

Final Exam Review

XMUT315 Control Systems Engineering

Final Exam Format

- Four questions, 25 marks each.
- Two hours (theoretical, analytical, and design cases).
- Bring to the exam:
 - Calculator (non-programmable).
 - Ruler.
 - Dictionary.
- A list of selected formulas in the control systems engineering is provided.

Final Exam Format

Descriptive, drawing and result of calculation answers:

Q1: Modelling, feedback control system, block diagram manipulation, time domain analysis, and stability.

Q2: Compensator or controller characteristics and analysis.

Q3: Bode plots analysis and Nyquist diagram analysis.

Q4: Root locus analysis.

Question Types

Expect three types of question in the exam:

- Explain...
 - (d) Describe the significant of coefficients α and β in feedback system.[5 marks]
- Calculate...
 - (a) Calculate time constant (τ) , rise time (T_r) , time to peak (t_p) , settling time (t_s) and percentage overshoot (%OS) of the following second order system. [15 marks]
- Design...
 - (c) Suggest a controller/compensator that could eliminate the steady-state error of the given system. [10 marks]

Topics

- 1. System modelling:
 - Laplace transform.
 - Modelling from physical system.
- 2. Feedback control system:
 - Feedback system.
 - Block model manipulation.
- 3. Stability:
 - System stability.
 - Routh-Hurwitz criterion stability analysis.
- 4. Time responses:
 - First-order transient.
 - Second-order transient.
 - Steady-state.

Topics

- 5. Controllers or compensators:
 - P, PI, PD, and PID controllers.
 - Lag, Lead, and Lag-Lead compensators.
 - Design of control system with controllers or compensators.
- 6. Bode plots:
 - Construction of Bode plots.
 - Analysis of control system with Bode plots.
- 7. Root locus diagram:
 - Construction of Root locus diagram.
 - Analysis of control system with root locus diagram.
- 8. Nyquist diagram:
 - Construction of Nyquist diagram.
 - Analysis of control system with Nyquist diagram.

Laplace transforms:

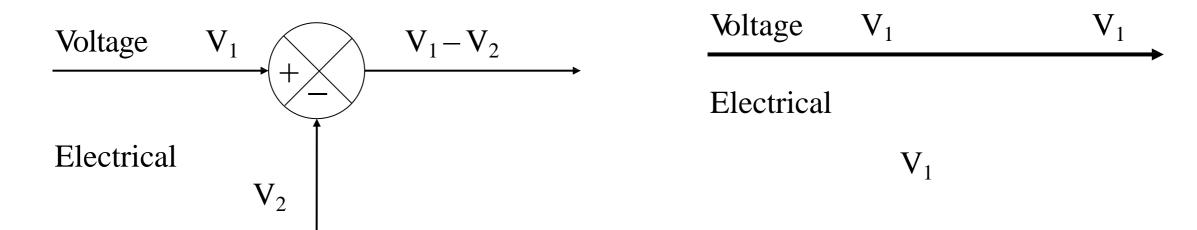
FUNCTION	LAPLACE TRANSFORMS	
	$\frac{1}{s}$	
1	\overline{s}	
	$\frac{1}{s^2}$	
t	$\overline{s^2}$	
	1	
e^{-at}	$\overline{s+a}$	
f'(t)	$sL\left[f(t) ight]-f(0)$	
f''(t)	$s^2L[f(t)] - sf(0) - f'(0)$	

- Modelling system from physical entities:
 - Scaled physical model, mathematical model, and numerical model.
- When building up a model system:
 - Components should be easily identifiable, components should have a simple and clearly defined interaction with other components, and components numbers should be minimised.
- In order to analyse a system:
 - 1. We identify an input signal. [a variable]
 - 2. Using block diagram components. [basic block, summing junction, take-off point] [modified variables]
 - 3. We combine internal signals to produce the output signal. [another variable]

The Input-Output relationship may then be determined.

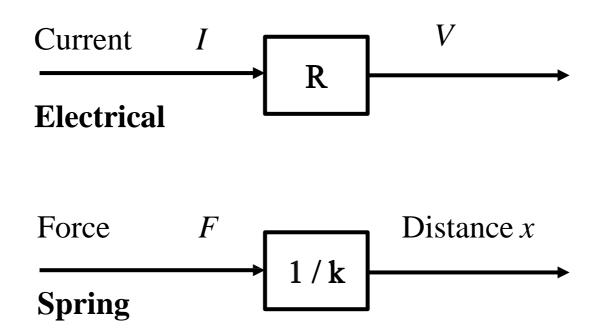
1. Signals:

- Components are connected together by signals.
- Signals have many different forms.
- Must also have direction and name
- Signals continue until interrupted!
- Signals and components are considered ideal.
- We add other signals and components to alter the properties
- 2. Components (summing junction and take off point)

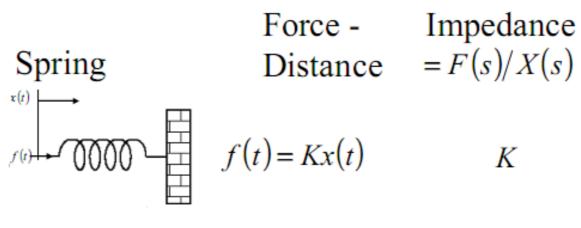


2. Components (block):

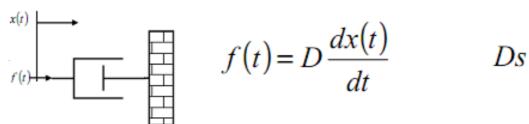
- Block is function of the system signal.
- Only one input and only one output (SISO).
- Three types of models: electrical system, mechanical system and electro-mechanical system.



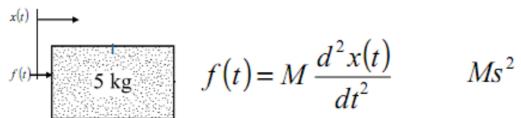
Modelling mechanical systems:



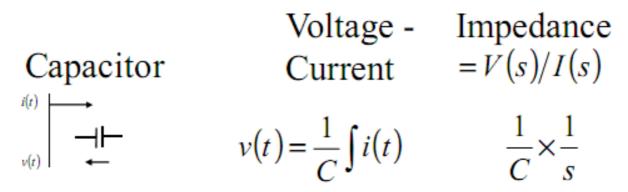
Damper



Mass



Modelling electrical systems:



Resistor

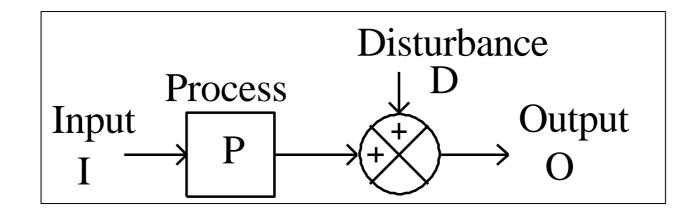
$$v(t) = Ri(t)$$

Inductor

$$v(t) = L \frac{di(t)}{dt}$$
 Ls

2. Feedback Control Systems

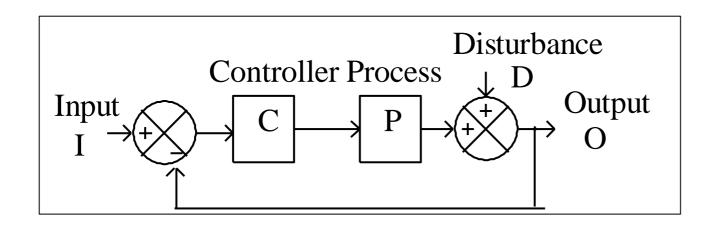
We would like to control the output of a system i.e. have the output resemble the input, despite disturbances.



- Process with transfer function **P** perturbed by a disturbance **D**.
- Suppose P is 10 and disturbance D is 0. If the output O is to be 1, we make input I = 0.1.
- But if **P** changes by **10%** to **11** then O changes by 10% to 1.1.
- If disturbance D is 0.1, then O will also change by 0.1.

2. Feedback Control Systems

Principle of superposition: what is superposition?



$$O = \frac{C * P}{1 + C * P}I + \frac{1}{1 + C * P}D$$

$$\frac{O(s)}{I(s)} = \frac{CP}{1 + CP} \text{ with } D = 0$$

- If CP large: $O \sim I + O = I$
- So, feedback:
 - Makes output almost same as input,
 - Minimises effects of disturbances, and
 - Reduces effect of change in device.
- This is true because the 'loop gain', C * P, is high.

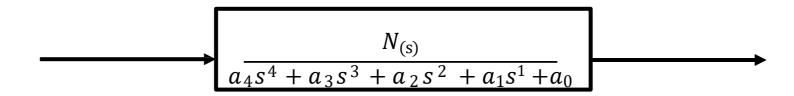
3. Stability

Routh-Hurwitz Criterion:

- Using this method, we can tell how many closed-loop system poles are in the left half-plane, in the right half-plane, and whether the poles are on the j ω -axis.
- Cannot tell where, but only how many are in each plane determining the system's stability.
- The method requires two steps:
 - Generate a data table called a Routh table.
 - Interpret the Routh table to tell how many closed-loop system poles are in the left half-plane, the right half-plane, and on the $j\omega$ -axis.

3. Stability

Generating a Routh table:



Equivalent closed loop transfer function

s ⁴	a_4	a 2	a_0
s ³	a_3	a_1	0
s ²	$\frac{-\begin{vmatrix} a_4 & a_2 \\ a_3 & a_1 \end{vmatrix}}{a_3} = b_1$	$\frac{-\begin{vmatrix} a_4 & a_0 \\ a_3 & 0 \end{vmatrix}}{a_3} = b_2$	$\frac{-\begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3} = 0$
s^1	$\frac{-\begin{vmatrix} a_3 & a_1 \\ b_1 & b_2 \end{vmatrix}}{b_1} = c_1$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$
s^0	$\frac{-\begin{vmatrix} b_1 & b_2 \\ c_1 & 0 \end{vmatrix}}{c_1} = d_1$	$\frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = 0$	$\frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = 0$

3. Stability

Interpreting a Routh table:

Simply stated, the Routh-Hurwitz criterion declares that the number of roots of the polynomial that are in the right hand-plane is equal to the number of sign changes in the first column.

Routh-Hurwitz special cases:

1. Zero in the first row or column.

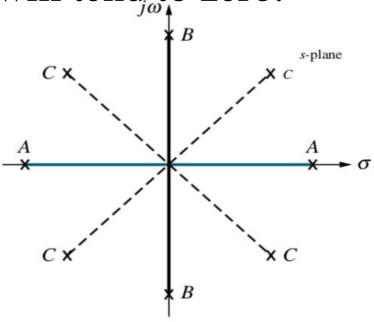
In this case, zero is replaced with epsilon (ϵ) and will tend to zero.

2. Entire row of zeros:

A: Real and symmetrical about the origin.

B: Imaginary and symmetrical about the origin.

C: Quadrantal and symmetrical about the origin.



Estimating system response:

• The systems examined so far can be modelled by transfer functions:

$$\frac{K}{1+sT}$$
 or $\frac{K}{As^2+Bs+c}$

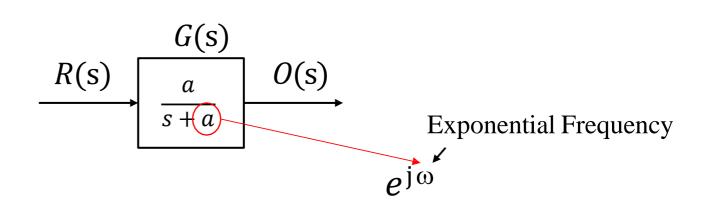
- Given a particular input, what is the system output?
- Can use differential equation techniques.
- Easier to define the approximate response, just from the transfer function.
- We will do this, assuming that the input is a step.

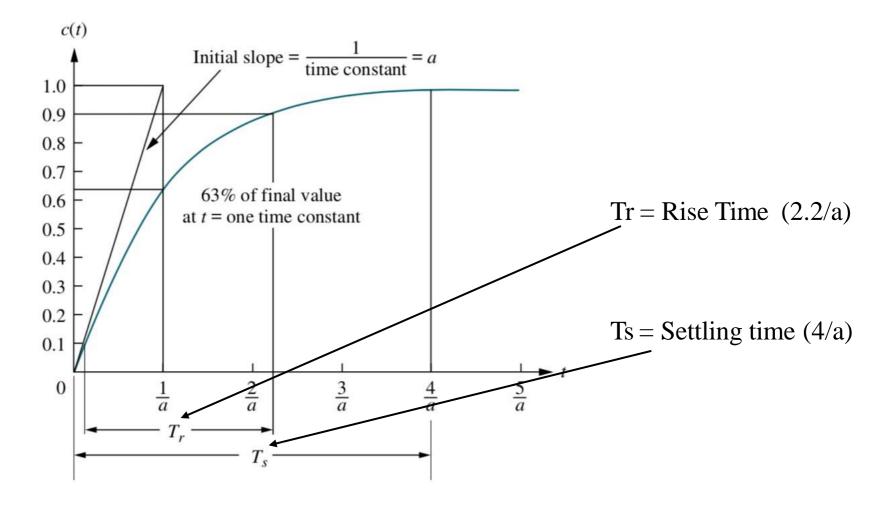
• Step response of first order system:

$$O(s) = G(s)R(s)$$

• For R = step input

$$O(s) = G(s)$$





Steady-state response of first-order system:

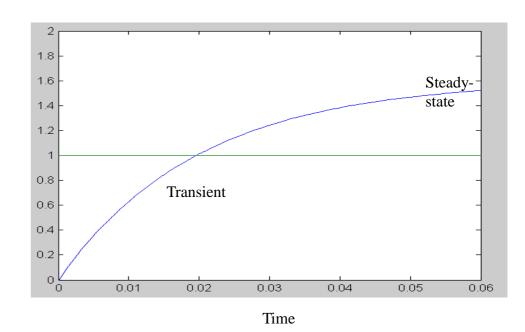
$$o(t) = K(1 - e^{-t/T_1})$$
 where t is large $e^{-\frac{t}{T}-1} \to 0$

In s-domain:

$$s \to 0 \qquad \frac{O(s)}{I(s)} = \frac{K}{1 + T_1 s}$$

Step input:

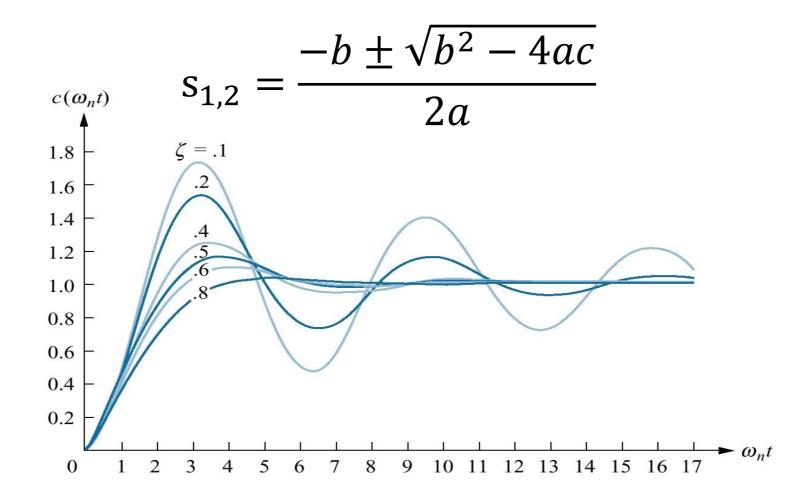
$$O_{SS}(s) = \frac{K}{1 + T_1(0)} = \frac{K}{1} = K$$



General second-order response:

$$G(s) = \frac{\omega_N^2}{s^2 + 2\omega_N \zeta s + \omega_N^2}$$

Standard second-order root equation:



General second-order response:

- Natural frequency (ω_n) : Frequency of oscillation of the system without damping.
- Damping ratio (ζ): Quantitatively describe this damped oscillation regardless of the time scale.

$$\zeta = \frac{\text{exponential decay frequency}}{\text{Natural frequency (rad/s)}} = \frac{|\sigma|}{\omega_n} = \frac{\left(\frac{a}{2}\right)}{\omega_n}$$

• For a second order:

$$G(s) = \frac{b}{s^2 + as + b} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

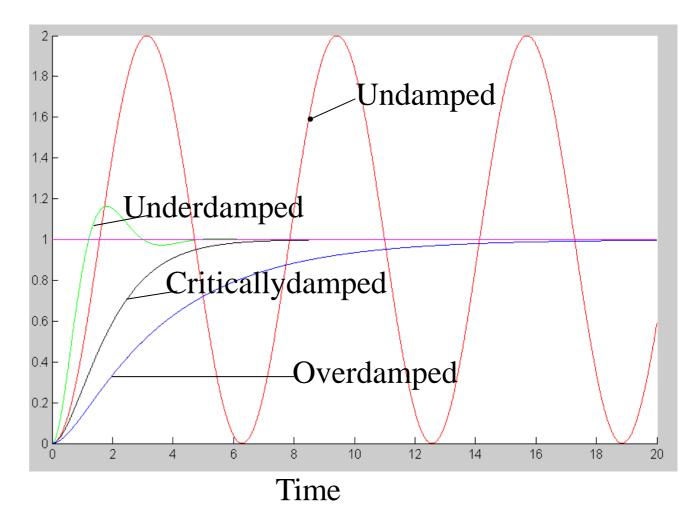
Where:

$$\omega_n = \sqrt{b}$$
 and $a = 2\zeta \omega_n$

Damping and second order response:

$$R_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Output

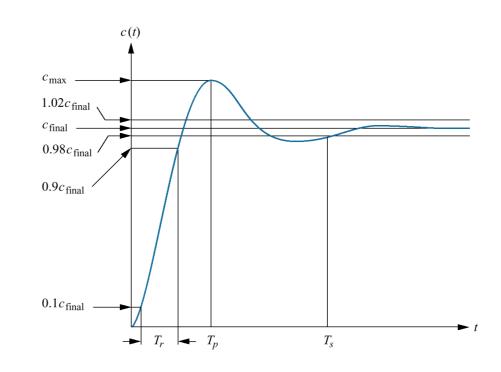


Determine damping of system:

Roots	Description	Response		
$b^2 - 4ac > 0$	Real, different	Overdamped		
$b^2 - 4ac = 0$	Real, same	Critically damped		
$b^2 - 4ac < 0$	Complex, different	Underdamped		
-4ac > 0	Complex, same	Undamped		

Second order time response:

 Rise time, peak time, and settling time yield information about the speed of the transient response

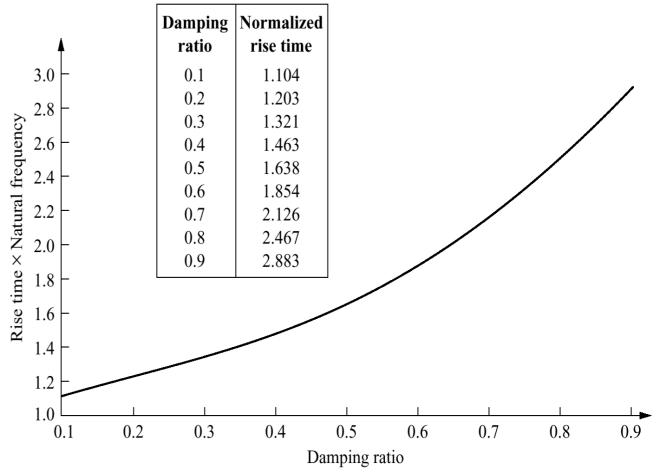


Second order (underdamped)

- Rise time (T_r) The time required for the waveform to go from 0.1 of the final value to 0.9 of the final value.
- Settling time (T_s) The time required for the transient's damped oscillations to reach and stay within +/- 2% of the steady-state value.
- Time to peak (T_p) The time required to reach the first, or maximum, peak.

Rise time (T_r) :

Normalized rise time vs.
 damping ratio for a second order underdamped response.



$$T_r = \frac{(1.76\xi^3 - 0.417\xi^2 + 1.039\xi + 1)}{\omega_n}$$

$$T_r = \frac{\pi - \phi}{\omega_n \sqrt{1 - \xi^2}}$$
Where: $\phi = \tan^{-1} \left(\frac{\sqrt{1 - \xi^2}}{\xi}\right)$

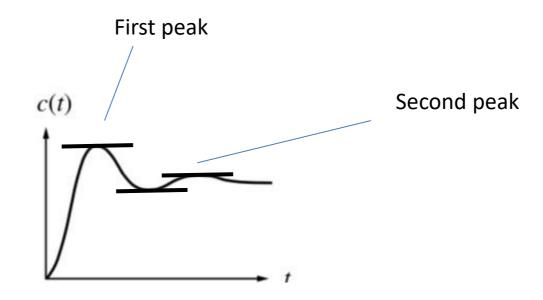
• For the given graph: $t_r \omega_0 = 2.230 \xi^2 - 0.078 \xi + 1.12$

Time-to-Peak (T_p) :

• Time to reach the first peak of the transient oscillation.

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

• We wish to know the time to all n peaks, but in most cases only need the first peak i.e. n = 1.



Percentage overshoot (%0S):

Ratio of the maximum overshoot and steady-state value.

$$\%OS = \left[\frac{c(\max) + c(\infty)}{c(\infty)}\right] \times 100\%$$

• $C(\max)$ is C(t) evaluated at the peak time $C(T_p)$. Note: %0S is a function of damping ratio only.

$$\%OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100\%$$

Can be rearranged to find damping ratio:

$$\zeta = -\frac{\ln\left(\frac{\%0S}{100}\right)}{\sqrt{\pi^2 + \ln^2(\%0S/100)}}$$

Settling time (T_s) :

• Time to reach and stay within +/-2% of the steady-state value

$$e^{-\zeta\omega_n t} \frac{1}{\sqrt{1-\zeta^2}} = 0.02$$

$$T_s = \frac{-\ln(0.02\sqrt{1-\zeta^2})}{\zeta\omega_n}$$

$$T_{S} = \frac{4}{\zeta \omega_{n}}$$

- Steady-state error $(e(\infty))$:
 - Steady-state error is the difference between the input and output for a prescribed test input as $t \to \infty$.
- Steady-state response:

In the s domain: $s \rightarrow 0$.

$$e_{ss}(s) = \frac{k}{a_0 s^2 + b_0 s + c} = \frac{K}{c}$$

Steady-state error:

The system error e(t) for a feedback control system is given by the difference between the demanded output r(t) and the actual output c(t):

$$e(t) = r(t) - c(t)$$

- The steady-state error is then defined as the difference between demanded and actual output when $t \to \infty$.
- The steady-state error is now defined for specific test inputs:
 - Step.
 - Ramp.
 - Parabola.

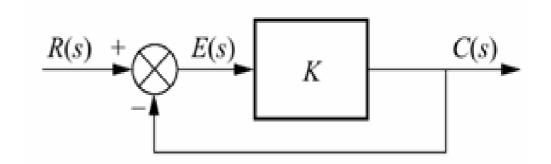
Specific test inputs in control systems engineering:

Waveform	Name	Physical interpretation	Time function	Laplace transform
r(t)	Step	Constant position	1	$\frac{1}{s}$
r(t)	Ramp	Constant velocity	t	$\frac{1}{s^2}$
r(t)	Parabola	Constant acceleration	$\frac{1}{2}t^2$	$\frac{1}{s^3}$

Sources of steady-state error:

- Consider steady-state errors due to system configuration.
- System with pure gain element.
- System output:

$$C(s) = K \cdot E(s)$$



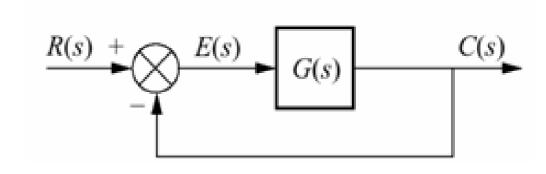
- The steady-state error can then never be = 0 or the output of the system will be zero, there will thus always be a steady state error present.
- If c_{ss} is the steady-state value of the output and e_{ss} is the steady-state value of the error, then:

$$c_{ss}(t) = K \cdot e_{ss}(t)$$
 Error

will diminish as K increases.

Steady-state error in terms of G(s):

For the system: E(s) = R(s) - C(s)



Thus

$$E(s) = R(s) - E(s)G(s)$$

So that:

$$E(s) = \frac{R(s)}{1 + G(s)}$$

From the final value theorem:

$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

Above equation will thus allow us to calculate the steady-state error given a particular input R(s).

Static error constant and system type:

- The term in the denominator of the definition of the steady state error for each input type is taken to limit the steady state error.
- These are then called the static error constants and are defined as follows:

```
Position constant, K_p = \lim_{s \to 0} G(s)
Velocity constant, K_v = \lim_{s \to 0} sG(s)
Acceleration constant, K_a = \lim_{s \to 0} s^2G(s)
```

• These constants depend on the form of G(s) and determine the steady-state error (i.e. error decreases as static error constant increases).

System type:

- The system type is taken to be the number of integration in the feed-forward path. (the value of n in s^n of denominator).
- This value of *n* (the system type) then determines the steady state error of a unit feedback system for a particular type of input.

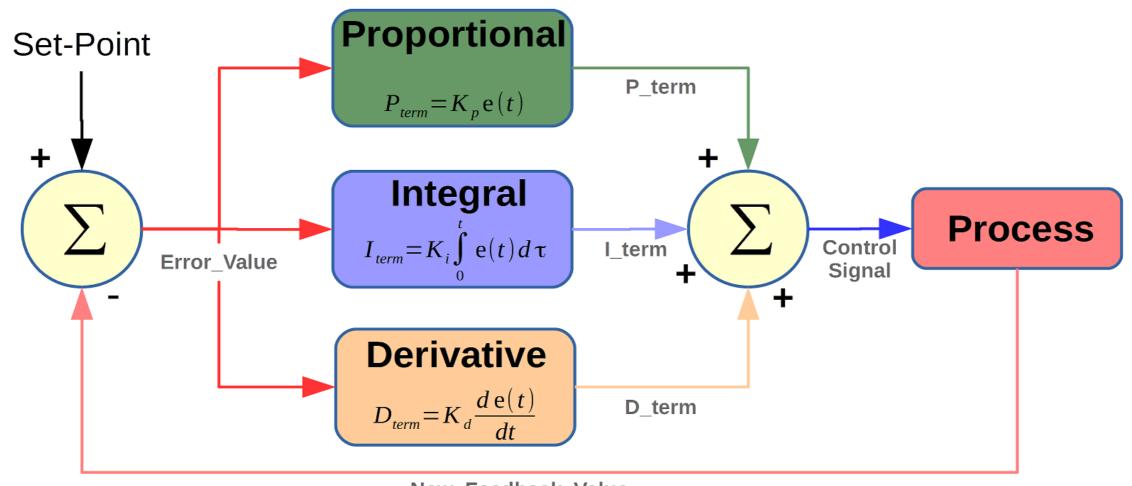
		Type 0		Type 1		Type 2	
Input	Steady-state error formula	Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_{v}}$	$K_v = 0$	∞	$K_{v} =$ Constant	$\frac{1}{K_{\nu}}$	$K_v = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a =$ Constant	$\frac{1}{K_a}$

Compensators:

Lag Compensators, Lead
 Compensators, and Lag-Lead
 Compensators.

Controllers:

 Proportional Controllers, Integral Controllers, Derivative Controllers, and PI, PD, PID controllers.



New_Feedback_Value

Controller/	Function	Transfer Function	Characteristics
Compensator			
Р	Improve	K	a. Increases gain of the system.
	transient		b. Often result in non-zero steady-state error.
	response (up		b. Often result in non-zero steady-state error.
	to a point)		c. Relatively easy to implement.

PI	Improve	$K\left(\frac{S+Z_c}{}\right)$	a.	Increases system type.
	steady-state error	$\left(\frac{1}{S} \right)$	b.	Error becomes zero.
			c.	Zero at z_c is small and negative.
			d.	Active circuits are required to implement.
Lag	Improve	$(s+z_c)$	a.	Error is improved, but not driven to zero.
	steady-state error	$K\left(\frac{s+z_c}{s+p_c}\right)$	b.	Pole at $-p_c$ is small and negative.
			c.	Zero at $-z_c$ is close to, and to the left of, the
				pole at $-p_c$.
			d.	Active circuits are not required t implement.

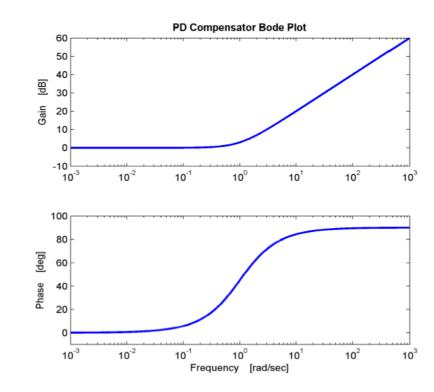
PD	Improve	$K(s+z_c)$	a.	Zero at $-z_c$ is selected to put design point on root locus.
	transient		b.	Active circuits are required to implement.
	response		7. Active circuits are required to implement.	
			c.	It can cause noise and saturation; implement with rate
				feedback or with a pole (lead).
Lead	Improve	$(s+z_c)$	a.	Zero at $-z_c$ and pole at $-p_c$ at are selected to put design point
	transient	$K\left(\frac{s+z_c}{s+p_c}\right)$		on root locus.
	response		b.	Pole at $-p_c$ is more negative than zero at $-z_c$.
			c.	Active circuits are not required to implement.

PID	Improve	$K\left[\frac{(s+z_{lag})(s+z_{lead})}{s+z_{lead}}\right]$	a.	Lag zero at $-z_{lag}$ and pole at the origin improve steady-state
	steady-state	K S		error.
	error and transient		b.	Lead zero at $-z_{lead}$ improves transient response.
	response		c.	Lag zero at $-z_{lag}$ is close to, and to the left of, the origin.
			d.	Lead zero at $-z_{lead}$ is selected to put design point on root locus.
			e.	Active circuits are required to implement.
			f.	It can cause noise and saturation; implement with rate
				feedback or with an additional pole.

Lag-lead	Improve steady-state error and transient response	$K\left[\frac{(s+z_{lag})(s+z_{lead})}{(s+p_{lag})(s+p_{lead})}\right]$	a.	Lag pole at $-p_{lag}$ and lag zero at $-z_{lag}$ are used to improve steady-state error.
			b.	Lead pole at $-p_{lead}$ and lead zero at $-z_{lead}$ are used to improve transient response.
			c.	Lag pole at $-p_{lag}$ is small and negative.
			d.	Lag zero at $-z_{lag}$ is close to, and to the left of, lag pole
				at $-p_{lag}$
			e.	Lead zero at $-z_{lead}$ and lead pole at $-p_{lead}$ are selected to put design point on root locus.
			f.	Lead pole at $-p_{lead}$ is more negative than lead zero at $-z_{lead}$.
			g.	Active circuits are not required to implement.

PD Controller:

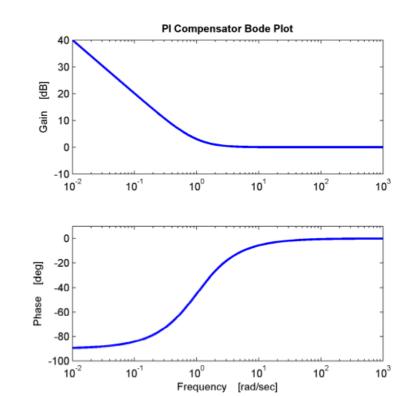
$$C(s) = T_D(s+4)$$



- In the PD controller, phase added near (and above) the crossover frequency e.g. an increase of the phase margin and giving a stabilizing effect.
- Then, the gain continues to rise at high frequencies, but this causes the sensor noise to be amplified and as a result a lead compensation is usually preferable.

PI Controller:

$$C(s) = \frac{1}{T_D} \left(\frac{T_D s + 1}{s} \right)$$

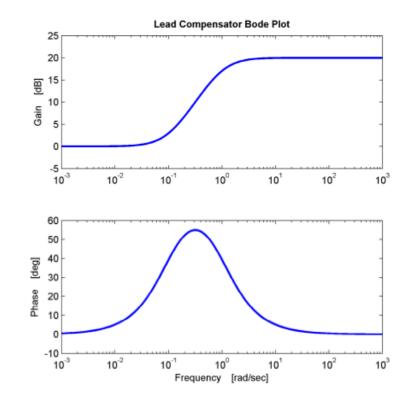


- At low frequency, the gain of proportional-integral compensator is infinite at DC (0 rad/s) and this compensator can increase system type of the system.
- For frequency above the cut-off frequency of the compensator ($\omega \gg 1$ / T_D), the gain of the system is unaffected, there is a slight change in the phase, but phase margin of the system is unaffected.
- In the end, the proportional-integral compensator has a tendency to increase low frequency gain of the system.

Lag Compensator:

$$C(s) = \left(\frac{Ts+1}{\beta Ts+1}\right)$$

Where: $\beta < 1$

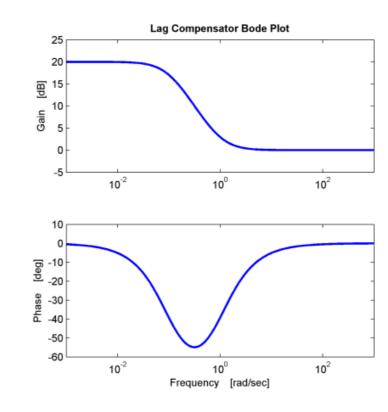


- For frequency below the cut-off frequency of the compensator ($\omega \ll 1/T$) the gain is ~0 dB and Phase is ~0°.
- For frequency above the cut-off frequency of the compensator ($\omega \gg 1/\beta T$) the gain is +20 dB and phase is ~0°.
- Thus, lead compensator adds phase lead near the crossover frequency and/or alter the crossover frequency.

Lag Compensator:

$$C(s) = \alpha \left(\frac{Ts + 10}{\alpha Ts + 1} \right)$$

Where: $\alpha > 1$

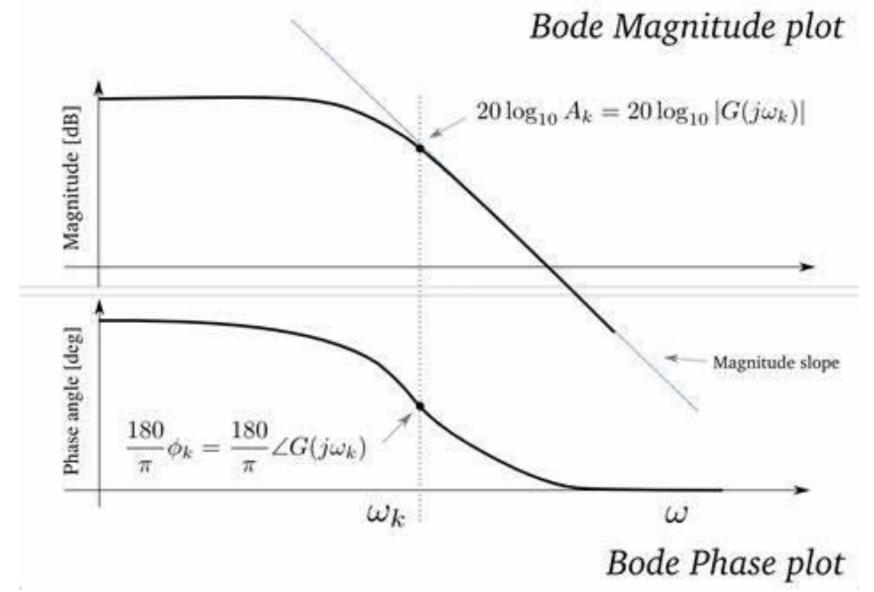


- For frequency less than cut-off frequency of the compensator ($\omega \ll 1/\alpha T$), the gain of the system is 20 log (α) dB and phase is 0°.
- For frequency more than the cut-off frequency of the compensator $(\omega \gg 1/\alpha T)$, both the gain and phase are 0 dB and 0° respectively.
- In short, lag compensator adds a gain of α at low frequencies without affecting phase margin.

6. Bode Plots

Bode plots:

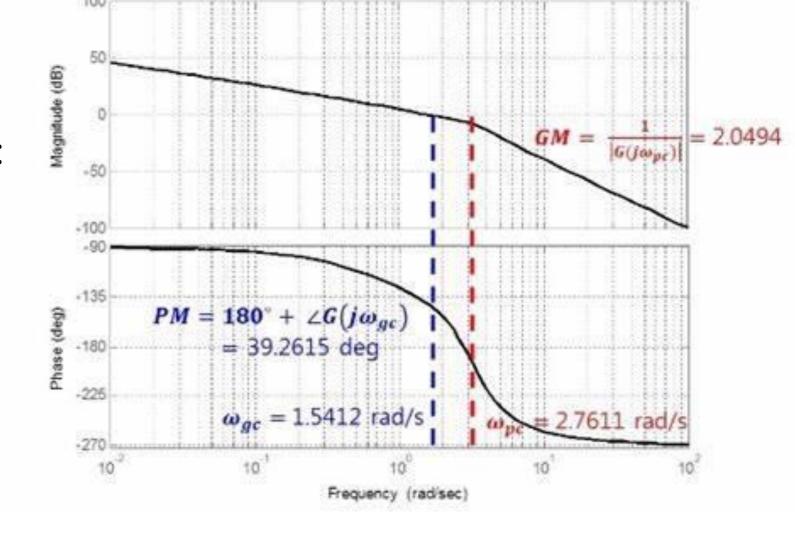
• Frequency response analysis method in control system for measuring: stability, time domain performance, and frequency domain performance.



6. Bode Plots

Components of analysis:

- Gain or magnitude plot.
- Phase shift plot.
- Gain and phase margins.



Bode Dagram

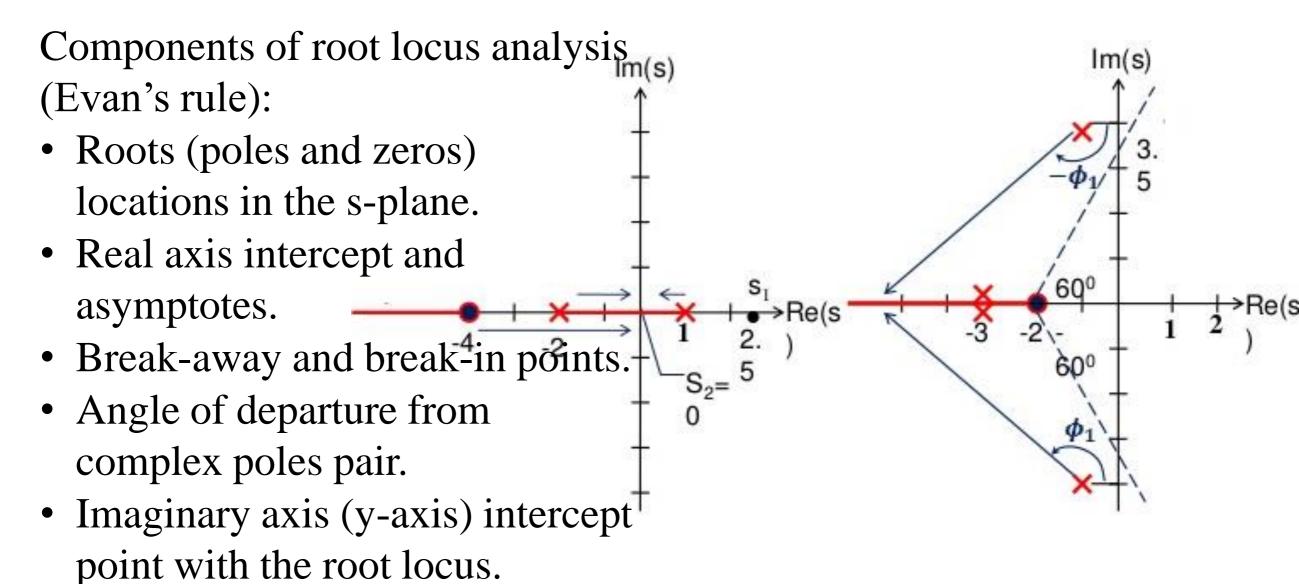
Analysis of Bode plots:

- Stability: Gain, Phase Shift Angle, Phase Margin, and Gain Margin.
- Transient Performance (e.g. Damping Factor, Rise Time, Settling Time, Time-to-Peak, % Oscillation, Steady State Errors, etc.): break points, slopes, peaking.

7. Root Locus Diagram

Root locus diagram:

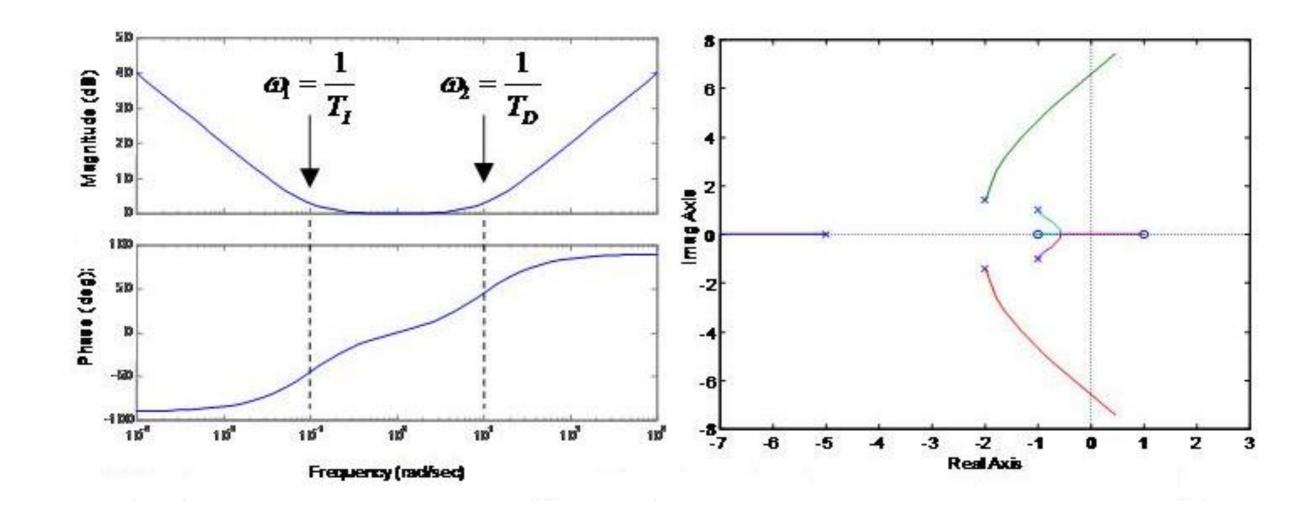
S-plane (roots of transfer function of the system) based analysis method for measuring: stability, time domain performance, and frequency domain performance.



7. Root Locus Diagram

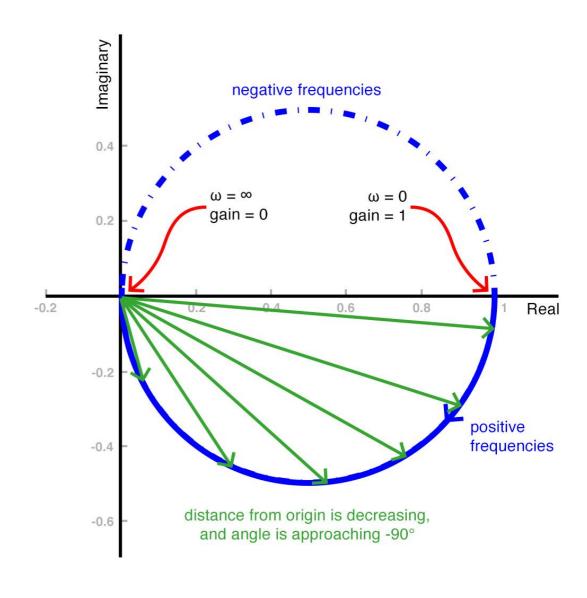
Analysis of root locus:

- Stability: Gain, Phase Shift Angle and Interception with y-axis.
- Transient Performance (Damping Factor, Rise Time, Settling Time, Time-to-Peak, %OS, Steady State Errors, etc.): location of poles and zeros in the diagram.



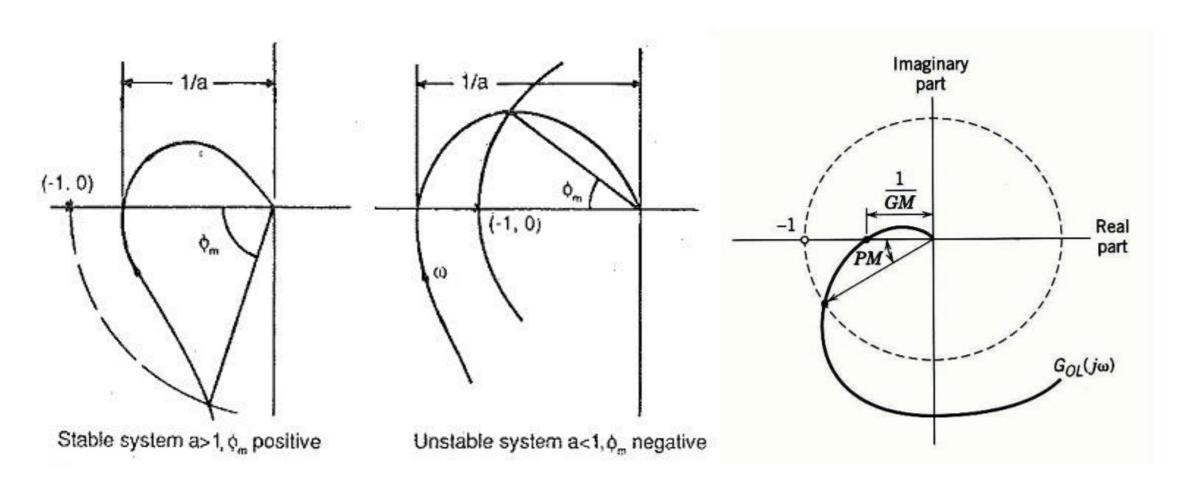
Nyquist Diagram

- Frequency domain analysis method for measuring: stability, time domain performance, and frequency domain performance.
- Component of analysis:
 - Magnitude.
 - Phase shift angle.
 - Encirclement at test point (-1,0).
 - Gain and phase margins.



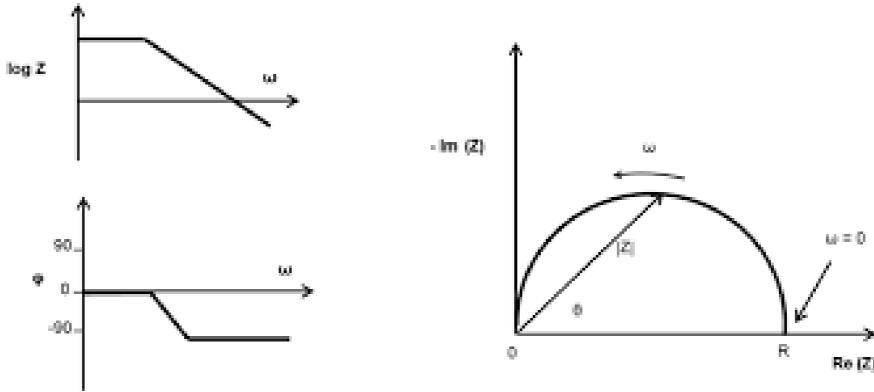
Analysis of Nyquist diagram:

- Stability: Gain, Phase Shift Angle, Phase Margin, Gain Margin and encirclement at test point (-1,0).
- Transient Performance (e.g. Damping Factor, Rise Time, Settling Time, Time-to-Peak, %OS, Steady-State Errors, etc.): encirclement, type of contour, and detour on contour.



Derivation of Nyquist diagram:

- From Bode plots: straight plotting of the points of interest in the graph from the gain or magnitude and phase shift of the Bode plots to the Nyquist diagram.
- Although the gain or magnitude needs to be converted from logarithmic scale (dB) in Bode plots to linear scale in Nyquist diagram.



Derivation of Nyquist diagram:

• From root locus diagram: Conversion of the sum of the magnitude or gain contribution at unity gain and sum of phase shift angle contribution at -180 of all poles and zeros in the root locus diagram to magnitude or gain and phase shift in the Nyquist diagram.

