
 

XMUT315 Control Systems Engineering 

Note 9a: Introduction to Controllers and Compensators 

 

Topics: 

• Controller and Compensator in the Feedback Control Systems. 

• Controllers’ Characteristics (e.g. Proportional Controller, Proportional-Integral Controller, 

Proportional-Derivative Controller, and Proportional-Derivative-Integral Controller). 

• Compensators’ Characteristics (e.g. Lead Compensator, Lag Compensator, and Lead-Lag 

Compensator). 

• Intro to Compensator Design. 

 

1. Introduction to Controller and Compensator 

A controller is an element whose role is to maintain a physical quantity at a desired level. On the other 

hand, the compensator is an element for modification of system dynamics, to improve characteristics of 

the open-loop plant so that it can safely be used with feedback control.  

 

Note: 𝐺𝑐 = controller or compensator and 𝐺𝑝 = plant.  

Figure 1: Controller or compensator in the feedback control systems 

 

Three main types of controllers and their practical combinations: 

• P (Gain or Proportional) controller. 

• I (Integral) controller 
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• D (Derivative) controller 

• PD (Proportional-Derivative) controller 

• PI (or Proportional Integral) controller 

• PID (Proportional, Integral, and Derivative) controller. 

Three main types of compensators: 

• Lag. 

• Lead. 

• Lead-lag. 

When observing the influence of controllers or compensators on the control systems: 

• They change the natural response of the system. 

• They adjust the poles of the system. 

• They help achieve the desired output from a given input. 

 

Figure 2: Controllers and compensators: abstract (left) and practical representations (right) 

 

2. Controllers 

In this section, we look into more detailed coverage of the controllers as stated above.  

Based on its purpose, controllers are typically implemented to control or manage the control systems. 

This is different from the compensators that are commonly used to attend a specific issue or problem in 

the control systems. 
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Controllers for electronic systems are commonly constructed using active components such as op amp. 

These active components are needed due to the amplification nature of the proportional controller and 

integration and differentiation operations of the integral and differential controllers. 

 

2.1. P Controller 

Given a gain or proportional controller (𝐺𝑐(𝑠)) implemented in series with the plant (𝐺(𝑠)) in a control 

system as shown in the figure below. 

 

Figure 3: Proportional controller in the control system 

 

The transfer function of the proportional controller is: 

𝐺𝑐(𝑠) = 𝐾 

Thus 

𝑇(𝑠) =
𝐺𝑐(𝑠)𝐺(𝑠)

1 + 𝐺𝑐(𝑠)𝐺(𝑠)
=

𝐾𝐺(𝑠)

1 + 𝐾𝐺(𝑠)
 

For a proportional controller (𝐺𝑐(𝑠)) attached in the feedback loop, consider a plant in the forward path 

(𝐺(𝑠)). 

 

Figure 4: Feedback control systems 

 

The transfer function of the closed-loop feedback system is: 

𝑇(𝑠) =
𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 − (−𝐺𝑐(𝑠)𝐺(𝑠))
=

𝐺(𝑠)

1 + 𝐾𝐺(𝑠)
 

Notice the negative sign in the equation for the transfer function equation of the feedback system. If the 

size of the loop gain is large, that is if:  
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|𝐾𝐺(𝑠)| ≫ 1 

Then, the gain of the closed-loop system approximately depends on the gain of the controller: 

𝑇(𝑠) ≈
𝐺(𝑠)

𝐾𝐺(𝑠)
=

1

𝐾
 

 

2.1.1. Characteristics of P Controllers 

The frequency response of a P controller is as shown below. 

 

Figure 5: Frequency response of P controller 

 

• Magnitude plot: 

• All frequency: 20  log 𝐾 

• Phase-shift plot: 

• All frequency: 0 

 

With these characteristics given above, the P controller is often used to improve transient response (up 

to a point).  



Note 9a: Introduction to Controllers and Compensators 

XMUT315 – Note 9 - 5 

It can increase the gain of the system and often result in a non-zero steady-state error. Practically, it is 

relatively easy to implement. 

 

2.1.2. Application of P Controller in First-Order System 

For a proportional controller (𝐺𝑐(𝑠)) is attached in the feedback loop as shown in the figure below, the 

plant in the forward path is a first-order system 𝐺(𝑠).  

 

Figure 6: Proportional controller in first-order system 

 

The transfer function equations of both the controller and the plant are: 

𝐺𝑐(𝑠) = 𝐾𝑝         and          𝐺(𝑠) = (
𝐴

1 + 𝑠𝑇
) 

In term of 𝑇(𝑠) = 𝐶(𝑠)/𝑅(𝑠), closed-loop transfer function equation of the system is: 

𝑇(𝑠) =
𝐶(𝑠)

𝑅(𝑠)
=

𝐺𝑐(𝑠)

1 − (−𝐺𝑐(𝑠))𝐺(𝑠)
 

         =
(

𝐴
1 + 𝑠𝑇)

1 − (−𝐾) (
𝐴

1 + 𝑠𝑇
)

=
𝐴

1 + 𝑠𝑇 + 𝐴𝐾
 

Thus, we can see that the time constant of the closed-loop first-order system depends on both gains of 

the plant 𝐴 and controller 𝐾. The gain of the closed-loop system depends on the gain of the plant 𝐴. 

 

Example for Tutorial 1: P-Controller for First-Order System 

 

The open-loop transfer function equation of a first-order system is given below. 

𝐺(𝑠) =
50

𝑠 + 1
                and               𝐺𝐶(𝑠) = 𝐾 

a. Determine the time constant of the open loop system.    [2 marks] 
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b. If a proportional controller connected in series with the system as shown below, determine the gain 

of proportional controller (𝐾) that will change the time constant (𝜏) of the closed-loop system to 

become 0.1 second.         [6 marks] 

 

 

Answer 

a. The time constant of the open-loop first-order system is: 

𝐺(𝑠) =
50𝐾

𝑠 + 𝑎
 

Thus 

𝜏 =
1

𝑎
=

1

1
= 1 s 

 

b. The gain of the proportional controller (𝐾) that will change the time constant of the closed-loop 

first-order system to become 0.1 second is determined as follows. 

𝑇(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
=

𝐾 (
50

𝑠 + 1)

1 + 𝐾 (
50

𝑠 + 1)
=

50𝐾

𝑠 + 1 + 50𝐾
 

Thus 

𝜏 =
1

𝑎
=

1

1 + 50𝐾
 

For the time constant of 0.1 second, the gain of the proportional controller is calculated from: 

0.1 =
1

1 + 50𝐾
 

Rearrange the equation above, the value of 𝐾 is: 

𝐾 =
10 − 1

50
= 0.18 

 

2.1.3. P Controller in Second-Order Systems 

There are several further applications of P controller in the control systems, especially for higher order 

systems. These are described in the following sections. 
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2.1.3.1. Second-Order Systems 

For a second-order system (𝐺(𝑠)) with a proportional controller (𝐻(𝑠)) added as shown below. 

 

Figure 7: P controller in a second-order system with unity feedback 

 

Unless told otherwise, assume 𝐷(𝑠) = 0. Thus, the transfer function of unity feedback second-order 

system with P controller is: 

𝑇(𝑠) =
𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)𝐻(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

Considering 𝐺(𝑠) = 𝜔𝑛
2/(𝑠2 + 2𝜔𝑛𝜁𝑠 + 𝜔𝑛

2) and 𝐻(𝑠) = 𝐾, then the equation above becomes: 

𝑇(𝑠) =

[
𝜔𝑛

2

(𝑠2 + 2𝜔𝑛𝜁𝑠 + 𝜔𝑛
2)

] 𝐾

1 + [
𝜔𝑛

2

(𝑠2 + 2𝜔𝑛𝜁𝑠 + 𝜔𝑛
2)

] 𝐾

=
𝜔𝑛

2𝐾

𝑠2 + 2𝜔𝑛𝜁𝑠 + (1 + 𝐾)𝜔𝑛
2 

Considering the characteristics equation, determine values for 1 + 𝐾 to make the system: 

• Undamped 

• Overdamped 

• Critically damped 

• Overdamped 

Higher gain is typically yielding a faster response, but it is at the expense of a more oscillatory response.  
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Figure 8: Time responses of the second-order system 

 

As proven for first-order system before, higher gain is typically yielding a faster response, but it is at the 

expense of a more oscillatory response.  

 

Figure 9: Damped oscillatory response of second order system 

 

If the transient response of the system is too oscillatory, it will take time before the system settles to its 

final value.  We cannot, therefore, just increase the controller gain. 
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2.1.3.2. Second-Order Systems, Non-Unity Feedback 

For a second-order system with a proportional controller (𝑀(𝑠)) and non-unity feedback as shown 

below. 

 

Figure 10: P controller in a second-order system with non-unity feedback 

 

If 𝐷(𝑠) = 0, the open-loop gain of the system is: 

𝐻(𝑠)𝐺(𝑠) 

The closed-loop transfer function of the system is: 

𝑇(𝑠) =
𝐶(𝑠)

𝑅(𝑠)
=

𝐻(𝑠)𝐺(𝑠)

1 + 𝑀(𝑠)𝐻(𝑠)𝐺(𝑠)
 

Focusing on the characteristic equation of the transfer function, it is: 

1 + 𝑀(𝑠)𝐻(𝑠)𝐺(𝑠) 

Notice that 𝑀(𝑠) influences the characteristic equation. The variable 𝑀(𝑠) affects transient response of 

the closed-loop system as specified above.  

Applying final value theorem, the steady-state equation for the system for a step input is: 

𝐶(∞) = lim
𝑠→0

𝑠 (𝑅(𝑠))
𝐻(𝑠)𝐺(𝑠)

1 + 𝑀(𝑠)𝐻(𝑠)𝐺(𝑠)
= lim

𝑠→0
𝑠 (

1

𝑠
) (

𝐻(𝑠)𝐺(𝑠)

1 + 𝑀(𝑠)𝐻(𝑠)𝐺(𝑠)
) ≅

1

𝑀(𝑠)
 

Thus, the variable 𝑀(𝑠) influences also the steady-state response of the closed loop system for a given 

step input. 

 

Example for Tutorial 2: P-Controller in Second-Order System  

 

For an open-loop control system described as the transfer function equation given below, attempt the 

following tasks. 
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𝐺(𝑠) =
5

𝑠2 + 10𝑠 + 5
 

a. Derive the transfer function equation of the closed-loop system is a proportional controller 𝐻(𝑠) =

𝑀 is added in the feedback loop as shown below.     [4 marks] 

 

 

 

b. If 𝑀 is 9, determine the transient response of the closed-loop system.  [6 marks] 

c. As part of design specification for the system, for a step input response, determine the feedback 

gain (𝑀) if we wish the steady-state error condition of the closed-loop system to be 0.6.  

           [8 marks]  

Answer 

a. For the given second-order system with non-unity feedback, the transfer function of the closed-loop 

system is: 

𝑇(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

          =

5
𝑠2 + 10𝑠 + 5

1 + (
5

𝑠2 + 10𝑠 + 5
) 𝑀

=
5

𝑠2 + 10𝑠 + 5(1 + 𝑀)
 

 

b. The transient response of the closed-loop system when 𝑀 is 9 is: 

 

𝑇(𝑠) =
5

𝑠2 + 10𝑠 + 5(1 + 9)
=

5

𝑠2 + 10𝑠 + 50
 

 

Evaluating the characteristics equation of the closed loop system, its roots are: 

root1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=

−10 ± √(10)2 − 4(1)(50)

2(1)
= −5 ± 𝑗5  

The roots are complex pair, so the response of the closed-loop system is underdamped. 

 

 

c. For a step input, the steady-state error of the closed-loop system is: 
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𝑒𝑠𝑡𝑒𝑝(∞) = lim
𝑠→0

𝑠 (
1
𝑠

)

1 + 𝑇(𝑠)
 

                  = lim
𝑠→0

1

1 +
5

𝑠2 + 10𝑠 + 5(1 + 𝑀)

 

                  = lim
𝑠→0

𝑠2 + 10𝑠 + 5(1 + 𝑀)

𝑠2 + 10𝑠 + 5(2 + 𝑀)
=

1 + 𝑀

2 + 𝑀
 

To achieve a steady-state error of 0.6 for the step response of the system, the gain of proportional 

controller 𝑀 is calculated from: 

𝑒𝑠𝑡𝑒𝑝(∞) =
1 + 𝑀

2 + 𝑀
= 0.6 

Thus, the gain of the proportional controller that meets the design specification is: 

𝑀 =
1.2 − 1

1 − 0.6
= 0.5 

2.1.4. P Controller in Practice 

In practice, the P controller is realised as a non-inverting amplifier with 𝑅1 and 𝑅2 forming the voltage 

divider part of the circuit. 

 

Figure 11: Non-inverting op amp amplifier circuit for realising P controller. 

 

Voltage at the non-inverting input is: 

𝑉𝑝 = 𝑉𝐼𝑁 

Due to potential divider arrangement in the circuit, the voltage at the inverting pin of the op amp is: 

𝑉𝑛 = 𝑉𝑂𝑈𝑇 (
𝑅2

𝑅1 + 𝑅2
) 

As an example, consider a non-inverting amplifier with an open-loop gain of 𝐴(𝑠) as shown in the figure 

below. 



Note 9a: Introduction to Controllers and Compensators 

XMUT315 – Note 9 - 12 

 

Figure 12: P controller circuit (left) and block diagram (right) 

 

The transfer function equation of the amplifier is: 

𝑉𝑂(𝑠)

𝑉𝐼(𝑠)
=

𝐴

1 − (−𝐴) (
𝑅2

𝑅1 + 𝑅2
)

=
𝐴(𝑅1 + 𝑅2)

𝑅1 + 𝑅2 + 𝐴𝑅2
 

If the loop gain 𝐴𝑅2/(𝑅1 + 𝑅2) is large, 𝐴𝑅2 ≫ 𝑅1 + 𝑅2: 

𝑉𝑂(𝑠)

𝑉𝐼(𝑠)
=

𝐴(𝑅1 + 𝑅2)

𝐴𝑅2
=

𝑅1 + 𝑅2

𝑅2
 

In the above equation, feedback gain, 𝛽 = 𝑅2/(𝑅1 + 𝑅2), so if loop gain is large:  

𝑉𝑂(𝑠)

𝑉𝐼(𝑠)
=

1

𝛽
=

𝑅1 + 𝑅2

𝑅2
 

 

Example for Tutorial 3: Practical Implementation of P-Controller  

 

For example, given specification of a non-inverting operational amplifier circuit as shown below, 

perform the following tasks: 

• Gain, 𝐴(𝑠) = 105. 

• Feedback resistors: 𝑅1 = 6 k, 𝑅2 = 4 k,: 

 

a. Derive the transfer function equation of the amplifier.    [6 marks] 

b. Determine whether the forward-loop gain of the amplifier is larger than the feedback-loop gain. 

        [4 marks] 

c. Determine the gain of the amplifier.       [4 marks] 

 

Answer 

a. The transfer function equation of the operational amplifier circuit is derived from: 
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𝑉𝑝 = 𝑉𝑖               (𝐸𝑞. 1) 

And 

𝑉𝑛 = 𝑉𝑜 (
𝑅2

𝑅1 + 𝑅2
) = 𝑉𝑂 (

4kΩ

4kΩ + 6kΩ
) = 0.4𝑉𝑂                   (𝐸𝑞. 2) 

 

For a given non-inverting amplifier with an open-loop gain of 𝐴, the output voltage is: 

 

𝑉𝑜 = 𝐴(𝑉𝑝 − 𝑉𝑛) = 𝐴(𝑉𝐼 − 0.4𝑉𝑂)                    (𝐸𝑞. 3) 

 

Substituting equations 1 and (2) into equation (3), the transfer function equation of the op amp 

circuit is: 
𝑉𝑜

𝑉𝑖
=

𝐴

(1 + 0.4𝐴)
 

 

b. For the given operational amplifier circuit, the forward-loop gain of the amplifier is:  

𝐴𝑅2 = (105)(4 × 103) = 4 × 108 

The feedback-loop gain of the amplifier is: 

𝑅1 + 𝑅2 = 6 × 103 + 4 × 103 = 104  

As a result, the forward loop gain of the amplifier is larger than the feedback-loop gain of the 

amplifier: 

𝐴(𝑠)𝑅2 ≫ 𝑅1 + 𝑅2  

 

c. Thus, for a non-inverting amplifier circuit, the gain of the amplifier is calculated from: 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=

𝑅1 + 𝑅2

𝑅2
=

6 × 103 + 4 × 103

4 × 103
= 2.5 

 

2.2. PI Controllers 

Given a PI controller in the control system as shown in the figure below. 
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Figure 13: PI controller in the control system 

 

For a PI Controller, its transfer function can be written as:  

𝐺𝑐(𝑠) = 𝑃(𝑠) + 𝐼(𝑠) = 𝐾1 +
𝐾2

𝑠
=

𝐾1 (𝑠 +
𝐾2
𝐾1

)

𝑠
 

Here, 𝑃(𝑠) = 𝐾1 and 𝐼(𝑠) = 𝐾2/𝑠.  

 

2.2.1. Characteristics of PI Controllers 

The frequency response of a PI controller is as shown below. 

 

Figure 14: Frequency response of PI controller 

 

• Magnitude plot: 

• Low: -slope gain. 

• Cut-off: half gain. 

• High: zero gain. 

• Phase-shift plot: 
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• Low: -90. 

• Cut-off: -45. 

• High: 0. 

With these characteristics, PI controller is used for improving steady-state error.  

It increases system type and hence steady-state error becomes zero. In this controller, zero at 𝑧𝑐 is small 
and negative. In practice, this controller needs active circuits to implement. 

 

2.2.2. Applications of PI Controllers 

The functions 𝑃(𝑠) and 𝐼(𝑠) can be chosen so the 𝑠 + 𝐾2/𝐾1 term (controller zero) cancels plant pole. 

Suppose a plant of a second-order system is:  

𝐺(𝑠) =
1

(1 + 𝑠𝑇1)(1 + 𝑠𝑇2)
 

If we apply PI to this plant, and make 𝐾2 /𝐾1 = 𝑇2, then 

𝑂(𝑠)

𝐸(𝑠)
= 𝐺𝑐(𝑠)𝐺(𝑠) = (

𝑠 + 𝐾1/𝐾2

𝑠
)

1

(1 + 𝑠𝑇1)(1 + 𝑠𝑇2)
=

1

𝑠(𝑠 + 𝑇1)
 

For a closed-loop system, the transfer function is: 

𝑇(𝑠) =
𝑂(𝑠)

𝐼(𝑠)
=

𝐺𝑐(𝑠)𝐺(𝑠)

1 + 𝐺𝑐(𝑠)𝐺(𝑠)
=

1
𝑠(𝑠 + 𝑇1)

1 +
1

𝑠(𝑠 + 𝑇1)

=
1

𝑠2 + 𝑠𝑇1 + 1
 

Note, the 𝐼(𝑠) term means that the steady-state value is 1. 

 

2.3. PD Controllers 

For a PD controller in a given control system as shown in the figure below. 

 

Figure 15: PD controller in the control system 
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For a PD controller, its transfer function equation is: 

𝐺1(𝑠) = 𝑃(𝑠) + 𝐷(𝑠) = 𝐾1 + 𝐾2𝑠 = 𝐾2(𝑠 + 𝐾1/𝐾2) 

Where: 𝑃(𝑠) = 𝐾1 and 𝐷(𝑠) = 𝐾2𝑠. 

 

2.3.1. Characteristics of PD Controllers 

The frequency response of a PD controller is as shown below. 

 

Figure 16: Frequency response of PD controller 

 

• Magnitude plot: 

• Low: zero gain. 

• Cut-off: half gain. 

• High: +slope gain. 

• Phase-shift plot: 

• Low: 0. 

• Cut-off: +45. 
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• High: +90. 

The PD controller is often used to improve transient response. 

In its design, its zero at −𝑧𝑐 is selected to indicate the design point. It requires active circuits to 
implement; implemented with rate feedback or with a pole (lead). Furthermore, this controller can 
cause noise and saturation. 

 

2.3.2. Applications of PD Controllers 

We could make 𝑠 + 𝐾1/𝐾2 term to cancel the plant pole. If the transfer function equation of the plant of 

a second-order system is:  

𝐺(𝑠) =
1

𝑠(𝑠 + 𝑇)
 

If PD is applied, time constant 𝐾1𝐾2 = 𝑇 then: 

𝑂(𝑠)

𝐸(𝑠)
= 𝐺1(𝑠)𝐺2(𝑠) = (1 + 𝑠𝑇)

1

𝑠(1 + 𝑠𝑇)
=

1

𝑠
 

The transfer function of the closed-loop system is: 

𝑇(𝑠) =
𝑂(𝑠)

𝐼(𝑠)
=

1/𝑠

1 + 1/𝑠
=

1

𝑠 + 1
 

 

2.4. PID Controllers 

For a PID controller as shown in the figure below 

 

Figure 17: PID controller in the control system 

 

For a PID controller, its transfer function equation is: 
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𝐺𝑐(𝑠) = 𝑃(𝑠) + 𝐼(𝑠) + 𝐷(𝑠) = 𝐾1 +
𝐾2

𝑠
+ 𝐾3𝑠 

Where: 𝑃(𝑠) = 𝐾1, 𝐼(𝑠) = 𝐾2/𝑠, and 𝐷(𝑠) = 𝐾3𝑠 

This gives: 

𝐺𝑐(𝑠) =
𝐾3𝑠2 + 𝐾1𝑠 + 𝐾2

𝑠
 

 

2.4.1. Characteristics of PID Controllers 

The responses of the PID controllers against the step and sinusoidal inputs are as shown in the figure 

below. 

  

  
 

Figure 18: Response of PID controllers with the step and sinusoidal inputs 

 

The PID controller is used to improve steady-state error and transient response. 

In its design, its lag zero at −𝑧𝑙𝑎𝑔 and pole at the origin improve steady-state error. Its lead zero at 

−𝑧𝑙𝑒𝑎𝑑 improves transient response. The lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, the origin and 

the lead zero at −𝑧𝑙𝑒𝑎𝑑 is selected to indicate the design point. Its implementation requires active 
circuits; implemented with rate feedback or with an additional pole. It can cause noise and saturation. 

 



Note 9a: Introduction to Controllers and Compensators 

XMUT315 – Note 9 - 19 

2.4.2. Applications of PID Controllers 

For a given second-order system with two poles, its transfer function is: 

𝐺(𝑠) =
1

1 + 𝑏𝑠 + 𝑎𝑠2
 

If 𝐾3 = 𝑎 and 𝐾1 = 𝑏, and 𝐾2 = 1, then 

𝑇(𝑠) =
𝑂(𝑠)

𝐸(𝑠)
= (

𝐾3𝑠2 + 𝐾1𝑠 + 𝐾2

𝑠
) (

1

1 + 𝑏𝑠 + 𝑎𝑠2
) = 𝐺𝑐(𝑠)𝐺(𝑠) =

1

𝑠
 

In all these examples, by careful arrangement, systems are first or second order. Cancellation may not 

give the best response, but analysis of systems is easier! 

 

3. Compensators 

Compared with the controllers, compensators are different in terms of their purposes and 

constructions. They are intended to be used for specific area of control system improvement and 

solution. Typically, they are made up of passive components in electronic systems. 

 

3.1. Lead Compensator 

For a lead compensator as shown in the figure below, the zero is located near y-axis compared with its 

pole i.e. 𝑃𝑐 > 𝑍𝑐. 

         

Figure 19: Lead compensator in the control system 

 

The transfer function equation of a lead compensator is: 
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𝐺𝑐(𝑠) =
1

𝛽
(

𝑠 +
1
𝑇

𝑠 +
1

𝛽 𝑇

)            (𝛽 < 1) 

Or 

𝐺𝑙𝑒𝑎𝑑(𝑠) =
𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
         with      |𝑝𝑐| > |𝑧𝑐| 

This consists of 1 pole and 1 zero with the magnitude of the pole is bigger than the magnitude of the 

zero.  

 

3.1.1. Characteristics of Lead Compensators 

Frequency response plot of lead compensator is as shown in the figure below. 

 

Figure 20: Frequency response of lead compensator 

 

• Magnitude plot: 

• Low: zero gain. 
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• Cut-off: half gain. 

• High: +finite gain. 

• Phase-shift plot: 

• Low: 0. 

• Cut-off: +45. 

• High: 0. 

 

The following figure shows frequency response plot of lead compensator with various values of 𝛽. 

 

Figure 20: Frequency response of lead compensator with various values of 𝛽 

 

The lead compensator is used to improve transient response. 

Its design typically places zero at −𝑧𝑐 and pole at −𝑝𝑐 at are selected to indicate design point. Its pole at 
−𝑝𝑐 is more negative than zero at −𝑧𝑐. Active circuits are not required to implement this compensator. 
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3.1.2. Applications of Lead Compensators 

In lead compensator, the zero is closer to the origin than the pole, that is: 

𝑧𝑐 < 𝑝𝑐  

The lead compensator influences transient response (e.g. % overshoot and settling times).  

The following diagram compares the transient responses of the uncompensated system with the 

compensated system. The lead compensator influences transient response (e.g. percentage overshoot 

and settling times) with 𝑎, 𝑏, and 𝑐 = increasing distance of the poles from origin. 

 

 

Figure 21: Transient responses of compensated and uncompensated systems 

 

3.2. Lag Compensators 

For a lag compensator as shown in the figure below, the pole is located closer to y- axis than its zero i.e. 

𝑍𝑐 > 𝑃𝑐. 
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Figure 22: Lag compensator in the control system 

 

The transfer function equation of a lag compensator is: 

𝐺𝑐(𝑠) = (
𝑠 +

1
𝑇

𝑠 +
1

𝛼𝑇

)                (𝛼 > 1) 

Or 

𝐺𝑙𝑎𝑔(𝑠) =
𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
       with            |𝑝𝑐| < |𝑧𝑐| 

This compensator consists of 1 pole and 1 zero with the magnitude of the pole is smaller than the 

magnitude of the zero.   

 

3.2.1. Characteristics of Lag Compensators 

Frequency response plot of lag compensator is as shown in the figure below. 



Note 9a: Introduction to Controllers and Compensators 

XMUT315 – Note 9 - 24 

 

Figure 23: Frequency response of lag compensator 

 

• Magnitude plot: 

• Low: +finite gain. 

• Cut-off: half gain. 

• High: zero gain. 

• Phase-shift plot: 

• Low: 0. 

• Cut-off: -45. 

• High: 0. 

 

The following figure shows frequency response plot of lag compensator with various values of 𝛼. 
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Figure 24: Frequency response of lag compensator with various values of 𝛼 

 

The lag compensator is used to improve steady-state error. 

When implementing this controller in the system, error is improved, but not driven to zero. Its pole at 
−𝑝𝑐 is small and negative and its zero at −𝑧𝑐 is close to, and to the left of, the pole at −𝑝𝑐. Active 
circuits are not required to implement this compensator. 

 

3.2.2. Applications of Lag Compensators 

In the lag compensator, the pole is closer to the origin than the zero, that is: 

𝑧𝑐 > 𝑝𝑐  

The lag compensator reduces steady-state error as shown in the figure below. 
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Figure 25: Transient responses of lag compensated and uncompensated system 

 

3.3. Lead-Lag Compensator 

For a lead-lag compensator as shown in the figure below, for its lead part, the zero is closer to the origin 

than the pole and for its lag part, the pole is closer to the origin than the zero. 

 

Figure 26: Lead-lag compensator in the control system 

 

The transfer function equation of a lead-lag compensator is: 

𝐺𝑐(𝑠) = (
𝑠 +

1
𝑇1

𝑠 +
𝛾
𝑇1

) (
𝑠 +

1
𝑇2

𝑠 +
1

𝛾𝑇2

)            (𝛾 > 1) 

• Or 
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𝐺𝑙𝑒𝑎𝑑−𝑙𝑎𝑔(𝑠) = 𝐺𝑙𝑒𝑎𝑑(𝑠)𝐺𝑙𝑎𝑔(𝑠) = (
𝑠 + 𝑧𝑐(𝑙𝑎𝑔)

𝑠 + 𝑝𝑐(𝑙𝑎𝑔)
) (

𝑠 + 𝑧𝑐(𝑙𝑒𝑎𝑑)

𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑)
) 

Since 𝛼𝛽 = 1, The pole and zero of the lag and lead parts of the lead-lag controller are: 

|𝑝𝑐(𝑙𝑎𝑔)| < |𝑧𝑐(𝑙𝑎𝑔)|      and      |𝑧𝑐(𝑙𝑒𝑎𝑑)| < |𝑝𝑐(𝑙𝑒𝑎𝑑)| 

 

3.3.1. Characteristics of Lead-Lag Compensators 

The figure given below shows frequency response of lead-lag compensator with various values of 𝛾 are 

varied. 

 

Figure 27: frequency response of lead-lag compensator with various values of 𝛾 

 

The lead-lag compensator can improve both steady-state error and transient response. 

The lag pole of this compensator at −𝑝𝑙𝑎𝑔 and lag zero at −𝑧𝑙𝑎𝑔 are used to improve steady-state error. 

Its lead pole at −𝑝𝑙𝑒𝑎𝑑 and lead zero at −𝑧𝑙𝑒𝑎𝑑 are used to improve transient response.  

The lag pole at −𝑝𝑙𝑎𝑔 is small and negative and the lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, lag 

pole at −𝑝𝑙𝑎𝑔.  
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Its lead zero at −𝑧𝑙𝑒𝑎𝑑 and the lead pole at −𝑝𝑙𝑒𝑎𝑑 are selected to indicate the design point.  

Its lead pole at −𝑝𝑙𝑒𝑎𝑑 is more negative than lead zero at −𝑧𝑙𝑒𝑎𝑑.  

In practice we do not need active circuits to implement it. 

 

3.3.2. Applications of Lead-Lag Compensators 

Considering the transfer function equation of the second-order plant is:  

𝐺(𝑠) =
𝐾

(𝑠 + 𝑇1)(𝑠 + 𝑇2)
 

For improving transient response, we can make 𝑧𝑐 of the lag part in the 𝐺𝑐(𝑠) to be equal to the largest 

of 𝑇1 and 𝑇2, say 𝑇2, to speed up the system.  

Then, the pole in the lag part is used to cancel the zero of the lead-part of the compensator leaving pole 

of the lead part to be varied to meet the improvement goal or the design specification.  

As a result, the open loop transfer function of the system becomes: 

𝑂(𝑠)

𝐸(𝑠)
= 𝐺𝑐(𝑠)𝐺(𝑠) = (

𝑠 + 𝑧𝑐(𝑙𝑎𝑔)

𝑠 + 𝑝𝑐(𝑙𝑎𝑔)
) (

𝑠 + 𝑧𝑐(𝑙𝑒𝑎𝑑)

𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑)
)

𝐾

(𝑠 + 𝑇1)(𝑠 + 𝑇2)
 

         =
𝐾

(𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑))(𝑠 + 𝑇1)
 

The closed-loop transfer function equation of the system is: 

𝑇(𝑠) =
𝑂(𝑠)

𝐼(𝑠)
=

Forward

1 − Loop
 

This gives: 

𝑇(𝑠) =
𝑂(𝑠)

𝐼(𝑠)
=

[
𝐾

(𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑))(𝑠 + 𝑇1)
]

1 − (−
𝐾

(𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑))(𝑠 + 𝑇1)
)

=
𝐾

(𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑))(𝑠 + 𝑇1) + 𝐾
 

    =
𝐾

𝑠2 + 𝑠(𝑝𝑐(𝑙𝑒𝑎𝑑) + 𝑇1) + (𝑝𝑐(𝑙𝑒𝑎𝑑)𝑇1) + 𝐾
 

The above transfer function equation is a further example of pole-zero cancellation for system 

improvement. This time, we can have a complete control of the location of the pole for improving the 

transient response of the system.  

Note: a pole is like 𝑠 + 𝑇1 term on the denominator and a zero is such a term on the numerator. 

For improving the steady-state condition of the system, we can make 𝑧𝑐 of the lead part in the 𝐺𝑐(𝑠) to 

be equal to the smaller of 𝑇1 and 𝑇2, say 𝑇1, to remove more dominant pole in the system.  
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Then, the pole in the lead part is used to cancel the zero of the lag-part of the compensator leaving the 

pole of the lag part to be varied and assign to be very close to the origin e.g. 𝑝𝑐(𝑙𝑎𝑔) ≅ 0 (to simulate an 

integral function like to the system). Thus, this would improve the steady-state condition of the system 

by reducing or removing the steady-state error in the system.  

With this placement the system is able to meet its steady-state improvement goal or the design 

specification. As a result, the open loop transfer function of the system becomes: 

𝑂(𝑠)

𝐸(𝑠)
= 𝐺𝑐(𝑠)𝐺(𝑠) = (

𝑠 + 𝑧𝑐(𝑙𝑎𝑔)

𝑠 + 𝑝𝑐(𝑙𝑎𝑔)
) (

𝑠 + 𝑧𝑐(𝑙𝑒𝑎𝑑)

𝑠 + 𝑝𝑐(𝑙𝑒𝑎𝑑)
)

𝐾

(𝑠 + 𝑇1)(𝑠 + 𝑇2)
=

𝐾

(𝑠 + 𝑝𝑐(𝑙𝑎𝑔))(𝑠 + 𝑇2)
 

The closed-loop transfer function equation of the system is: 

𝑇(𝑠) =
𝑂(𝑠)

𝐼(𝑠)
=

Forward

1 − Loop
 

This gives: 

𝑇(𝑠) =
𝑂(𝑠)

𝐼(𝑠)
=

[
𝐾

(𝑠 + 𝑝𝑐(𝑙𝑎𝑔))(𝑠 + 𝑇2)
]

1 − (−
𝐾

(𝑠 + 𝑝𝑐(𝑙𝑎𝑔))(𝑠 + 𝑇2)
)

=
𝐾

(𝑠 + 𝑝𝑐(𝑙𝑎𝑔))(𝑠 + 𝑇2) + 𝐾
 

When 𝑝𝑐(𝑙𝑎𝑔) ≅ 0, the equation above becomes: 

       𝑇(𝑠) =
𝐾

𝑠(𝑠 + 𝑇2) + 𝐾
=

𝐾

𝑠2 + 𝑠𝑇2 + 𝐾
 

 

4. Intro to Compensation Design 

We will focus on modifying system characteristics by applying feedback. Furthermore, we will be able to 

tailor the closed-loop transfer function with the addition of a compensator. 

Compensator design is a compromise between two competing goals.  

• Performance:  Keeping the open loop gain high reduces system errors and the effects of 

disturbances. 

• Stability: The closed loop system must be kept stable by carefully managing the gain where the 

phase approaches −180°. 

Compensator design can often be philosophically reduced to two (inter-related) problems e.g. one 

operating at low frequencies to achieve the required performance, the other at high frequency to 

ensure stability. 
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Figure 28: Frequency response of a given control system 

 

4.1. Compensator Design 

There are various approaches to designing a compensator: 

1. Choose a compensator structure and then tune it manually. 

2. Choose a compensator model and tune using a “recipe” (e.g.  Ziegler-Nichols). 

3. Use a model and solve for desired pole locations. 

4. Measure the system performance and use a graphical technique. 

5. Use a mathematical model with a graphical technique. 

6. Use mathematical tools to achieve optimal performance (State-Space Analysis). 

In the remaining lectures, we will focus on the graphical methods which form the classical control. These 

are mainly about items number 3 and 5 on the list. 
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Figure 29: Root locus, Bode and Nyquist diagrams for controller/compensator design 

 

 

 

4.2. System Topologies and Notations 

We will generally design out compensators assuming unity gain feedback with the compensator 𝐶(𝑠) 

placed in the forward path. Remember that this is equivalent to a system with the compensator in the 

feedback path. 
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Figure 30: Compensator arrangement in control systems 
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Appendix 1: Standard Controllers and Compensators in Control Systems 

 

Controller and 
Compensator  

Function Transfer Function Characteristics 

Controllers: 

P Improve transient 
response (up to a 
point) 

𝐾 a. Increases the gain of the system. 
b. Often result in a non-zero steady-state error. 
c. Relatively easy to implement. 

PI Improve steady-state 
error 

𝐾 (
𝑠 + 𝑧𝑐

𝑠
) 

a. Increases system type. 
b. Error becomes zero. 
c. Zero at 𝑧𝑐 is small and negative. 
d. Active circuits are required to implement. 

 PD Improve transient 
response 

𝐾(𝑠 + 𝑧𝑐) a. Zero at −𝑧𝑐 is selected to put the design point on the root locus. 
b. Active circuits are required to implement. 
c. It can cause noise and saturation; implement with rate feedback 

or with a pole (lead).  

PID Improve steady-state 
error and transient 
response 

𝐾 [
(𝑠 + 𝑧𝑙𝑎𝑔)(𝑠 + 𝑧𝑙𝑒𝑎𝑑)

𝑠
] 

a. Lag zero at −𝑧𝑙𝑎𝑔 and pole at the origin improve steady-state 

error. 
b. Lead zero at −𝑧𝑙𝑒𝑎𝑑 improves transient response. 
c. Lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, the origin. 

d. Lead zero at −𝑧𝑙𝑒𝑎𝑑 is selected to put the design point on the 
root locus. 

e. Active circuits are required to implement. 
f. It can cause noise and saturation; implement with rate feedback 

or with an additional pole. 

Compensators: 
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Lag Improve steady-state 
error 

(
𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
) 

Where: 

|𝑝𝑐| < |𝑧𝑐| 

a. Error is improved, but not driven to zero. 
b. Pole at −𝑝𝑐 is small and negative. 
c. Zero at −𝑧𝑐 is close to, and to the left of, the pole at −𝑝𝑐. 
d. Active circuits are not required to implement. 

Lead Improve transient 
response 

(
𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
) 

Where: 

|𝑝𝑐| > |𝑧𝑐| 

a. Zero at −𝑧𝑐 and pole at −𝑝𝑐 at are selected to put design point 
on the root locus. 

b. Pole at −𝑝𝑐 is more negative than zero at −𝑧𝑐. 
c. Active circuits are not required to implement. 

Lag-lead Improve steady-state 
error and transient 
response 

𝐾 [
(𝑠 + 𝑧𝑙𝑎𝑔)(𝑠 + 𝑧𝑙𝑒𝑎𝑑)

(𝑠 + 𝑝𝑙𝑎𝑔)(𝑠 + 𝑝𝑙𝑒𝑎𝑑)
] 

Where: 

|𝑝𝑐(𝑙𝑎𝑔)| < |𝑧𝑐(𝑙𝑎𝑔)| 

and 

 |𝑧𝑐(𝑙𝑒𝑎𝑑)| < |𝑝𝑐(𝑙𝑒𝑎𝑑)| 

 

a. Lag pole at −𝑝𝑙𝑎𝑔 and lag zero at −𝑧𝑙𝑎𝑔 are used to improve 

steady-state error. 
b. Lead pole at −𝑝𝑙𝑒𝑎𝑑 and lead zero at −𝑧𝑙𝑒𝑎𝑑 are used to 

improve transient response. 
c. Lag pole at −𝑝𝑙𝑎𝑔 is small and negative. 

d. Lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, lag pole at −𝑝𝑙𝑎𝑔 

e. Lead zero at −𝑧𝑙𝑒𝑎𝑑 and the lead pole at −𝑝𝑙𝑒𝑎𝑑 are selected to 
put the design point on the root locus. 

f. Lead pole at −𝑝𝑙𝑒𝑎𝑑 is more negative than lead zero at −𝑧𝑙𝑒𝑎𝑑. 
g. Active circuits are not required to implement. 

 


