Formulas for Control Systems Engineering

A. Common Laplace Transforms
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In all cases above, the symbols have their normal meanings.

B. Properties of the Laplace Transform
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Definition: f(t) & F(s)
Linearity: af(t) + bg(t) & aF(s) + bG(s)
t-scaling 106
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t-shifting: f(t —to)u(t —ty) © e SF(s)
s-shifting: e St f(t) & F(s — sp)

Differentiation in t:

f'(®) & sF(s) = £(0)
f'(©) & s?F(s) — sf(0) — f(0)

Integration in t:

f® & skF(s) — sK1F(0) — s572£(0)... —f*~D(0)

ftf(r) dt & 1F(s)
0 s
Differentiation in s: tf(t) & —F'(s)
Integration in s: @ - J * F(5)ds
Convolution: f(t)*g(t) & F(s)G(s)
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f®g®) = Z—W.*F(S) *G(s)

Periodicity
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For f;(t) one cycle of f(t) with period p.

Initial value theorem:

f(0+) = Jim sF(s)

Final value theorem:

tlim ft) = tlim sF(s)

(fora, b, ty, So ER,c ER,,).

. Partial Fractions Expansion

If a partial fraction expansion of Y (s) includes terms,
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then the coefficients of factors having multiplicity m > 1 are given by the
following expressions, where k # m.
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D. Trigonometric Identities

sin(@ + m/2) = cos(0)
sin(@ —m/2) = —cos(0)
cos(6 + m/2)= —sinf
cos(f —m/2) =sinf

sin(6 £ ¢) =sin9cos¢>+cos@sin¢>=>{

cos(f + ¢) = cosB cos¢ + sinf sin ¢ =>{

sin(26) = 2sin 6 cos 0
cos(28) = cos? 0 —sin?0 = 2cos?6 —1=1—2sin? 6

E. First Order Systems

For a first order system with transfer function:

G(s) =

(s +a)
Time constant is:
t=1/a
Rise time (10-90%) is:
t, =221

Settling time (to 2% of final value standard) is:

ty =4t

F. Second Order Systems

For an underdamped second order system, the following relationships hold.
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The settling time (i.e. 2% of final value standard):
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The time taken to reach the peak value (n = #peak) is
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The percentage overshoot is related to damping ratio by:

Damping ratio.
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. Steady State
Steady-state errors.
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Steady-state error constants.

K, =1limG(s)
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. Compensator Topologies

Proportional Compensator.

K, = E—{% sG(s)

Kq = lim s2G(s)
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Proportional-Integral (PI) Compensator.
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Proportional-Derivative (PD) Compensator.
s
C(s) =K (= +1)
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Lag Compensator (where a > 1).
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Lead Compensator (where a < 1).
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The maximum phase lead of ¢4, = sin"*[(1 — @)/(1 + @)] occurs at a frequency
= wp/Va . Consequently:

_ 1- Sin(¢max)
1+ sin(Pmax)

Graphical Analysis Techniques

Bode Plot:

Magnitude and phase shift.

1G(jw)| = K o=t and £G(jw) =ZLZi—ZAPi
i=1lPil i=1 i=1
Phase margin - damping ratio relationship (for { < 0.6).
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The frequency response has a peak magnitude that occurs at frequency wp =

wn/1 — 202,

PM = tan! ~ 100¢
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Bandwidth of standardized control systems.
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Nyquist Plot:

Poles and zeros.
Z=P+N
Note:
Z = unstable closed-loop pole.
P = unstable open-loop poles.

N = # encirclement at (-1+j0).

Phase and gain margins.
PM = 180 + arg[G(jw)(H (jw)]
GM(in dB) = 201log[1/G(jw)H (jw)]

Root Locus Diagram:
Real-axis intercept of asymptote.
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Angle of asymptote.
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Where: k = 0,+1,+2, ...

Location of pole break-away/break-in.
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Where: p; and z; are the pole and zero values of CG, where we have Z total zeros
and P total poles.
Angle of pole break-away/break-in.
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Where: n is the number of poles breaking away/in.



