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Note 9b: Applications of Controllers-Compensators

Topic
* Applications of controllers or compensators.

* Examples of applications of Proportional, Derivative, and Integral controllers and their
combinations.

* Examples of applications of Lag, Lead, and Lag-lead compensators.
* Practical circuit implementations of controllers or compensators.

* Tuning in of the controllers.

1. Application of Controllers

We will consider the following unity-feedback system. The output of the controller (1), which is equal to
the control input to the plant, is calculated in the time domain from the feedback error (e) as follows:

u(t) = c(t)e(t)

controller plant

—O—— C(s) »  P(s) >

Figure 1: Controller and plant in feedback control system

First, let's take a look at how the controller works in a closed-loop system using the block diagram
shown above.

The variable (e) represents the tracking error, the difference between the desired output () and the
actual output (y).
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This error signal (e) is fed to the controller, and the controller computes this error signal with the
parameter(s) of the controller with respect to time.

Depending on the type of controller, these parameters could be K, for proportional controller, K; /s for
integral controller, K;s for derivative controller or any of their combinations such as K, + K;/s for PI
controller, K;, + K4s for PD controller and K, + K;/s + Kgs for PID controller.

The control signal (1) to the plant is equal to the error times the magnitude of the parameters of the
controller. This control signal (u) is fed to the plant and the new output (y) is obtained. The new output
(y) is then fed back and compared to the reference to find the new error signal (e). The controller takes
this new error signal and computes an update of the control input. This process continues while the
controller is in effect.

Controller Plant

R(s) + <> E(s) = : Cls)
— = Gy(s) = Gs) -

Figure 2: A unity feedback control system with controller

The goal of the examples of controller applications e.g. Examples for Tutorial 1-5 in this section is to
show how each of the terms of the controller: Ky, K;, and K, contributes to obtaining the common
goals of fast rise time, minimal overshoot, and zero steady-state error.

Example for Tutorial 1 — Analyse System

Suppose we have a simple mass-spring-damper system as shown in the figure below. The governing

equation of this system is:
dx +b<dx>+k = F
"\ dx? ac) 7T

a. Derive the transfer function of the system.
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b. Ifm=1kg b=10Ns/m, k=20N/m, and F =1 N, determine the transfer function of the system.
c. Simulate the step response of the open-loop system in MATLAB.

d. Analyse the result of simulation in part (c) in terms of DC gain and steady-state error, rise time and
settling time. What are characteristics of the controller needed to fix the problems?

Answer
a. Taking the Laplace transform of the governing equation, we get:
ms2X(s) + bsX(s) + kX(s) = F(s)
The transfer function between the input force and the output displacement then becomes:

X(s)_ 1
F(s) ms?2+bs+k

b. Let:m=1kg, b=10Ns/m, k=20 N/m, and F =1 N. Substituting these values into the transfer
function obtained in part (a):
X(s) 1
F(s) s2410s+20

c. Let's first view the open-loop step response. The following figure shows the step response of the
open-loop system.
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d. The DC gain of the plant transfer function is 1/20 = 0.05, so 0.05 is the final value of the output to a
unit step input. This corresponds to a steady-state error of 0.95, which is quite large. Furthermore,
the rise time is about one second, and the settling time is about 1.5 seconds.

Thus, we need to design a controller that will reduce the rise time, reduce the settling time, and
eliminate the steady-state error.

1.1. Proportional Controllers

For a proportional controller, the control signal (u) to the plant is equal to the proportional gain (K})
times the magnitude of the error. The output of a proportional controller, which is equal to the control
input to the plant, is calculated in the time domain from the feedback error as follows:

u(t) = Kpe(t)

Thus, the transfer function of a proportional controller is found by taking the Laplace transform of
system equation:

Ge(s) = K,
Where: K;, = proportional gain.
controller plant
r T e u y
Kp —— P(s) >

Figure 3: A unity feedback control system with a proportional controller

Increasing the proportional gain (Kj,) has the effect of proportionally increasing the control signal for the
same level of error. The fact that the controller will "push" harder for a given level of error tends to
cause the closed-loop system to react more quickly, but also to overshoot more. Another effect of
increasing Kp is that it tends to reduce, but not eliminate, the steady-state error.

When we have the proportional controller, we see that the proportional controller (K,) reduces the rise
time, increases the overshoot, and reduces the steady-state error.

Tutorial for Example 2 — Adding P Controller
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For the given simple mass-spring-damper system in Tutorial for Example 1, add a proportional controller
in series with the system.

R(s) G,(s) > C(s)

—
w
—
-
.
—
v
—

=
g =

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate value of the parameter of the controller.
Then, simulate the transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time, overshoot, settling time and steady-state
error.

Answer

a. The transfer function equation of a proportional controller is:
Ge(s) = Kp
The closed-loop transfer function of our unity-feedback system with a proportional controller is as
follow, where X(s) is our output (equals Y (s)) and our reference R(s) is the input:

X(s) GGy
R(s) 1+ GG,

T(s) =

&(?:ﬁ%rﬁ)

1+&N?:ﬁ%:ﬁ)

Ky

TS24 10s + (20 + K,)

b. Let the proportional gain (K,) equal 300. The following figure shows the step response of the
example system with proportional controller.
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Step Response
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c. The above plot shows that the proportional controller reduces both the rise time and the steady-
state error, increases the overshoot, and decreases the settling time by a small amount.

1.2. Derivative Controllers

For a derivative controller, the control signal (1) to the plant is equal to the derivative gain (K;) times
the derivative of the error. The output of a derivative controller, which is equal to the control input to
the plant, is calculated in the time domain from the feedback error as follows:

de(t)
dt

u(t) = Kd

Thus, the transfer function of a derivative controller is found by taking the Laplace transform of system

equation:

G.(s) = K;s
Where: K; = derivative gain.
controller plant
' T e u y
- Kds > P(S) >

Figure 4: A unity feedback control system with D controller
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The addition of a derivative term to the controller (K;) adds the ability of the controller to "anticipate"
error.

With simple proportional control, if K, is fixed, the only way that the control will increase is if the error
increases. With derivative control, the control signal can become large if the error begins sloping
upward, even while the magnitude of the error is still relatively small. This anticipation tends to add
damping to the system, thereby decreasing overshoot. The addition of a derivative term, however, has
no effect on the steady-state error.

Now, let's take a look at the characteristics of the PD control. We see that the addition of derivative
control (K;) tends to reduce both the overshoot and the settling time.

Tutorial for Example 3 — Adding PD Controller

For the given simple mass-spring-damper system in Tutorial for Example 1, add a proportional-derivative
controller in series with the system.

E(s M si
& kptaestol 20 G o)

R(s) >

Gy(s)

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate values of the parameters of the controller.
Then, simulate the transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time, overshoot, settling time and steady-state
error.

Answer

a. The transfer function of the PD controller is (note: Ky = K, Ty):
G.(s) = Kygs + K,
The closed-loop transfer function of the given system with a PD controller is:

X(s) _ Ge(s)Gy(s)

T8 = e " T4 6.006,)
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1
(Kas +Kp) (52 105+ 20)

- 1
1+ (Kas + Kp) (52 T10s 1 20)

KdS + Kp
524+ (10 + Ky)s + (20 + K,)

b. Let K, equal 300 as before and let K; equal 10. The following figure shows the step response of the
example system with PD controller.
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c. This plot shows that the addition of the derivative term reduces both the overshoot and the settling
time, but it has a negligible effect on the rise time and the steady-state error.

1.3. Integral Controllers

For an integral controller, the control signal (u) to the plant is equal to the integral gain (K;) times the
integral of the error. The output of an integral controller, which is equal to the control input to the plant,
is calculated in the time domain from the feedback error as follows:

u(t) =K; J e(t)dt

Thus, the transfer function of an integral controller is found by taking the Laplace transform of system

equation:
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K;
Gc(s) = ?
Where: K; = integral gain.

controller plant

Ki/s 5| P(s) Y

A 4

A 4

Figure 5: A unity feedback control system with an integral controller

The addition of an integral term to the controller (K;) tends to help reduce steady-state error. If there is
a persistent, steady error, the integrator builds and builds, thereby increasing the control signal and
driving the error down.

A drawback of the integral term, however, is that it can make the system more sluggish (and oscillatory)
since when the error signal changes sign, it may take a while for the integrator to "unwind."

Let's investigate Pl control. We see that the addition of integral control (K;) tends to decrease the rise
time, increase both the overshoot and the settling time, and reduces the steady-state error.

Tutorial for Example 4 — Adding Pl Controller

For the given simple mass-spring-damper system in Tutorial for Example 1, add a proportional-integral
controller in series with the system.

(s M(s)]
R(s) ; & Kp [ 1+ ﬁ — G(s) > C(s)
Gi(5)

a. Derive the transfer function equation of the system.

b. Using trial and error method, determine the appropriate values of the parameters of the controller.
Then, simulate the transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time, overshoot, settling time and steady-state
error.
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Answer

a. The transfer function of the Pl controller is (note: K; = K, /T;):
Gc(s) =K;/s + K,
For the given system, the closed-loop transfer function with a Pl controller is:

X(s)  G(s)Gy(s)
R(s) ~ 1+ Gc()Gy(s)
1
_ (Ki/s + Kp) (m)
1
L+ (Ki/s + K) (75105 520)

_ KpS + Ki
5341052 + (20 + K, )s + K;

T(s) =

b. Let's reduce K, to 30 and let K; equal 70. The following figure shows the step response of the

example system with Pl controller.
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c. Compared with the response of the system with PD controller, the response of the system is less
oscillatory than before. Notice that the steady-state error is eliminated from the response.

But, on the other hand, the settling time of the system with Pl controller is longer than the system
with PD controller.
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1.4. PID Controllers

For a PID controller, the control signal (u) to the plant is equal to the proportional gain (Kj,) times the
magnitude of the error plus the integral gain (K;) times the integral of the error plus the derivative gain
(K4) times the derivative of the error.

The output of a PID controller, which is equal to the control input to the plant, is calculated in the time
domain from the feedback error as follows:
de(t)

dt

u(t) = Kye(t) + K; f e(t)dt + K,

The transfer function of a PID controller is found by taking the Laplace transform of system equation:

Kqs* + K,s + K;
S

K;
Kp + ? + KdS =
Where: K, = proportional gain, K; = integral gain, and K, = derivative gain.

controller plant

P(s)

h 4

Y

Kp+Kds+Ki/s

Figure 6: A unity feedback control system with proportional-integral-and-derivative controller

The PID controller tends to combine the characteristics of Pl and PD controller. So, it is capable for
improving both the transient response and steady-state characteristics of the system.

Tutorial for Example 5 — Adding PID Controller

For the given simple mass-spring-damper system in Tutorial for Example 1, add a proportional-integral-
derivative controller in series with the system.

MG 6y6) ——C(s)

1
Kp[l = Tos + Tys]

—

G,(s)

a. Derive the transfer function equation of the system.
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b. Using trial and error method, determine the appropriate values of the parameters of the controller.
Then, simulate the transient response of the system in MATLAB.

c. Analyse the response of the system in terms of rise time, overshoot, settling time and steady-state
error.

Answer

a. Now, let's examine PID control. The transfer function of the PID controller is (note K; = K, T4 and

Ki = Kp/Ti)Z
Ge(s) = Kgs + Ki/s + K,
The closed-loop transfer function of the given system with a PID controller is:

X(s)  Ge(s)Gy(s)
R(s) 14 G.(s)Gy(s)

T(s) =

1
(Kas + Ki/s + ) (75705 530)

= 1
1+ (Kgs + Ki/s + Kp) (m)

B Kqs* + Kps + K;
s34 (10 + Ky)s? + (20 + Kp)s + K;

b. After several iterations of tuning, the gains K, =350, K; =300, and K; = 50 provided the desired

response. The following figure shows the step response of the example system with PID controller.
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Now, we have designed a closed-loop system with no overshoot, fast rise time, and no steady-state

We have reduced the proportional gain (K,) because the integral controller also reduces the rise
time and increases the overshoot as the proportional controller does (double effect). The response
of the system shows that the integral controller eliminated the steady-state error in this case.

1.5. Summary of Applications of Controllers

The following tables list the summary of controller’s applications.

Controller | Transfer Function Characteristics
Name Equation
P K, Reduces the rise time, increases the overshoot, and reduces the
steady-state error.
I K; Reduces steady-state error.
s
D Kgs Increases the transient response responsiveness and
characteristics.
PI K, + K;/s Decrease the rise time, increase both the overshoot and the
settling time, and reduces the steady-state error.
PD K, + Kgs Reduce both the overshoot and the settling time.
PID Kys? + K,s + K; | Improve both the transient response and steady-state
s characteristics.

Table 1: Summary of the details of controllers

The general effects of each controller parameter : K, K;, and K; on a closed-loop system are
summarized in the table below. Note, these guidelines hold in many cases, but not all. If you truly want
to know the effect of tuning the individual gains, you will have to do more analysis, or will have to
perform testing on the actual system.

Controller | Rise Time Overshoot | Settling Time | Steady-State Error
K, Decrease Increase Small Change | Decrease
K; Decrease Increase Increase Decrease
K, Small Change | Decrease Decrease No Change

Table 2: General effects of controller parameters on a closed-loop system
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2. Applications of Compensator

Controllers and compensators are slightly different in terms of the of their characteristics and purpose,
their practical implementations, and their designs.

2.1. Phase-lag Compensator

Lag compensator is commonly employed in the control systems to improve steady-state conditions and
also transient response of the systems.

Reference  Error |Po| < |Zo]| Output
R(s) 4+ E(s) (s +Zo) G _:Y(S)
’ m - Gp(s) >
Controller Plant

Figure 7: Block diagram of a lag compensator with the plant

Lag compensators reduce steady-state error, so sometimes we want smaller steady-state error rather
than shorter rise and settling time as in a lead compensator.

The integrator in Pl controller can cause some practical problems, e.g., “integrator windup” due to
actuator saturation. Pl controller is often approximated by “lag control.”

(s — zp)
(s —po)
That is, the pole is closer to the origin than the zero. Because |z,| < |py|, the phase " added to the

open-loop transfer function is negative. . . “phase lag”. Pole often placed very close to zero. e.g., pg =
0.01. Zero is placed near pole. e.g., z; = 0.1.

Ge(s) = with  |po| <2l

Imag.

o ~- Real R
v(t) . Vo(t)

-Zo -Po i(t)
T

Figure 8: poles and zeros of lag compensator in the s-plane and its circuit implementation
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We want |G.(s)| = 1 for all s to preserve transient response (and hence, have nearly the same root
locus as for a proportional controller). The idea is to improve steady-state error but to modify the
transient response as little as possible. That is, using proportional control, we have pole locations we like
already, but poor steady-state error. So, we add a lag compensator to minimally disturb the existing
good pole locations but improve steady-state error.

Im
e 'a3 S
—d —b Re

Figure 9: Poles and zeros of the system in the s-plane

Good steady-state error without overflow problems. Very similar to proportional control. The
uncompensated system had loop gain:

K (before) = lir% G(s)
S—

The lag-compensated system has loop gain:
. Zo\ .
K (after) = lim G.(s)G(s) = (—) lim G (s)
50 Py/ s—0

Since |zy| > |pyl, there is an improvement in the position/velocity/acceleration error constant of the
system, and a reduction in steady-state error. Transient response is mostly unchanged, but slightly
slower settling due to small-magnitude slow “tail” caused by lag compensator.

Example for Tutorial 6 — Adding Lag Compensator

The control system given below suffers from issues in both steady-state and transient response
conditions.

1
P(S) = m and C(S) =1

* Steady-state: non-zero steady-state error.

* Transient response: sluggish system that takes time to settle down.
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compensator plant
U(s) + 1 Y ()

T 1) | G

a. Simulate the uncompensated system in MATLAB. Comment on the result of the simulation.

b. Design a lead compensator that will be able to fix the problem observed in part (a).

c. Simulate in MATLAB and compare the uncompensated and compensated systems. Observe whether
the compensator has achieved its purpose.

Answer

a. Looking into the step response of the given system, there are issues as highlighted before e.g. non-
zero steady-state error and slow (sluggish) response of the system.

Step Response
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b. By trial and error, the gain and the pole and zero of the lead compensator with K =1, 10, and 100

are determined:

K(s+1)
Ge(s) =001

The following figure shows the given system with lag compensator.
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compensator plant
r{s) 4+ . K(S"‘] ] 1 Y (s)

‘T 5+001] " (et 1)s+2) >

Looking into the step response of the compensated system with the lag compensator, the plot

shows smaller steady-state error than uncompensated system. Plots shown are with K = 1 (orange
line), K = 10 (yellow line), and K = 100 (purple line).

C.

Step Response
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Notice the growing oscillation as you increase the system gain (K), but settling time increases for all
cases.

2.2. Phase-lead Compensator

Lead compensator is typically used in the control systems to improve the transient response and
stability of the systems.
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Reference  Error |zo| < [Pol Output
R(s) 4+ E(s) (s+Zo) c ’Y(S)

] (s + Po) Gpls)

Controller Plant

Figure 10: Block diagram of a lead compensator with the plant

The lead compensators improve transient response and stability, but they do not typically reduce
steady-state error.

Derivative magnifies noise. Instead of D-control or PD-control use “lead control.”

s—2z
Ge(s) = M with  |zp| < |pol
(s —po)

That is, the zero is closer to the origin than the pole.

, C
Imag. > H
|,
AN
I 1
AY4 I . Rl
7% O Real
-Po -Zo vi(®) R, Vo(t)

Figure 11: poles and zeros of lead compensator in the s-plane and its circuit implementation

Lead compensator has the same form as lag compensator, but with different intent:

* Lag compensator does not change locus much since Py = Z, = 0. Instead, lag compensator
improves steady-state error.

* Lead compensator does change locus. Pole and zero locations chosen so that locus will pass
through some desired point s = s;.

Example for Tutorial 7 — Adding Lead Compensator
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The control system given in the figure below suffers from issues in the transient response conditions.

4
P(S) = m and C(S) =1

* Rise time: take some time for the system to rise up.

e Settling time: sluggish system that takes time to settle down.

compensator plant

U(s) (s
+-\‘T » C(s) '{ D) =,

a. Simulate the uncompensated system in MATLAB. Comment on the result of the simulation.
b. Design a lead compensator that will be able to fix the problem observed in part (a).

c. Simulate in MATLAB and compare the uncompensated and compensated systems. Observe whether

the compensator has achieved its purpose.

Answer

a. Looking into the step response of the given system, there are issues as highlighted before e.g. slow
(sluggish) response of the system e.g. long rise time and settling time.

Step Response
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b. By trial and error, the gain and the pole and zero of the lead compensator are determined.
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4.68(s + 2.9)
Ge(s) = s+54

The following figure shows the compensated system with the lead compensator.

COmpensator plan‘t
U(s) + s+2.9 = LG
46D G .
g s+54 oyt

From the step response plot of the uncompensated and compensated systems with lead
compensator as shown in the figure below, the compensated system (red line) reaches steady state

faster (shorter rise and settling times) than uncompensated system (blue line).

Although, on the other hand, it has a higher percentage overshoot, M,,.

Step Response
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——  Uncompensated
12 P - |
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Sost |
g II
2l |
< 06 |
04 |
02
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2.3. Lead-Lag Compensator
For lead-lag compensator, it combines lead compensator and lag compensator. Lead-lag compensator

provides the benefits of both lead and lag compensators e.g. improve performance in terms of steady

state and transient responses.
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Error
Input ! s+a, Qutput
P s+a, || s+a, - Gpls) p -
s+b, )\ s+b,
Controller Plant

Figure 12: Block diagram of a lead-lag compensator with the plant

The transfer function of the lead-lag compensator is as given below.

(S — Zlag) (s = Zieqa)
(S - plag) (s — Preaa)

with

|plag| < |Zlag| and |Zlead| < |plead|

The lead—lag compensator improves both steady-state error and transient response performance.
Design of the lead-lag compensator requires careful design of its individual parts e.g. lag compensator
and lead compensator. Trial and error is typically employed to get the best set up for the lead-lag
compensator.

Imag. C,
]
-Plead -Zlag —— AW ®
_— - Real R, R
-Zlead -Plag v, (t) = v, (t)
i(t) p— &,

Figure 13: Poles and zeros of lead-lag compensator in the s-plane and its circuit implementation

If we must satisfy both the transient and steady-state specifications:

1. Design a lead compensator to meet transient specification first.

2. Include lead compensator with plant after its design is final.
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3. Design a lag compensator (where “plant” = actual plant and lead compensator combined) to
meet steady-state specification.

When a lead-lag compensator is added into the system, the following figure shows step response and
ramp response of the uncompensated, lead compensated, and lead-lag compensated systems.

1.4

= With lead:comper

sator

= \Nith lead-lag compensator

Figure 14: Step responses of uncompensated and compensated systems with lead and lead-lag
compensators

As shown in the figures, lead-lag compensator provides the benefits of both lead and lag compensators
e.g. improve performance of the system in terms of steady-state and transient response.

Uinit ramp input

— Uncompensated
= With lead compensator

: \
=== \Nith lead-lag compens:

|

0 1 2 3 L 5

Figure 15: Ramp responses of uncompensated and compensated systems with lead and lead-lag
compensators

2.4. Summary of Applications of Compensators

The following table outlines the brief summary of applications of the compensators used in control
systems.
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Name of Transfer Function Equation Characteristics

Compensator

Lag (s —zp) ) It improves steady-state error.
—— with [po| <z
(s = Ppo)

Lead (s —zp) . It improves transient response
—— with |z| <|pol
(s —po) performance.

Lead-lag (s — Zlag) (S — Zieqq) It improves both steady-state error and

(s — Prag) (5 — Preaa)
with

|plag| < |Zlag| and |Zlead| < |plead|

transient response performance.

Table 3: Summary of details of compensators

3. Practical Implementations

Practical implementation of controllers or compensators with op amp-based amplifier circuits. Practical
implementations of controllers P, I, D, and any of their combinations. Practical implementations of Lead,
Lag, and Lead-lag compensators. We derived as the transfer function of an inverting operational
amplifier whose configuration is shown above:

Vo(s) _ Za(s)
ZONFAS

Zy(5)

. V (5)

Figure 16: Impedances in the inverting operational amplifier circuit

By judicious choice of Z; (s) and Z,(s), this circuit is used as a building block to implement the
compensators and controllers, such as PID controllers and lag-lead compensators using operational

amplifiers.

3.1. Practical Active Circuits for Controllers

The following table outlines the practical active circuit for realising controller.
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Function Z,(s) Zy(s) G.(s) = Z1(s)
¢ Z,(s)
Proportional R,
R R ——
(gain) 1 z R,
1
Integral R C _ (W)
s
Derivative C R —RCs
1
. Ri\ (TR, C
Pl controller Ry R, and C (in series) - (—)
R, s
1
PD controller | € and R (in parallel) R, —R,C (s + ﬁ)
1
1
PID C; and R, (in parallel) | R, and C, (in series) | — R v Oy pycys + T2
controller ! 1unp z 2 R, ' C, 1

Table 4: Summary of practical implementations of active circuit controllers

Z](.’!)
i(s) f\/\/\/ Vl(.i')
[E— - l-n

Figure 17: Practical active circuits for implementing controllers or compensators

3.2. Practical Circuits for Compensators

The following table shows the practical active circuits for realising the compensator.

Function Z(s) Zy(s) G.(s) = Z1(s)
Zy(s)
Lag C, and Ry (in parallel) | C; and R, (in parallel) s+ _1
compensator (Cl) R, G
— (=) —
&

s+ R,C,

where R,C, > R,1C;
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Lead C; and R, (in parallel) | C, and R, (in parallel) n 1
C\[°TR.C
compensator — (_) —111
&)
s+ R,C,
where R,C, < R1C;
Lead-Lag Cascading lag compensator with lead compensator (as shown below).
compensator

Table 5: Summary of practical implementations of active circuit compensators

v;(1)

Lag compensator
R,Cy> R Gy

f/

Cy

| £

[N

Ry
& A\
€
Ry =

v, (1)

L

Lead com pensator

RS(?L;) R4C4

Figure 18: Practical cascading active circuits for implementing the lead-lag compensators

The following table shows the practical passive circuits for realising the compensator.

: Vo(s)
Function Vi(s) Vo(s) G.(s) = 70
i
Lag Ry, R,,and C (allin CandR, sS4 1
compensator series) (both in ( Ry ) R,C
i Ri + R, 1
series) s+ R TRIC
Lead C and Ry (both in R, s+ 1
compensator parallel) and in series T R, C T
Wlth Rz S+R1C+R2C
Lead-Lag C; and Ry(both in C, and R, (s n 1 ) (s n 1 )
compensator parallel) and in series (both in T };16'1 T R2Cy -
series) + + + +
s (R161 R,C, chl) S TR.R,C.C,
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with C, and R, (both in
series)

Table 6: Summary of practical implementations of passive circuit compensators

Lag compensator Lead compensator Lag-lead compensator

Figure 19: Practical passive circuits for implementing compensators

Example for Tutorial 8 - PID Controller Circuit

Design a practical implementation of the PID controller using op-amp based circuit when the transfer
function of the PID controller is:

(s +55.92)(s + 0.5)
s

Gc (S) =
Answer

The transfer function equation of the controller can be put in the form:

27.96
G.(s) =s+56.42 + —

Equating the transfer function of the controller with the transfer function of PID controller from the
table.

1
R1C2

2796 (R, C,
—:<_+_)+R2C15+

+ 56.42 +
° R, " C,
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Comparing the transfer function of the PID controller in the table with the controller, we obtain the
following three relationships:

R, (;
—+—=156.42 R,C; =1 1/R,C, = 27.96

Ry G
Since there are four unknowns and three equations, we arbitrarily select a practical value for one of the
elements. Selecting C, = 0.1 pF, the remaining values are found to be R; =357.65 kQ, R, = 178,891 kQ,
and C; = 5.59 pF.

The complete op-amp based circuit for the Pl controller is shown in the figure below, where the circuit
element values have been rounded off.

5.6 uF VoV

_{ A
\ 'lv'[{”

v;(t)

— v,(1)

LAANA - T

ITAYARY, b
358 kQ —

4. Configuring the Controller

In majority of the cases, compensator is commonly designed for tackling a particular issue or problem in
control system with its specific set up or arrangement.

On the other hand, controller is typically intended and designed to be able to be adjusted or tuned-in to
manage the operation of the system.

There are many approaches to configure controllers. But, these are typically classified into e.g. ad-hoc
(on the spot), experimentation, or prescriptive formulas.

4.1. Methods for Configuring/Tuning-In Controller

There are various ways to configure and to tune in the controller in control system.

Method | Advantages Disadvantages
Manual . . .

. No math required. Requires experience.
tuning

Software | Consistent tuning, can employ computer- L
. ) Some cost or training involved.
tools automated control system design techniques,
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may include devices analysis, allows
simulation before implementation, and can
support non-steady-state (NSS) tuning.

Ziegler— Process upset, some trial-and-error, very
. Proven method. i i
Nichols aggressive tuning.
Tyreus- Process upset, some trial-and-error, very
Proven method. i i
Luyben aggressive tuning.
Cohen— Some math required and only good for
Good process models. i
Coon first-order processes.
T Can be used for auto tuning; amplitude is . o
Astrom- o . The process itself is inherently
B minimum so this method has lowest process )
Hagglund oscillatory.
upset.

Table 7: Common methods for configuring the controllers

4.2. General Tips for Designing a PID Controller

When you are designing a PID controller for a given system, follow the steps shown below to obtain a
desired response.

1. Obtain an open-loop response and determine what needs to be improved.
2. Add a proportional control to improve the rise time.

3. Add a derivative control to reduce the overshoot.

4. Add an integral control to reduce the steady-state error.

5. Adjust each of the gains K, K;, and K until you obtain a desired overall response. You can
always refer to the table shown to find out which controller controls which characteristics.

Lastly, please keep in mind that you do not need to implement all three controllers (proportional,
derivative, and integral) into a single system, if not necessary.

For example, if a Pl controller meets the given requirements (like the above example), then you do not
need to implement a derivative controller on the system. Keep the controller as simple as possible.
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