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Final Exam Format

* Four questions, 25 marks each.
« Two hours (theoretical, analytical, and design cases).
* Bring to the exam:

« Calculator (non-programmable).

* Ruler.

« Dictionary.
A list of selected formulas in the control systems
engineering Is provided.



Final Exam Format

Descriptive, drawing and result of calculation answers:

Q1: Modelling, feedback control system, block diagram
manipulation, time domain analysis, and stability.

Q2: Compensator or controller characteristics and analysis.
Q3: Bode plots analysis and Nyquist diagram analysis.
Q4: Root locus analysis.



Question Types

EXxpect three types of question in the exam:

* Explain...
(d) Describe the significant of coefficients o and B in feedback
system. [5 marks]

e Calculate...

(a) Calculate time constant (), rise time (7;.), time to peak (t,),
settling time (t;) and percentage overshoot (%0S) of the
following second order system. [15 marks]

* Design...

(c) Suggest a controller/compensator that could eliminate the
steady-state error of the given system. [10 marks]



Topics

1. System modelling:

« Laplace transform.

*  Modelling from physical system.
2. Feedback control system:

* Feedback system.

*  Block model manipulation.
3. Stability:

«  System stability.

*  Routh-Hurwitz criterion stability analysis.
4, Time responses:

*  First-order transient.

«  Second-order transient.

«  Steady-state.



Topics

5.  Controllers or compensators:

P, Pl, PD, and PID controllers.

 Lag, Lead, and Lag-Lead compensators.

*  Design of control system with controllers or compensators.
6. Bode plots:

«  Construction of Bode plots.

* Analysis of control system with Bode plots.
/. Root locus diagram:

«  Construction of Root locus diagram.

* Analysis of control system with root locus diagram.
8. Nyquist diagram:

«  Construction of Nyquist diagram.

*  Analysis of control system with Nyquist diagram.




. System Modelling

Laplace transforms:

FUNCTION LAPLACE TRANSFORMS
1
1 s
1
t 52
1
et s+ a
£ (¢) sL[f(t)] — £(0)

F(¢) s°L [f(t)] — sf(0) — £'(0)



. System Modelling

» Modelling system from physical entities:

 Scaled physical model, mathematical model, and numerical model.
* When building up a model system:

* Components should be easily identifiable, components should have
a simple and clearly defined interaction with other components, and
components numbers should be minimised.

* In order to analyse a system:
1. We identify an input signal. [a variable]

2. Using block diagram components. [basic block, summing junction,
take-off point] [modified variables]

3. We combine internal signals to produce the output signal. [another
variable]

The Input-Output relationship may then be determined.



. System Modelling

1. Signals:
« Components are connected together by signals.

* Signals have many different forms.

* Must also have direction and name

* Signals continue until interrupted!

* Signals and components are considered ideal.

* \We add other signals and components to alter the properties

2. Components (summing junction and take off point)

\oltage  V; @ V-V, \oltage
> -+ >
— Electrical

Electrical \VA
\P




. System Modelling

2. Components (block):
» Block is function of the system signal.
* Only one input and only one output (SISO).

» Three types of models: electrical system, mechanical system
and electro-mechanical system.

Current I V

y R >
Electrical
Force F Distance x

M 1/k >

Spring




. System Modelling

Modelling mechanical systems:

Force - Impedance
Spring Distance = F(s)/X(s)
f rFW\—E f(f) = K,T(f) K
Damper
— F /(=0 &) Ds
[ dt
ft)=M ’xlt) e
dt




. System Modelling

Modelling electrical systems:

Voltage - Impedance

__?apaCitD r Current  =V(s)/1(s)
I_—_|_|— v(t)= %If(r) %X%
Resistor

IAJ.\_/W v(r) = Ri(t) R
Inductor

Ls

FW* v(t)=L




). Feedback Control Systems

We would like to control the output of a system I.e. have the output
resemble the input, despite disturbances.

Disturbance

Process D
Input Output
e P I— 0O

* Process with transfer function P perturbed by a disturbance D.

« Suppose P is 10 and disturbance D is 0. If the output O Is to be
1, we make input | =0.1.

* But if P changes by 109% to 11 then O changes by 10% to 1.1.
 [f disturbance D i1s 0.1, then O will also change by 0.1.




). Feedback Control Systems

Principle of superposition: what Is superposition?

Disturbance O = C*P | + 1
Controller Process D 1+C*P 1+C *P
Input Output
- C—y Pl >0
| T 06 __CP ithD =10
I(s) 1+cp

 IfCPlarge:O~1+0=1
» So, feedback:
» Makes output almost same as Input,
* Minimises effects of disturbances, and
* Reduces effect of change In device.
* This Is true because the ‘loop gain’, C * P, Is high.



3. Stability

Routh-Hurwitz Criterion:

 Using this method, we can tell how many closed-loop system poles
are In the left half-plane, in the right half-plane, and whether the
poles are on the jw-axis.

« Cannot tell where, but only how many are in each plane
determining the system’s stability.

* The method requires two steps:
* Generate a data table called a Routh table.

* Interpret the Routh table to tell how many closed-loop system
poles are In the left half-plane, the right half-plane, and on the
Jw -axis.



3. Stability

Generating a Routh table:

N
> >
azs* +azs3 +azs? +ass! +ag
Equivalent closed loop transfer function
s* Ay a- Qo
s3 as aq 0
52 . |a4 Cl2| . |Cl4 ao _|as 0
a
3 Al a3 01 _ b, as 0f _ 0
as as as
st _ |a3 a1| _laz 0 _laz O
bi byl _ b1 0| _ 0 by 0 _ 0
b1 by by
s0 _ b1 bz _ b1 0 _ b1 0
c c c
1 0 = d, 1 0 —0 1 0 0
C1 C1 C1




3. Stability

Interpreting a Routh table:

Simply stated, the Routh-Hurwitz criterion declares that the number of
roots of the polynomial that are in the right hand-plane is equal to the
number of sign changes in the first column.

Routh-Hurwitz special cases:
1. Zero In the first row or column.
In this case, zero Is replaced with epsilon (e) and will tend to zero.

X B

2. Entire row of zeros:

CX XcC
\\ /

A: Real and symmetrical about the origin.

p
/
\|/
\
=

B: Imaginary and symmetrical about the origin.
C: Quadrantal and symmetrical about the origin. ~ ¢x” “xo




4. Time Responses

Estimating system response:

* The systems examined so far can be modelled by transfer
functions:

K K
or
1+ sT As? + Bs + ¢

 Glven a particular input, what iIs the system output?
» Can use differential equation techniques.

 Easier to define the approximate response, just from the transfer
function.

* \WWe will do this, assuming that the input Is a step.



4. Time Responses

» Step response of first order system:

0(s) = G(s)R(s) 66s)

RS [ o | 06)

S W\ Exponential Frequency
O(S) — G(S) ejCO/

c(1)

* For R =step input

A Initial slope = l

" =da
time constant

1.0 /

0.9 1

)/
0.8 | ¥
0.7

06 F 63% of final value A i
at 7 = one time constant Tr = Rise Time (2.2/a)

05
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021 . .

- / Ts = Settling time (4/a)
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4. Time Responses

Steady-state response of first-order system:
t

- (

Steady-
state

o(t) = K(l — e /T ) where tislargee T
In s-domain:
O(s) K
s—0 =
I(s) 1+4+T;s 1
Step Input: oo
K K ‘
Oss(s) = — =K

1+T,00) 1

Time



4. Time Responses

* General second-order response:

G(s) =

a

sZ2+ 2wy{s + wy

» Standard second-order root equation:

c(w,?)
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4. Time Responses

General second-order response:
 Natural frequency (w,,): Frequency of oscillation of the system
without damping.

« Damping ratio (¢): Quantitatively describe this damped oscillation
regardless of the time scale.

a
[ = exponential decay frequency |o| (7)

Natural frequency (rad/s) W, Wy

 For asecond order:

wn

s24+as+b  s2+2{w,s + w?

G(s) =

Where:
Wy = Vb and a = 2{w,



4. Time Responses

Damping and second order response:

Output
rti damped

. —b++b’-4ac) 1
127 2 {6- ndamped
= 7Vl,lnd rdampe

\/ Overdampe
éll 3] é 1|0 1|2 1I4

Time



4. Time Responses

Determine damping of system:

Roots Description Response
b* — 4ac >0 Real, different Overdamped
b? — 4ac =0 Real, same Critically damped

b2 —4ac <0 Complex, different Underdamped

— 4ac >0 Complex, same Undamped



_—
LN
~—

4. Time Responses

LAAJ Y
1

Second order time response:

* Rise time, peak time, and
settling time yield L

Information about the speed o
of the transient response Second order (underdamped)

* Rise time (T,.) - The time required for the waveform to go
from 0.1 of the final value to 0.9 of the final value.

« Settling time (T5) - The time required for the transient’s
damped oscillations to reach and stay within +/- 2% of the
steady-state value.

 Time to peak (T,) - The time required to reach the first, or
maximum, peak.



Damping |Normalized
i ratio rise time
4 T. R 30 0.1 1.104
. 1lime ESPOHSES@M 2 | 1m
§2.6 0.4 1.463
52.4_ 0.5 1.638
_ _ = | 0.6 1.854
Rise time (T;.): s o7 |
- . - {é 0.9 2.883
« Normalized rise time vs. 21sf
31.6—
damping ratio for a second-  * st
1.2 F
order underdamped response.  ,— . . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(1.76&°% — 0.417&% + 1.039¢ + 1)

I

Wn
T—¢
wn\/l_fz

Where: ¢ = tan™? (V 1g€2)

T, =

Damping ratio

» For the given graph: t,w, = 2.2306% — 0.078¢ + 1.12



4. Time Responses
Time-to-Peak (T,):
* Time to reach the first peak of the transient oscillation.

_ 1T

1=

* \We wish to know the time to all n peaks, but in most cases
only need the first peak I1.e. n = 1.

Iy

First peak

c(1) / Second peak

]12\/




4. Time Responses

Percentage overshoot (%0S):
» Ratio of the maximum overshoot and steady-state value.

c(max) + c¢(0)]
%0S = X 100%
(o)
* (C(max) is C(t) evaluated at the peak time C (T,). Note:

%0S 1s a function of damping ratio only.
%08 = e TN1=) « 1000

» Can be rearranged to find damping ratio:

| (%05)
1\ 700

Jm2 + In2(%0S/100)

( =



4. Time Responses

Settling time (T):
* Time to reach and stay within +/-2% of the steady-state value

1

g~ Sont =0.02
Vi-¢
o —In(0.024/1 — ¢2)
o Ly
4
T, = —



4. (Time Responses) Steady-State

» Steady-state error (e(o0):

Steady-state error Is the difference between the input and
output for a prescribed test input as t — .

 Steady-state response:
In the s domain: s — 0.

K

Css (S)_ -

ApS +bOS +C C




4. (Time Responses) Steady-State

« Steady-state error:

The system error e(t) for a feedback control system Is given by
the difference between the demanded output r(t) and the actual
output c(t):
e(t) =r(t) —c(t)
* The steady-state error Is then defined as the difference between
demanded and actual output when t — oo,

* The steady-state error Is now defined for specific test inputs:
o Step.
 Ramp.
« Parabola.



4. (Time Responses) Steady-State

Specific test inputs in control systems engineering:

Physical Time Laplace
Waveform Name interpretation function transform
1)
A

X . > |

Step Constant position I -

5

-

rr)
)

: . I
Ramp Constant velocity t —
5=
-




4. (Time Responses) Steady-State

Sources of steady-state error:
» Consider steady-state errors due to system configuration.

« System with pure gain element. RS) + < ElS) )

+  System output: 4”%—' : ]

C(s) = K. E(S)

* The steady-state error can then never be = 0 or the output of the system
will be zero, there will thus always be a steady state error present.

* |f c IS the steady-state value of the output and e, Is the steady-state
value of the error, then:

Cs(t) = K. e, (t) Error
will diminish as K Increases.




4. (Time Responses) Steady-State

Steady-state error in terms of G(S):
For the system: E(s) = R(s) — C(s) »

(s) E(s) . Ci(5)
4{%}# (i x) -

Thus E(s) = R(s) — E(s)G(s)
So that:
E(s)= - RS
1+ G(s)
From the final value theorem:
e(o0) = lim sE(s) = lim SR(s)
s—0 s—0 14+ G(S)

Above equation will thus allow us to calculate the steady-state error
given a particular input R(S).



4. (Time Responses) Steady-State

Static error constant and system type:

* The term in the denominator of the definition of the steady state
error for each Input type Is taken to limit the steady state error.

 These are then called the static error constants and are defined as
follows:

Position constant, K, = lim G (s)

s—0
Velocity constant, K,, = lin% sG(S)
S—

Acceleration constant, K, = lim s“G(s)

S—0

* These constants depend on the form of G (s) and determine the steady-
state error (1.e. error decreases as static error constant increases).



4. (Time Responses) Steady-State

System type:

* The system type Is taken to be the number of integration in the
feed-forward path. (the value of n in s™ of denominator).

* This value of n (the system type) then determines the steady state
error of a unit feedback system for a particular type of input.

Type O Type 1 Type 2
Static Static Static
Steady-state error error error
Input error formula constant Error constant Error constant Error
Step, 1 K, = |
K, = = 0 K, = =« 0
u(t) | + K, Constant | + K, Pz P
Ramp, 1 | K, = l
tu(t) K. Ky =10 - Constant K, Ky = 0
P?rabola, | ) | ) K, = [
Erzu(r) K, Ko =10 - Ka =0 * Constant K,




5. Controllers/Compensators

Compensators: Controllers:

» Lag Compensators, Lead * Proportional Controllers, Integral
Compensators, and Lag-Lead Controllers, Derivative Controllers,
Compensators. and Pl, PD, PID controllers.
Set-Point

+

Process J

5 Integral B
Error_Value L, —Kfe dt

Derlvatlve
D term

New_Feedback Value




5. Controllers/Compensators

Controller/ Function Transfer Function Characteristics

Compensator

P Improve K a. Increases gain of the system.
transient

b. Often result in non-zero steady-state error.
response (up

to a point) c. Relatively easy to implement.
Pl Improve K (s + ZC) a. Increases system type.
steady-state S
b. Error becomes zero.
error
c. Zero at z.is small and negative.
d. Active circuits are required to implement.
Lag Improve (s + Zc> a. Errorisimproved, but not driven to zero.
steady-state
Y S+ Pc b. Pole at —p, is small and negative.
error
c. Zeroat —z_, is close to, and to the left of, the
pole at —p..
d. Active circuits are not required t implement.




5. Controllers/Compensators

PD Improve K(s+z.) a. Zero at —z_ is selected to put design point on root locus.
transient
b. Active circuits are required to implement.
response
c. It can cause noise and saturation; implement with rate
feedback or with a pole (lead).
Lead |Improve s+ 2z, a. Zeroat —z,. and pole at —p, at are selected to put design point
transient (S n Pc) on root locus.
response
P b. Pole at —p, is more negative than zero at —z,.
c. Active circuits are not required to implement.
PID Improve (s + 2109) (S + Zieaa)| |2 Lag zero at —z,;,, and pole at the origin improve steady-state
steady-state K S error.
error and o Lead . _ . ot
: . Lead zero at —z improves transient response.
transient lead 'MP P
response c. Lagzeroat —z,, is close to, and to the left of, the origin.

d. Lead zero at —z;,,4 is selected to put design point on root
locus.

e. Active circuits are required to implement.

f. It can cause noise and saturation; implement with rate

feedback or with an additional pole.




5. Controllers/Compensators

Lag-lead Improve (s + Z1ag) (S + Zieaa) | |2 Lag pole at —p;q4 and lag zero at —z;,, are used to
steady-state K (s + Plag)(S + Dicad) improve steady-state error.
error and
transient b. Lead pole at —p;.,4q and lead zero at —z;,,4 are used to
improve transient response.
response

c. Lagpole at —p;q4 is small and negative.

d. Lagzeroat —z,, is close to, and to the left of, lag pole

at —Plag

e. Lead zero at —z;,,4 and lead pole at —p;.,4 are
selected to put design point on root locus.

f. Lead pole at —p;,44 is more negative than lead zero at

— Zlead-

g. Active circuits are not required to implement.




5. Controllers/Compensators

P D O ntro I I e r " PD Compensator Bode Plot
C s 60 . . . .
50+ 1
_ 40f 1
o
_% 20+ 1
[}
10 1
[] {
10 3 » : 1 .u I 1 I? 3
10° 10° 10 10 10 10 10°

C(s) =Tp(s+4)

10 10
quency [rad/sec]

 In the PD controller, phase added near (and above) the crossover
frequency e.g. an increase of the phase margin and giving a
stabilizing effect.

* Then, the gain continues to rise at high frequencies, but this
causes the sensor noise to be amplified and as a result a lead
compensation Is usually preferable.



5. Controllers/Compensators

Pl Controller:

D.
-‘“J 2 I‘1 Il' I1 2 3
10° 10 10° 10 10 10°
D | D_ T T T
C S — = -20 -
Z =
D S -40 .
4
w
2 B0 |
o
80+ 1
_100 - " .......l1 " ....,._lc . .......:1 " _......,_’ " ........q
10° 10 10 10 10° 10

« At low freguency, the gain of proportional-integral éompensator IS
Infinite at DC (0 rad/s) and this compensator can increase system type of
the system.

* For frequency above the cut-off frequency of the compensator (w > 1
/Tp), the gain of the system Is unaffected, there is a slight change in the
phase, but phase margin of the system iIs unaffected.

 In the end, the proportional-integral compensator has a tendency to
Increase low frequency gain of the system.




5. Controllers/Compensators

Lag Compensator: i /

Where: f < 1

* For frequency below the cut-off frequency of the compensator (w <«
1/T) the gain Is ~0 dB and Phase Is ~0°.

 For frequency above the cut-off frequency of the compensator (w >
1/GT) the gain is +20 dB and phase is ~0°.

* Thus, lead compensator adds phase lead near the crossover frequency
and/or alter the crossover frequency.



5. Controllers/Compensators

Lag Compensator: 4\

C(s) Ts + 10 o | .

s) =« _
aTs + 1 Y

Where: a > 1 po( —

cy | 1

* For frequency less than cut-off frequency of the compensator (w «
1/aT), the gain of the system is 20 log (o) dB and phase is 0°.

* For frequency more than the cut-off frequency of the compensator
(w > 1/aT), both the gain and phase are 0 dB and 0° respectively.

* Inshort, lag compensator adds a gain of o at low frequencies
without affecting phase margin.



6. Bode Plots

Bode plots:

* Frequency response analysis method in control system for measuring:
stability, time domain performance, and frequency domain

performance.
Bode Magnitude plot

201og,o Ak = 20log,o IG(jws)

-

Magnitude [dB]

-

Magnitude slope

180

Dy =

| Phase angle [deg]

D

Wi W

Bode Phase plot



Sode Dagram

6. Bode Plots

Components of analysis:

Magndude (dB)

 Gain or magnitude

plot.
_ F PM = 180" + £G(jw,,)
* Phase shift plot. : - = 39.2615 deg
- Gain and phase b wge =15412 1a0/s! } 3 g 27611 rads
margins. | B
Analysis of Bode plots:

o Stability: Gain, Phase Shift Angle, Phase Margin, and Gain
Margin.
* Transient Performance (e.g. Damping Factor, Rise Time,

Settling Time, Time-to-Peak, % Oscillation, Steady State
Errors, etc.): break points, slopes, peaking.



1. Root Locus Diagram

Root locus diagram:

S-plane (roots of transfer function of the system) based analysis method
for measuring: stability, time domain performance, and frequency
domain performance.

Components of root locus analy3|§ m(s)
(Evan’s rule): /
HE > 4 /
* Roots (poles and zeros) ?/4{ 3.
- - ~1- —Qq/ 5
locations In the s-plane. | Lol
- - /
 Real axis intercept and ! !
asymptotes. *——H—— i — >;ae<s

» Break-away and break?in pdints.t

* Angle of departure from
complex poles pailr.

» Imaginary axis (y-axis) intercept’
point with the root locus.




I. Root Locus Diagram

Analysis of root locus:

. Stablllty Gain, Phase Shift Angle and Interception with y-axis.
 Transient Performance (Damping Factor, Rise Time, Settling Time,
Time-to-Peak, %QOS, Steady State Errors, etc.): location of poles and
zeros In the diagram.

L X
T o

A
-

Mugniude (dB)

-
=3

Phawe (deg);
8

[ ] /&

L
- 8
ol i o i o
|
z
-
o




8. Nyquist Diagram

Nyquist Diagram

* Frequency domain analysis
method for measuring: fiinie iy
stability, time domain & i,

performance, and frequency ¥ ganeo gain=1"N\ ’y
domain performance. 3 / \'_

* Component of analysis:
* Magnitude. -
] frequencies
 Phase shift angle.
* Encirclement at test point N0 S B AR D
(-1,0).
» Gain and phase margins.

Imaginary




8. Nyquist Diagram

Analysis of Nyquist diagram:

« Stability: Gain, Phase Shift Angle, Phase Margin, Gain Margin and
encirclement at test point (-1,0).

* Transient Performance (e.g. Damping Factor, Rise Time, Settling

Time, Time-to-Peak, %0S, Steady-State Errors, etc.):

encirclement, type of contour, and detour on contour.

Imaginary
part

(-1.0)

\
AN

Stable syslem ax>1,¢_ positive Unslable system a<1,4_ negative




8. Nyquist Diagram

Derivation of Nyquist diagram:
* From Bode plots: straight plotting of the points of interest in the
graph from the gain or magnitude and phase shift of the Bode plots

to the Nyquist diagram.
 Although the gain or magnitude needs to be converted from

logarithmic scale (dB) in Bode plots to linear scale in Nyquist
diagram. )

1.
h“‘: fal
=

m ] [P0




8. Nyquist Diagram

Derivation of Nyquist diagram:
* From root locus diagram: Conversion of the sum of the magnitude

or gain contribution at unity gain and sum of phase shift angle
contribution at -180 of all poles and zeros in the root locus diagram

to magnitude or gain and phase shift in the Nyquist diagram.

Im

[ =7

s<plane GH-plane

A

- O - Gs)H(s) —- 4 1‘

(@)

ll!\
GH-plane § Test radius

—/
2 %:7\”
CooT Q/ o

() = zeros of 1 + G(x)H(s) X = poles of | + G(x)H(x)
= poles of closed-loop system = poles of G(s)H(s)
Location not known Location is known

NIFARNYA
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