+ Zc(lag)) <5 + Zc(lead)>

G _ = G G =
lead lag(S) lead(s) lag(S) <S + Pcag)) \S + Pe(lead)

Since aff = 1, The pole and zero of the lag and lead parts of the lead-lag controller are:

Ipeag| < |2caagy]  and  |zcgeany| < |Pegeanl

3.3.1. Characteristics of Lead-Lag Compensators

The figure given below shows frequency response of lead-lag compensator with various values of y are

varied.
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Figure 27: frequency response of lead-lag compensator with various values of y

The lead-lag compensator can improve both steady-state error and transient response.

The lag pole of this compensator at —p;,4 and lag zero at —z;,, are used to improve steady-state error.
Its lead pole at —p;.qq and lead zero at —z;,,4 are used to improve transient response.

The lag pole at —p;q4 is small and negative and the lag zero at —z;4 is close to, and to the left of, lag
pole at —pyqagq-
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Its lead zero at —z;,,4 and the lead pole at —p;.,4 are selected to indicate the design point.
Its lead pole at —p;pqq is more negative than lead zero at —z;,44.

In practice we do not need active circuits to implement it.

3.3.2. Applications of Lead-Lag Compensators

Considering the transfer function equation of the second-order plant is:

K
(s+T)(+T,)

G(s) =

For improving transient response, we can make z, of the lag part in the G.(s) to be equal to the largest
of T; and T,, say T,, to speed up the system.

Then, the pole in the lag part is used to cancel the zero of the lead-part of the compensator leaving pole
of the lead part to be varied to meet the improvement goal or the design specification.

As a result, the open loop transfer function of the system becomes:

s+ Zc(lag)) <5 + Zc(lead) K

0(s) )
s+ pc(lag) s+ Pc(lead) (5 + Tl)(s + Tz)

EG) G (s)G(s) = <

K
B (5 + pc(lead))(s +Ty)

The closed-loop transfer function equation of the system is:

O(s) _ Forward

") =76 = T=Toop
This gives:
[ K
T(s) = 0(s) _ (S + pc(lead))(s +Ty) B K
i 1) ) < K ) - (S + pc(lead))(s +T,))+K
1—(=
(s + Peqeaay) (s + T1)
K

B 52 + S(pc(lead) + Tl) + (pc(lead)Tl) +K

The above transfer function equation is a further example of pole-zero cancellation for system
improvement. This time, we can have a complete control of the location of the pole for improving the
transient response of the system.

Note: a pole is like s + T; term on the denominator and a zero is such a term on the numerator.

For improving the steady-state condition of the system, we can make z, of the lead part in the G.(s) to
be equal to the smaller of T; and T, say T, to remove more dominant pole in the system.
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Then, the pole in the lead part is used to cancel the zero of the lag-part of the compensator leaving the
pole of the lag part to be varied and assign to be very close to the origin e.g. p¢(1ag) = 0 (to simulate an
integral function like to the system). Thus, this would improve the steady-state condition of the system
by reducing or removing the steady-state error in the system.

With this placement the system is able to meet its steady-state improvement goal or the design
specification. As a result, the open loop transfer function of the system becomes:

s+ Zc(lag)) (S + Zc(lead)) K _ K
s+ Pclag)/ \S + Pc(iead) (s+ Tl)(s + TZ) (5 + Pc(lag))(s + TZ)

@ = Gc(5)G(s) = (

E(s)
The closed-loop transfer function equation of the system is:

O(s) _ Forward

") =7 = T=Toop
This gives:
[ K
T(s) = 06s) _ (S + pC(lag))(S +T3) B K
= I(S) - < K >_(S+pc(lag))(5+T2)+K
1-(=
(S + pc(lag))(s +T,)

When p¢ag) = 0, the equation above becomes:

K K
s(s+T))+K s2+sT,+K

T(s) =

4. Intro to Compensation Design

We will focus on modifying system characteristics by applying feedback. Furthermore, we will be able to
tailor the closed-loop transfer function with the addition of a compensator.

Compensator design is a compromise between two competing goals.

e Performance: Keeping the open loop gain high reduces system errors and the effects of
disturbances.

e Stability: The closed loop system must be kept stable by carefully managing the gain where the
phase approaches -180°.

Compensator design can often be philosophically reduced to two (inter-related) problems e.g. one
operating at low frequencies to achieve the required performance, the other at high frequency to
ensure stability.

XMUT315 - Note 9 - 29



Note 9a: Introduction to Controllers and Compensators
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Figure 28: Frequency response of a given control system

4.1. Compensator Design

There are various approaches to designing a compensator:

1.
2.

5.
6.

Choose a compensator structure and then tune it manually.

Choose a compensator model and tune using a “recipe” (e.g. Ziegler-Nichols).
Use a model and solve for desired pole locations.

Measure the system performance and use a graphical technique.

Use a mathematical model with a graphical technique.

Use mathematical tools to achieve optimal performance (State-Space Analysis).

In the remaining lectures, we will focus on the graphical methods which form the classical control. These
are mainly about items number 3 and 5 on the list.
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Figure 29: Root locus, Bode and Nyquist diagrams for controller/compensator design

4.2. System Topologies and Notations

We will generally design out compensators assuming unity gain feedback with the compensator C(s)
placed in the forward path. Remember that this is equivalent to a system with the compensator in the
feedback path.

XMUT315 - Note 9 - 31



Note 9a: Introduction to Controllers and Compensators

® Compensator Plant ®
X(s Y(s
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Figure 30: Compensator arrangement in control systems
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Appendix 1: Standard Controllers and Compensators in Control Systems

Controller and | Function Transfer Function Characteristics
Compensator
Controllers:
P Improve transient K a. Increases the gain of the system.
response (up to a b. Often result in a non-zero steady-state error.
point) c. Relatively easy to implement.
Pl Improve steady-state K (5 + Zc) a. Increases system type.
error S b. Error becomes zero.
c. Zeroat z. is small and negative.
d. Active circuits are required to implement.
PD Improve transient K(s+z.) a. Zeroat —z. is selected to put the design point on the root locus.
response b. Active circuits are required to implement.
It can cause noise and saturation; implement with rate feedback
or with a pole (lead).
PID Improve steady-state K (s+ Zlag)(S + Zjead) a. lagzeroat —zj,4 and pole at the origin improve steady-state
error and transient s error.
response b. Lead zero at —z;,,4 improves transient response.
Lag zero at —z;, is close to, and to the left of, the origin.
d. Lead zero at —z,,4 is selected to put the design point on the
root locus.
e. Active circuits are required to implement.
f. It can cause noise and saturation; implement with rate feedback
or with an additional pole.
Compensators:
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Lag

Improve steady-state
error

(5 I Zc)
ST Pc
Where:

el <zl

o o0 oo

Error is improved, but not driven to zero.

Pole at —p,. is small and negative.

Zero at —z, is close to, and to the left of, the pole at —p,.
Active circuits are not required to implement.

Lead

Improve transient
response

(5 I Zc)
ST Pc
Where:

Ipcl > |zc|

Zero at —z, and pole at —p, at are selected to put design point
on the root locus.

Pole at —p. is more negative than zero at —z,.

Active circuits are not required to implement.

Lag-lead

Improve steady-state
error and transient
response

K [(5 + Zlag)(s + Zieqa)
(5 + plag)(s + Dieaa)
Where:
|pC(lag)| < |ZC(lag)|
and

|Zc(lead)| < |pc(lead) |

Lag pole at —p;q4 and lag zero at —z;,4 are used to improve
steady-state error.

Lead pole at —pjqq and lead zero at —z;,,4 are used to
improve transient response.

Lag pole at —pjq4 is small and negative.

Lag zero at —z;, is close to, and to the left of, lag pole at —p;q4
Lead zero at —z;,,4 and the lead pole at —p;.,4 are selected to
put the design point on the root locus.

Lead pole at —pjeqq is more negative than lead zero at —z;,44-
Active circuits are not required to implement.
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