
 

XMUT315 Control Systems Engineering 

Note 9b: Applications of Controllers-Compensators 
 

Topic 

• Applications of controllers or compensators. 

• Examples of applications of Proportional, Derivative, and Integral controllers and their 

combinations. 

• Examples of applications of Lag, Lead, and Lag-lead compensators. 

• Practical circuit implementations of controllers or compensators. 

• Tuning in of the controllers. 

 

1. Application of Controllers 

We will consider the following unity-feedback system. The output of the controller (𝑢), which is equal to 

the control input to the plant, is calculated in the time domain from the feedback error (𝑒) as follows: 

𝑢(𝑡) = 𝑐(𝑡)𝑒(𝑡) 

 

Figure 1: Controller and plant in feedback control system 

 

First, let's take a look at how the controller works in a closed-loop system using the block diagram 

shown above.  

The variable (𝑒) represents the tracking error, the difference between the desired output (𝑟) and the 

actual output (𝑦).  
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This error signal (𝑒) is fed to the controller, and the controller computes this error signal with the 

parameter(s) of the controller with respect to time.  

Depending on the type of controller, these parameters could be 𝐾𝑝 for proportional controller, 𝐾𝑖/𝑠 for 

integral controller, 𝐾𝑑𝑠 for derivative controller or any of their combinations such as 𝐾𝑝 + 𝐾𝑖/𝑠 for PI 

controller, 𝐾𝑝 + 𝐾𝑑𝑠 for PD controller and 𝐾𝑝 + 𝐾𝑖/𝑠 + 𝐾𝑑𝑠 for PID controller. 

The control signal (𝑢) to the plant is equal to the error times the magnitude of the parameters of the 

controller. This control signal (𝑢) is fed to the plant and the new output (𝑦) is obtained. The new output 

(𝑦) is then fed back and compared to the reference to find the new error signal (𝑒). The controller takes 

this new error signal and computes an update of the control input. This process continues while the 

controller is in effect. 

 

Figure 2: A unity feedback control system with controller 

 

The goal of the examples of controller applications e.g. Examples for Tutorial 1-5 in this section is to 

show how each of the terms of the controller: 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑, contributes to obtaining the common 

goals of fast rise time, minimal overshoot, and zero steady-state error. 

 

Example for Tutorial 1 – Analyse System 

 

Suppose we have a simple mass-spring-damper system as shown in the figure below. The governing 

equation of this system is: 

𝑚 (
𝑑2𝑥

𝑑𝑥2) + 𝑏 (
𝑑𝑥

𝑑𝑡
) + 𝑘𝑥 = 𝐹 

 

 

a. Derive the transfer function of the system. 
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b. If 𝑚 = 1 kg, 𝑏 = 10 N s/m, 𝑘 = 20 N/m, and 𝐹 = 1 N, determine the transfer function of the system. 

c. Simulate the step response of the open-loop system in MATLAB. 

d. Analyse the result of simulation in part (c) in terms of DC gain and steady-state error, rise time and 

settling time. What are characteristics of the controller needed to fix the problems? 

 

Answer 

a. Taking the Laplace transform of the governing equation, we get: 

𝑚𝑠2𝑋(𝑠) + 𝑏𝑠𝑋(𝑠) + 𝑘𝑋(𝑠) = 𝐹(𝑠) 

The transfer function between the input force and the output displacement then becomes:  

𝑋(𝑠)

𝐹(𝑠)
=

1

𝑚𝑠2 + 𝑏𝑠 + 𝑘
 

 

b. Let: 𝑚 = 1 kg, 𝑏 = 10 N s/m, 𝑘 = 20 N/m, and 𝐹 = 1 N. Substituting these values into the transfer 

function obtained in part (a): 

𝑋(𝑠)

𝐹(𝑠)
=

1

𝑠2 + 10𝑠 + 20
 

 

c. Let's first view the open-loop step response. The following figure shows the step response of the 

open-loop system. 
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d. The DC gain of the plant transfer function is 1/20 = 0.05, so 0.05 is the final value of the output to a 

unit step input. This corresponds to a steady-state error of 0.95, which is quite large. Furthermore, 

the rise time is about one second, and the settling time is about 1.5 seconds.  

Thus, we need to design a controller that will reduce the rise time, reduce the settling time, and 

eliminate the steady-state error. 

 

1.1. Proportional Controllers 

For a proportional controller, the control signal (𝑢) to the plant is equal to the proportional gain (𝐾𝑝) 

times the magnitude of the error. The output of a proportional controller, which is equal to the control 

input to the plant, is calculated in the time domain from the feedback error as follows: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) 

Thus, the transfer function of a proportional controller is found by taking the Laplace transform of 

system equation: 

𝐺𝑐(𝑠) = 𝐾𝑝 

Where: 𝐾𝑝 = proportional gain. 

 

Figure 3: A unity feedback control system with a proportional controller 

 

Increasing the proportional gain (𝐾𝑝) has the effect of proportionally increasing the control signal for the 

same level of error. The fact that the controller will "push" harder for a given level of error tends to 

cause the closed-loop system to react more quickly, but also to overshoot more. Another effect of 

increasing 𝐾𝑝 is that it tends to reduce, but not eliminate, the steady-state error. 

When we have the proportional controller, we see that the proportional controller (𝐾𝑝) reduces the rise 

time, increases the overshoot, and reduces the steady-state error. 

 

Tutorial for Example 2 – Adding P Controller 
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For the given simple mass-spring-damper system in Tutorial for Example 1, add a proportional controller 

in series with the system. 

 

a. Derive the transfer function equation of the system. 

b. Using trial and error method, determine the appropriate value of the parameter of the controller. 

Then, simulate the transient response of the system in MATLAB. 

c. Analyse the response of the system in terms of rise time, overshoot, settling time and steady-state 

error.   

 

Answer 

a. The transfer function equation of a proportional controller is: 

𝐺𝑐(𝑠) = 𝐾𝑝 

The closed-loop transfer function of our unity-feedback system with a proportional controller is as 

follow, where 𝑋(𝑠) is our output (equals 𝑌(𝑠)) and our reference 𝑅(𝑠) is the input: 

𝑇(𝑠) =
𝑋(𝑠)

𝑅(𝑠)
=

𝐺𝑐𝐺𝑝

1 + 𝐺𝐶𝐺𝑝
 

         =
𝐾𝑝 (

1
𝑠2 + 10𝑠 + 20

)

1 + 𝐾𝑝 (
1

𝑠2 + 10𝑠 + 20
)

 

          =
𝐾𝑝

𝑠2 + 10𝑠 + (20 + 𝐾𝑝)
 

 

b. Let the proportional gain (𝐾𝑝) equal 300. The following figure shows the step response of the 

example system with proportional controller. 
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c. The above plot shows that the proportional controller reduces both the rise time and the steady-

state error, increases the overshoot, and decreases the settling time by a small amount. 

 

1.2. Derivative Controllers 

For a derivative controller, the control signal (𝑢) to the plant is equal to the derivative gain (𝐾𝑑) times 

the derivative of the error. The output of a derivative controller, which is equal to the control input to 

the plant, is calculated in the time domain from the feedback error as follows: 

𝑢(𝑡) = 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 

Thus, the transfer function of a derivative controller is found by taking the Laplace transform of system 

equation: 

𝐺𝑐(𝑠) = 𝐾𝑑𝑠 

Where: 𝐾𝑑 = derivative gain. 

 

Figure 4: A unity feedback control system with D controller 
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The addition of a derivative term to the controller (𝐾𝑑) adds the ability of the controller to "anticipate" 

error.  

With simple proportional control, if 𝐾𝑝 is fixed, the only way that the control will increase is if the error 

increases. With derivative control, the control signal can become large if the error begins sloping 

upward, even while the magnitude of the error is still relatively small. This anticipation tends to add 

damping to the system, thereby decreasing overshoot. The addition of a derivative term, however, has 

no effect on the steady-state error. 

Now, let's take a look at the characteristics of the PD control. We see that the addition of derivative 

control (𝐾𝑑) tends to reduce both the overshoot and the settling time.  

 

Tutorial for Example 3 – Adding PD Controller 

 

For the given simple mass-spring-damper system in Tutorial for Example 1, add a proportional-derivative 

controller in series with the system. 

 

a. Derive the transfer function equation of the system. 

b. Using trial and error method, determine the appropriate values of the parameters of the controller. 

Then, simulate the transient response of the system in MATLAB. 

c. Analyse the response of the system in terms of rise time, overshoot, settling time and steady-state 

error.   

 

Answer 

a. The transfer function of the PD controller is (note: 𝐾𝑑 = 𝐾𝑝𝑇𝑑): 

𝐺𝑐(𝑠) = 𝐾𝑑𝑠 + 𝐾𝑝 

The closed-loop transfer function of the given system with a PD controller is:  

𝑇(𝑠) =
𝑋(𝑠)

𝑅(𝑠)
=

𝐺𝑐(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑝(𝑠)
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          =
(𝐾𝑑𝑠 + 𝐾𝑝) (

1
𝑠2 + 10𝑠 + 20

)

1 + (𝐾𝑑𝑠 + 𝐾𝑝) (
1

𝑠2 + 10𝑠 + 20
)

 

          =
𝐾𝑑𝑠 + 𝐾𝑝

𝑠2 + (10 + 𝐾𝑑)𝑠 + (20 + 𝐾𝑝)
 

 

b. Let 𝐾𝑝 equal 300 as before and let 𝐾𝑑 equal 10. The following figure shows the step response of the 

example system with PD controller. 

 

c. This plot shows that the addition of the derivative term reduces both the overshoot and the settling 

time, but it has a negligible effect on the rise time and the steady-state error. 

 

1.3. Integral Controllers 

For an integral controller, the control signal (𝑢) to the plant is equal to the integral gain (𝐾𝑖) times the 

integral of the error. The output of an integral controller, which is equal to the control input to the plant, 

is calculated in the time domain from the feedback error as follows: 

𝑢(𝑡) = 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 

Thus, the transfer function of an integral controller is found by taking the Laplace transform of system 

equation: 
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𝐺𝑐(𝑠) =
𝐾𝑖

𝑠
 

Where: 𝐾𝑖 = integral gain. 

 

Figure 5: A unity feedback control system with an integral controller 

 

The addition of an integral term to the controller (𝐾𝑖) tends to help reduce steady-state error. If there is 

a persistent, steady error, the integrator builds and builds, thereby increasing the control signal and 

driving the error down.  

A drawback of the integral term, however, is that it can make the system more sluggish (and oscillatory) 

since when the error signal changes sign, it may take a while for the integrator to "unwind." 

Let's investigate PI control. We see that the addition of integral control (𝐾𝑖) tends to decrease the rise 

time, increase both the overshoot and the settling time, and reduces the steady-state error.  

 

Tutorial for Example 4 – Adding PI Controller 

 

For the given simple mass-spring-damper system in Tutorial for Example 1, add a proportional-integral 

controller in series with the system. 

 

a. Derive the transfer function equation of the system. 

b. Using trial and error method, determine the appropriate values of the parameters of the controller. 

Then, simulate the transient response of the system in MATLAB. 

c. Analyse the response of the system in terms of rise time, overshoot, settling time and steady-state 

error.   
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Answer 

a. The transfer function of the PI controller is (note: 𝐾𝑖 = 𝐾𝑝/𝑇𝑖): 

𝐺𝑐(𝑠) = 𝐾𝑖/𝑠 + 𝐾𝑝 

For the given system, the closed-loop transfer function with a PI controller is:  

𝑇(𝑠) =
𝑋(𝑠)

𝑅(𝑠)
=

𝐺𝑐(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑝(𝑠)
 

          =
(𝐾𝑖/𝑠 + 𝐾𝑝) (

1
𝑠2 + 10𝑠 + 20

)

1 + (𝐾𝑖/𝑠 + 𝐾𝑝) (
1

𝑠2 + 10𝑠 + 20
)

 

         =
𝐾𝑝𝑠 + 𝐾𝑖

𝑠3+10𝑠2 + (20 + 𝐾𝑝)𝑠 + 𝐾𝑖

 

 

b. Let's reduce 𝐾𝑝 to 30 and let 𝐾𝑖 equal 70.  The following figure shows the step response of the 

example system with PI controller. 

 

 

c. Compared with the response of the system with PD controller, the response of the system is less 

oscillatory than before. Notice that the steady-state error is eliminated from the response.  

 

But, on the other hand, the settling time of the system with PI controller is longer than the system 

with PD controller.  
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1.4. PID Controllers 

For a PID controller, the control signal (𝑢) to the plant is equal to the proportional gain (𝐾𝑝) times the 

magnitude of the error plus the integral gain (𝐾𝑖) times the integral of the error plus the derivative gain 

(𝐾𝑑) times the derivative of the error. 

The output of a PID controller, which is equal to the control input to the plant, is calculated in the time 

domain from the feedback error as follows: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 

The transfer function of a PID controller is found by taking the Laplace transform of system equation: 

𝐾𝑝 +
𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 =

𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠
 

Where: 𝐾𝑝 = proportional gain, 𝐾𝑖 = integral gain, and 𝐾𝑑 = derivative gain. 

 

Figure 6: A unity feedback control system with proportional-integral-and-derivative controller 

 

The PID controller tends to combine the characteristics of PI and PD controller. So, it is capable for 

improving both the transient response and steady-state characteristics of the system. 

 

Tutorial for Example 5 – Adding PID Controller 

 

For the given simple mass-spring-damper system in Tutorial for Example 1, add a proportional-integral-

derivative controller in series with the system. 

 

a. Derive the transfer function equation of the system. 
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b. Using trial and error method, determine the appropriate values of the parameters of the controller. 

Then, simulate the transient response of the system in MATLAB. 

c. Analyse the response of the system in terms of rise time, overshoot, settling time and steady-state 

error.   

Answer 

a. Now, let's examine PID control. The transfer function of the PID controller is (note 𝐾𝑑 = 𝐾𝑝𝑇𝑑 and 

𝐾𝑖 = 𝐾𝑝/𝑇𝑖): 

𝐺𝑐(𝑠) = 𝐾𝑑𝑠 + 𝐾𝑖/𝑠 + 𝐾𝑝 

The closed-loop transfer function of the given system with a PID controller is: 

𝑇(𝑠) =
𝑋(𝑠)

𝑅(𝑠)
=

𝐺𝑐(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑝(𝑠)
 

          =
(𝐾𝑑𝑠 + 𝐾𝑖/𝑠 + 𝐾𝑝) (

1
𝑠2 + 10𝑠 + 20

)

1 + (𝐾𝑑𝑠 + 𝐾𝑖/𝑠 + 𝐾𝑝) (
1

𝑠2 + 10𝑠 + 20
)

 

          =
𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠3 + (10 + 𝐾𝑑)𝑠2 + (20 + 𝐾𝑝)𝑠 + 𝐾𝑖

 

 

b. After several iterations of tuning, the gains 𝐾𝑝 = 350, 𝐾𝑖 = 300, and 𝐾𝑑 = 50 provided the desired 

response. The following figure shows the step response of the example system with PID controller. 
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c. Now, we have designed a closed-loop system with no overshoot, fast rise time, and no steady-state 

error.  

 

We have reduced the proportional gain (𝐾𝑝) because the integral controller also reduces the rise 

time and increases the overshoot as the proportional controller does (double effect). The response 

of the system shows that the integral controller eliminated the steady-state error in this case.  

 

1.5. Summary of Applications of Controllers 

The following tables list the summary of controller’s applications.  

Controller 

Name 

Transfer Function 

Equation 

Characteristics 

P 𝐾𝑝 Reduces the rise time, increases the overshoot, and reduces the 

steady-state error. 

I 𝐾𝑖

𝑠
 

Reduces steady-state error. 

D 𝐾𝑑𝑠 Increases the transient response responsiveness and 

characteristics. 

PI 𝐾𝑝 + 𝐾𝑖/𝑠 Decrease the rise time, increase both the overshoot and the 

settling time, and reduces the steady-state error. 

PD 𝐾𝑝 + 𝐾𝑑𝑠 Reduce both the overshoot and the settling time. 

PID 𝐾𝑑𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠
 

Improve both the transient response and steady-state 

characteristics. 

Table 1: Summary of the details of controllers 

 

The general effects of each controller parameter : 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 on a closed-loop system are 

summarized in the table below. Note, these guidelines hold in many cases, but not all. If you truly want 

to know the effect of tuning the individual gains, you will have to do more analysis, or will have to 

perform testing on the actual system. 

Controller Rise Time Overshoot Settling Time Steady-State Error 

𝐾𝑝 Decrease Increase Small Change Decrease 

𝐾𝑖 Decrease Increase Increase Decrease 

𝐾𝑑 Small Change Decrease Decrease No Change 

Table 2: General effects of controller parameters on a closed-loop system 
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2. Applications of Compensator 

Controllers and compensators are slightly different in terms of the of their characteristics and purpose, 

their practical implementations, and their designs. 

 

2.1. Phase-lag Compensator 

Lag compensator is commonly employed in the control systems to improve steady-state conditions and 

also transient response of the systems. 

 

Figure 7: Block diagram of a lag compensator with the plant 

 

Lag compensators reduce steady-state error, so sometimes we want smaller steady-state error rather 

than shorter rise and settling time as in a lead compensator.  

The integrator in PI controller can cause some practical problems, e.g., “integrator windup” due to 

actuator saturation. PI controller is often approximated by “lag control.” 

𝐺𝑐(𝑠) =
(𝑠 − 𝑧0)

(𝑠 − 𝑝0)
      with     |𝑝0| < |𝑧0| 

That is, the pole is closer to the origin than the zero. Because |𝑧0| < |𝑝0|, the phase " added to the 

open-loop transfer function is negative. . . “phase lag”. Pole often placed very close to zero. e.g., 𝑝0 ≈

0.01. Zero is placed near pole. e.g., 𝑧0 ≈ 0.1.  

 

Figure 8: poles and zeros of lag compensator in the s-plane and its circuit implementation 

 



Note 9b: Applications of Controllers and Compensators  

XMUT315 – Note 9 - 15 

We want |𝐺𝑐(𝑠)| ≈ 1 for all 𝑠 to preserve transient response (and hence, have nearly the same root 

locus as for a proportional controller). The idea is to improve steady-state error but to modify the 

transient response as little as possible. That is, using proportional control, we have pole locations we like 

already, but poor steady-state error. So, we add a lag compensator to minimally disturb the existing 

good pole locations but improve steady-state error. 

 

Figure 9: Poles and zeros of the system in the s-plane 

 

Good steady-state error without overflow problems. Very similar to proportional control. The 

uncompensated system had loop gain:  

𝐾(before) = lim
𝑠→0

𝐺(𝑠) 

The lag-compensated system has loop gain: 

𝐾(after) = lim
𝑠→0

𝐺𝑐(𝑠)𝐺(𝑠) = (
𝑍0

𝑃0
) lim

𝑠→0
𝐺(𝑠) 

Since |𝑧0| > |𝑝0|, there is an improvement in the position/velocity/acceleration error constant of the 

system, and a reduction in steady-state error. Transient response is mostly unchanged, but slightly 

slower settling due to small-magnitude slow “tail” caused by lag compensator. 

 

Example for Tutorial 6 – Adding Lag Compensator 

 

The control system given below suffers from issues in both steady-state and transient response 

conditions. 

𝑃(𝑠) =
1

(𝑠 + 1)(𝑠 + 2)
            and               𝐶(𝑠) = 1 

• Steady-state: non-zero steady-state error. 

• Transient response: sluggish system that takes time to settle down. 
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a. Simulate the uncompensated system in MATLAB. Comment on the result of the simulation. 

b. Design a lead compensator that will be able to fix the problem observed in part (a). 

c. Simulate in MATLAB and compare the uncompensated and compensated systems. Observe whether 

the compensator has achieved its purpose. 

 

Answer 

a. Looking into the step response of the given system, there are issues as highlighted before e.g. non-

zero steady-state error and slow (sluggish) response of the system.  

 

 

b. By trial and error, the gain and the pole and zero of the lead compensator with 𝐾 = 1, 10, and 100 

are determined: 

𝐺𝑐(𝑠) =
𝐾(𝑠 + 1)

𝑠 + 0.01
 

The following figure shows the given system with lag compensator. 
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c. Looking into the step response of the compensated system with the lag compensator, the plot 

shows smaller steady-state error than uncompensated system. Plots shown are with 𝐾 = 1 (orange 

line), 𝐾 = 10 (yellow line), and 𝐾 = 100 (purple line).  

 

 

Notice the growing oscillation as you increase the system gain (𝐾), but settling time increases for all 

cases. 

 

2.2. Phase-lead Compensator 

Lead compensator is typically used in the control systems to improve the transient response and 

stability of the systems. 
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Figure 10: Block diagram of a lead compensator with the plant 

 

The lead compensators improve transient response and stability, but they do not typically reduce 

steady-state error.  

 

Derivative magnifies noise. Instead of D-control or PD-control use “lead control.” 

𝐺𝑐(𝑠) =
(𝑠 − 𝑧0)

(𝑠 − 𝑝0)
      with     |𝑧0| < |𝑝0| 

That is, the zero is closer to the origin than the pole.  

 

Figure 11: poles and zeros of lead compensator in the s-plane and its circuit implementation 

 

Lead compensator has the same form as lag compensator, but with different intent: 

• Lag compensator does not change locus much since 𝑃0 ≈ 𝑍0 ≈ 0. Instead, lag compensator 

improves steady-state error. 

• Lead compensator does change locus. Pole and zero locations chosen so that locus will pass 

through some desired point 𝑠 = 𝑠1. 

 

Example for Tutorial 7 – Adding Lead Compensator 
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The control system given in the figure below suffers from issues in the transient response conditions. 

𝑃(𝑠) =
4

𝑠(𝑠 + 2)
           and          𝐶(𝑠) = 1 

• Rise time: take some time for the system to rise up. 

• Settling time: sluggish system that takes time to settle down. 

 

a. Simulate the uncompensated system in MATLAB. Comment on the result of the simulation. 

b. Design a lead compensator that will be able to fix the problem observed in part (a). 

c. Simulate in MATLAB and compare the uncompensated and compensated systems. Observe whether 

the compensator has achieved its purpose. 

 

Answer 

a. Looking into the step response of the given system, there are issues as highlighted before e.g. slow 

(sluggish) response of the system e.g. long rise time and settling time.  

 

b. By trial and error, the gain and the pole and zero of the lead compensator are determined. 
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𝐺𝑐(𝑠) =
4.68(𝑠 + 2.9)

𝑠 + 5.4
 

 

The following figure shows the compensated system with the lead compensator. 

 

 

c. From the step response plot of the uncompensated and compensated systems with lead 

compensator as shown in the figure below, the compensated system (red line) reaches steady state 

faster (shorter rise and settling times) than uncompensated system (blue line). 

 

Although, on the other hand, it has a higher percentage overshoot, 𝑀𝑝. 

 

 

2.3. Lead-Lag Compensator 

For lead-lag compensator, it combines lead compensator and lag compensator. Lead-lag compensator 

provides the benefits of both lead and lag compensators e.g. improve performance in terms of steady 

state and transient responses.  
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Figure 12: Block diagram of a lead-lag compensator with the plant 

 

The transfer function of the lead-lag compensator is as given below. 

(𝑠 − 𝑧𝑙𝑎𝑔)

(𝑠 − 𝑝𝑙𝑎𝑔)

(𝑠 − 𝑧𝑙𝑒𝑎𝑑)

(𝑠 − 𝑝𝑙𝑒𝑎𝑑)
 

with 

|𝑝𝑙𝑎𝑔| < |𝑧𝑙𝑎𝑔|  and   |𝑧𝑙𝑒𝑎𝑑| < |𝑝𝑙𝑒𝑎𝑑| 

The lead—lag compensator improves both steady-state error and transient response performance. 

Design of the lead-lag compensator requires careful design of its individual parts e.g. lag compensator 

and lead compensator. Trial and error is typically employed to get the best set up for the lead-lag 

compensator. 

 

 

Figure 13: Poles and zeros of lead-lag compensator in the s-plane and its circuit implementation 

 

If we must satisfy both the transient and steady-state specifications: 

1. Design a lead compensator to meet transient specification first. 

2. Include lead compensator with plant after its design is final. 
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3. Design a lag compensator (where “plant” = actual plant and lead compensator combined) to 

meet steady-state specification. 

 

When a lead-lag compensator is added into the system, the following figure shows step response and 

ramp response of the uncompensated, lead compensated, and lead-lag compensated systems.  

 

Figure 14: Step responses of uncompensated and compensated systems with lead and lead-lag 

compensators 

 

As shown in the figures, lead-lag compensator provides the benefits of both lead and lag compensators 

e.g. improve performance of the system in terms of steady-state and transient response. 

 

Figure 15: Ramp responses of uncompensated and compensated systems with lead and lead-lag 

compensators 

 

2.4. Summary of Applications of Compensators 

The following table outlines the brief summary of applications of the compensators used in control 

systems. 
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Name of 

Compensator 

Transfer Function Equation Characteristics 

Lag (𝑠 − 𝑧0)

(𝑠 − 𝑝0)
      with     |𝑝0| < |𝑧0| 

It improves steady-state error. 

Lead (𝑠 − 𝑧0)

(𝑠 − 𝑝0)
      with     |𝑧0| < |𝑝0| 

It improves transient response 

performance. 

Lead-lag (𝑠 − 𝑧𝑙𝑎𝑔)

(𝑠 − 𝑝𝑙𝑎𝑔)

(𝑠 − 𝑧𝑙𝑒𝑎𝑑)

(𝑠 − 𝑝𝑙𝑒𝑎𝑑)
 

with 

|𝑝𝑙𝑎𝑔| < |𝑧𝑙𝑎𝑔|  and   |𝑧𝑙𝑒𝑎𝑑| < |𝑝𝑙𝑒𝑎𝑑| 

It improves both steady-state error and 

transient response performance. 

Table 3: Summary of details of compensators 

 

3. Practical Implementations 

Practical implementation of controllers or compensators with op amp-based amplifier circuits. Practical 

implementations of controllers P, I, D, and any of their combinations. Practical implementations of Lead, 

Lag, and Lead-lag compensators. We derived as the transfer function of an inverting operational 

amplifier whose configuration is shown above: 

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=

𝑍2(𝑠)

𝑍1(𝑠)
 

 

Figure 16: Impedances in the inverting operational amplifier circuit  

 

By judicious choice of 𝑍1(𝑠) and 𝑍2(𝑠), this circuit is used as a building block to implement the 

compensators and controllers, such as PID controllers and lag-lead compensators using operational 

amplifiers. 

 

3.1. Practical Active Circuits for Controllers 

The following table outlines the practical active circuit for realising controller. 
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Function 𝒁𝟏(𝒔) 𝒁𝟐(𝒔) 𝑮𝒄(𝒔) =
𝒁𝟏(𝒔)

𝒁𝟐(𝒔)
 

Proportional 

(gain) 
𝑅1 𝑅2 −

𝑅1

𝑅2
 

Integral 𝑅 𝐶 −
(

1
𝑅𝐶

)

𝑠
 

Derivative 𝐶 𝑅 −𝑅𝐶𝑠 

PI controller 𝑅1 𝑅2 and 𝐶 (in series) − (
𝑅1

𝑅2
) (

𝑠 +
1

𝑅2𝐶

𝑠
) 

PD controller 𝐶 and 𝑅1(in parallel) 𝑅2 −𝑅2𝐶 (𝑠 +
1

𝑅1𝐶
) 

PID 

controller 
𝐶1 and 𝑅1(in parallel) 𝑅2 and 𝐶2 (in series) − (

𝑅2

𝑅1
+

𝐶1

𝐶2
+ 𝑅2𝐶1𝑠 +

1
𝑅1𝐶2

𝑠
) 

Table 4: Summary of practical implementations of active circuit controllers 

 

 

Figure 17: Practical active circuits for implementing controllers or compensators 

 

3.2. Practical Circuits for Compensators  

The following table shows the practical active circuits for realising the compensator. 

Function 𝒁𝟏(𝒔) 𝒁𝟐(𝒔) 𝑮𝒄(𝒔) =
𝒁𝟏(𝒔)

𝒁𝟐(𝒔)
 

Lag 

compensator 

𝐶1 and 𝑅1(in parallel) 𝐶2 and 𝑅2(in parallel) 

− (
𝐶1

𝐶2
) (

𝑠 +
1

𝑅1𝐶1

𝑠 +
1

𝑅2𝐶2

)  

where 𝑅2𝐶2 > 𝑅1𝐶1 
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Lead 

compensator 

𝐶1 and 𝑅1(in parallel) 𝐶2 and 𝑅2(in parallel) 

− (
𝐶1

𝐶2
) (

𝑠 +
1

𝑅1𝐶1

𝑠 +
1

𝑅2𝐶2

)  

where 𝑅2𝐶2 < 𝑅1𝐶1 

Lead-Lag 

compensator 

Cascading lag compensator with lead compensator (as shown below). 

 

Table 5: Summary of practical implementations of active circuit compensators 

 

 

Figure 18: Practical cascading active circuits for implementing the lead-lag compensators 

 

The following table shows the practical passive circuits for realising the compensator. 

Function 𝑽𝐢(𝒔) 𝑽𝐨(𝒔) 𝑮𝒄(𝒔) =
𝑽𝒐(𝒔)

𝑽𝒊(𝒔)
 

Lag 

compensator 

𝑅1, 𝑅2, and 𝐶 (all in 

series) 

𝐶 and 𝑅2 

(both in 

series) 
(

𝑅1

𝑅1 + 𝑅2
) (

𝑠 +
1

𝑅2𝐶

𝑠 +
1

(𝑅1 + 𝑅2)𝐶

) 

Lead 

compensator 

𝐶 and 𝑅1 (both in 

parallel) and in series 

with 𝑅2 

𝑅2 𝑠 +
1

𝑅1𝐶

𝑠 +
1

𝑅1𝐶 +
1

𝑅2𝐶

 

Lead-Lag 

compensator 

𝐶1 and 𝑅1(both in 

parallel) and in series 

𝐶1 and 𝑅2 

(both in 

series) 

(𝑠 +
1

𝑅1𝐶1
) (𝑠 +

1
𝑅2𝐶2

)

𝑠 + (
1

𝑅1𝐶1
+

1
𝑅2𝐶2

+
1

𝑅2𝐶1
) 𝑠 +

1
𝑅1𝑅2𝐶1𝐶2
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with 𝐶2 and 𝑅2 (both in 

series) 

 

Table 6: Summary of practical implementations of passive circuit compensators 

 

                    

Lag compensator                             Lead compensator                               Lag-lead compensator 

 

Figure 19: Practical passive circuits for implementing compensators 

 

Example for Tutorial 8 - PID Controller Circuit 

 

Design a practical implementation of the PID controller using op-amp based circuit when the transfer 

function of the PID controller is: 

𝐺𝑐(𝑠) =
(𝑠 + 55.92)(𝑠 + 0.5)

𝑠
 

Answer 

The transfer function equation of the controller can be put in the form: 

𝐺𝑐(𝑠) = 𝑠 + 56.42 +
27.96

𝑠
 

Equating the transfer function of the controller with the transfer function of PID controller from the 

table. 

𝑠 + 56.42 +
27.96

𝑠
= (

𝑅2

𝑅1
+

𝐶1

𝐶2
) + 𝑅2𝐶1𝑠 +

1
𝑅1𝐶2

𝑠
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Comparing the transfer function of the PID controller in the table with the controller, we obtain the 

following three relationships: 

𝑅2

𝑅1
+

𝐶1

𝐶2
= 56.42         𝑅2𝐶1 = 1           1/𝑅2𝐶1 = 27.96 

Since there are four unknowns and three equations, we arbitrarily select a practical value for one of the 

elements. Selecting 𝐶2 = 0.1 μF, the remaining values are found to be 𝑅1 = 357.65 kΩ, 𝑅2 = 178,891 kΩ, 

and 𝐶1 = 5.59 μF.  

The complete op-amp based circuit for the PI controller is shown in the figure below, where the circuit 

element values have been rounded off. 

 

 

4. Configuring the Controller 

In majority of the cases, compensator is commonly designed for tackling a particular issue or problem in 

control system with its specific set up or arrangement.  

On the other hand, controller is typically intended and designed to be able to be adjusted or tuned-in to 

manage the operation of the system. 

There are many approaches to configure controllers. But, these are typically classified into e.g. ad-hoc 

(on the spot), experimentation, or prescriptive formulas. 

 

4.1. Methods for Configuring/Tuning-In Controller 

There are various ways to configure and to tune in the controller in control system. 

Method Advantages Disadvantages 

Manual 

tuning 
No math required. Requires experience. 

Software 

tools 

Consistent tuning, can employ computer-

automated control system design techniques, 
Some cost or training involved. 
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may include devices analysis, allows 

simulation before implementation, and can 

support non-steady-state (NSS) tuning. 

Ziegler–

Nichols 
Proven method. 

Process upset, some trial-and-error, very 

aggressive tuning. 

Tyreus-

Luyben 
Proven method. 

Process upset, some trial-and-error, very 

aggressive tuning. 

Cohen–

Coon 
Good process models. 

Some math required and only good for 

first-order processes. 

Åström-

Hägglund 

Can be used for auto tuning; amplitude is 

minimum so this method has lowest process 

upset. 

The process itself is inherently 

oscillatory. 

 

Table 7: Common methods for configuring the controllers 

 

4.2. General Tips for Designing a PID Controller 

When you are designing a PID controller for a given system, follow the steps shown below to obtain a 

desired response. 

1. Obtain an open-loop response and determine what needs to be improved. 

2. Add a proportional control to improve the rise time. 

3. Add a derivative control to reduce the overshoot. 

4. Add an integral control to reduce the steady-state error. 

5. Adjust each of the gains 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 until you obtain a desired overall response. You can 

always refer to the table shown to find out which controller controls which characteristics. 

Lastly, please keep in mind that you do not need to implement all three controllers (proportional, 

derivative, and integral) into a single system, if not necessary.  

For example, if a PI controller meets the given requirements (like the above example), then you do not 

need to implement a derivative controller on the system. Keep the controller as simple as possible. 


