
F i n a l  E x a m  R e v i e w

X M U T 3 1 5  C o n t r o l  S y s t e m s  E n g i n e e r i n g



F i n a l  E x a m  Fo r m a t
• Four questions, 25 marks each.

• Two hours (theoretical, analytical, and design cases).

• Bring to the exam:

• Calculator (non-programmable).

• Ruler.

• Dictionary.

• A list of selected formulas in the control systems 

engineering is provided.



F i n a l  E x a m  Fo r m a t

Descriptive, drawing and result of calculation answers:

Q1: Modelling, feedback control system, block diagram 

manipulation, time domain analysis, and stability.

Q2: Compensator or controller characteristics and analysis.

Q3: Bode plots analysis and Nyquist diagram analysis.

Q4: Root locus analysis.



Q u e s t i o n  T y p e s
Expect three types of question in the exam:

• Explain…

(d) Describe the significant of coefficients  and  in feedback 

system. [5 marks]

• Calculate…

(a) Calculate time constant (𝜏), rise time (𝑇𝑟), time to peak (𝑡𝑝), 

settling time (𝑡𝑠) and percentage overshoot (%OS) of the 

following second order system. [15 marks]

• Design…

(c) Suggest a controller/compensator that could eliminate the 

steady-state error of the given system. [10 marks]



Topics
1. System modelling:

• Laplace transform.

• Modelling from physical system.

2. Feedback control system:

• Feedback system.

• Block model manipulation.

3. Stability:

• System stability.

• Routh-Hurwitz criterion stability analysis.

4. Time responses:

• First-order transient.

• Second-order transient.

• Steady-state.



Topics
5. Controllers or compensators: 

• P, PI, PD, and PID controllers.

• Lag, Lead, and Lag-Lead compensators.

• Design of control system with controllers or compensators.

6. Bode plots:

• Construction of Bode plots.

• Analysis of control system with Bode plots.

7. Root locus diagram:

• Construction of Root locus diagram.

• Analysis of control system with root locus diagram.

8. Nyquist diagram:

• Construction of Nyquist diagram.

• Analysis of control system with Nyquist diagram.



1. System Modelling
Laplace transforms:



1. System Modelling
• Modelling system from physical entities:

• Scaled physical model, mathematical model, and numerical model.

• When building up a model system:

• Components should be easily identifiable, components should have 

a simple and clearly defined interaction with other components, and  

components numbers should be minimised.

• In order to analyse a system:

1. We identify an input signal. [a variable]

2. Using block diagram components. [basic block, summing junction, 

take-off point]  [modified variables]

3. We combine internal signals to produce the output signal. [another

variable]

The Input-Output relationship may then be determined.



1. System Modelling
1. Signals:

• Components are connected together by signals. 

• Signals have many different forms.

• Must also have direction and name

• Signals continue until interrupted!

• Signals and components are considered ideal.

• We add other signals and components to alter the properties

2. Components (summing junction and take off point)

Voltage V1 V1 – V2

Electrical

V2

+ _

V1Voltage V1

Electrical

V1



1. System Modelling
2. Components (block):

• Block is function of the system signal.

• Only one input and only one output (SISO).

• Three types of models: electrical system, mechanical system 

and electro-mechanical system.

VCurrent I

Electrical

Force F Distance x

Spring



1. System Modelling
Modelling mechanical systems:



1. System Modelling
Modelling electrical systems:



2. Feedback Control Systems
We would like to control the output of a system i.e. have the output 

resemble the input, despite disturbances.

Process

P

Disturbance
D

Output

O

Input

I

• Process with transfer function P perturbed by a disturbance D.

• Suppose P is 10 and disturbance D is 0. If the output O is to be 

1, we make input I = 0.1.  

• But if P changes by 10% to 11 then O changes by 10% to 1.1.

• If disturbance D is 0.1, then O will also change by 0.1.



2. Feedback Control Systems
Principle of superposition: what is superposition?

• If CP large: O ~ I + 0 = I  

• So, feedback:

• Makes output almost same as input,

• Minimises effects of disturbances, and

• Reduces effect of change in device.

• This is true because the ‘loop gain’, C * P, is high.

Controller Process  

C P

Disturbance  
D

Output
O

Input

I

D
1+ C * P

1

1 + C * P

C* P
O = I +

O s

I s
=

CP

1 + CP
with D = 0



Routh-Hurwitz Criterion:

• Using this method, we can tell how many closed-loop system poles 

are in the left half-plane,  in the right half-plane, and whether the 

poles are on the j⍵-axis.

• Cannot tell where, but only how many are in each plane 

determining the system’s stability.

• The method requires two steps:

• Generate a data table called a Routh table.

• Interpret the Routh table to tell how many closed-loop system 

poles are in the left half-plane, the right half-plane, and on the 

j⍵ -axis.

3. Stability



Generating a Routh table:

Equivalent closed loop transfer function

𝑁(s)

𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎 2 𝑠 2 + 𝑎1𝑠1 +𝑎0

𝑠4 𝑎4 𝑎 2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠 2
−

𝑎4

𝑎3

𝑎3

𝑎 2

𝑎1 = 𝑏1

−
𝑎4

𝑎3

𝑎3

𝑎0

0
= 𝑏 2

−
𝑎4

𝑎3

𝑎3

0

0
= 0

𝑠1
−

𝑎3

𝑏1

𝑏1

𝑎1

𝑏 2 = 𝑐1

−
𝑎3

𝑏1

𝑏1

0

0
= 0

−
𝑎3

𝑏1

𝑏1

0

0
= 0

𝑠0
−

𝑏1

𝑐1

𝑐1

𝑏 2

0
= 𝑑1

−
𝑏1

𝑐1

𝑐1

0

0
= 0

−
𝑏1

𝑐1

𝑐1

0

0
= 0

3. Stability



3. Stability

Routh-Hurwitz special cases:

1. Zero in the first row or column.

In this case, zero is replaced with epsilon (𝜖) and will tend to zero.

2. Entire row of zeros:

A: Real and symmetrical about the origin.

B: Imaginary and symmetrical about the origin. 

C: Quadrantal and symmetrical about the origin.

Interpreting a Routh table:

Simply stated, the Routh-Hurwitz criterion declares that the number of 

roots of the polynomial that are in the right hand-plane is equal to the 

number of sign changes in the first column.



4. Time Responses
Estimating system response:

• The systems examined so far can be modelled by transfer

functions:

𝐾

1 + 𝑠𝑇
or

𝐾

𝐴𝑠2 + 𝐵𝑠 + 𝑐

• Given a particular input, what is the system output?  

• Can use differential equation techniques.

• Easier to define the approximate response, just from the transfer

function.

• We will do this, assuming that the input is a step.



Tr = Rise Time (2.2/a)

Ts = Settling time (4/a)

4. Time Responses
• Step response of first order system:

𝑂 𝑠 = 𝐺 𝑠 𝑅(𝑠)

• For 𝑅 = step input

𝑂 𝑠 = 𝐺(𝑠)

𝑎

𝑠 + 𝑎

𝑅(s) 𝑂(s)
𝐺(s)

Exponential Frequency

𝑒 j



4. Time Responses
Steady-state response of first-order system:

𝑜 𝑡 = 𝐾 1 − 𝑒−𝑡/𝑇1 where 𝑡 is large 𝑒−
𝑡
𝑇
−1 → 0

In s-domain:

𝑠 → 0
𝑂 𝑠

𝐼 𝑠
=

𝐾

1 + 𝑇1𝑠

Step input:

𝑂𝑠𝑠 𝑠 =
𝐾

1 + 𝑇1(0)
=
𝐾

1
= 𝐾

Time

Transient

Steady-

state



4. Time Responses
• General second-order response:

𝐺 𝑠 =
𝜔𝑁
2

𝑠2 + 2𝜔𝑁𝜁𝑠 + 𝜔𝑁
2

• Standard second-order root equation:

s1,2 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎



4. Time Responses
General second-order response:

• Natural frequency (𝜔𝑛): Frequency of oscillation of the system 

without damping.

• Damping ratio (𝜁): Quantitatively describe this damped oscillation 

regardless of the time scale.

𝜁 =
exponential decay frequency

Natural frequency (rad/s)
=

𝜎

𝜔𝑛
=

𝑎
2
𝜔𝑛

• For a second order:

𝐺 𝑠 =
𝑏

𝑠2 + 𝑎𝑠 + 𝑏
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2

Where:

𝜔𝑛 = 𝑏 and 𝑎 = 2𝜁𝜔𝑛



4. Time Responses

Undamped

Overdamped

Time

Criticallydamped

Underdamped

Output

2a

− b  b2 −4ac
R1,2=

Damping and second order response:



4. Time Responses
Determine damping of system:

Description

Real, different

Real, same

Complex,  different

Complex,  same

− 4ac 0b2

Undamped

Overdamped

Critically damped

Underdamped

− 4ac =0b2

− 4ac 0

− 4ac 0b2

ResponseRoots



4. Time Responses

Second order (underdamped)

Second order time response:

• Rise time, peak time, and 

settling time yield 

information about the speed 

of the transient  response

• Rise time (𝑇𝑟) - The time required for the waveform to go 

from 0.1 of the final value to 0.9 of the final value.

• Settling time (𝑇𝑠) - The time required for the transient’s 

damped oscillations to reach and  stay within +/- 2% of the 

steady-state value.

• Time to peak (𝑇𝑝) - The time required to reach the first, or 

maximum, peak.



4. Time Responses
Rise time (𝑇𝑟):

• Normalized rise time vs. 

damping ratio for a second-

order underdamped response.

𝑇𝑟 =
1.76𝜉3 − 0.417𝜉2 + 1.039𝜉 + 1

𝜔𝑛

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑛 1 − 𝜉2

Where: 𝜙 = tan−1
1−𝜉2

𝜉

• For the given graph: 𝑡𝑟𝜔0 = 2.230𝜉2 − 0.078𝜉 + 1.12



4. Time Responses
Time-to-Peak (𝑇𝑝):

• Time to reach the first peak of the transient oscillation.

𝑇𝑝 =
𝜋

𝜔𝑛 1 − 𝜁2

• We wish to know the time to all n peaks, but in most cases 

only need the first peak i.e. n = 1.

First peak

Second peak



4. Time Responses
Percentage overshoot (%𝑂𝑆):

• Ratio of the maximum overshoot and steady-state value.

%𝑂𝑆 =
𝑐 max + 𝑐 ∞

𝑐 ∞
× 100%

• 𝐶 max is 𝐶(𝑡) evaluated at the peak time 𝐶(𝑇𝑝). Note: 

%𝑂𝑆 is a function of damping ratio only.

%𝑂𝑆 = 𝑒
− 𝜁𝜋/ 1−𝜁2

× 100%

• Can be rearranged to find damping ratio:

𝜁 = −
ln

%𝑂𝑆
100

𝜋2 + ln2 %𝑂𝑆/100



4. Time Responses
Settling time (𝑇𝑠):

• Time to reach and stay within +/-2% of the steady-state value

𝑇𝑠 =
4

𝜁𝜔𝑛



4. (Time Responses) Steady-State
• Steady-state error (e(∞):

Steady-state error is the difference between the input and

output for a prescribed test input as t →

• Steady-state response:

In the s domain: s → 0.

k
=ess (s)=

K

𝑎0𝑠
2 +𝑏0𝑠 +c c



• Steady-state error:

The system error 𝑒(𝑡) for a feedback control system is given by 

the difference between the demanded output 𝑟(𝑡) and the actual

output 𝑐(𝑡): 

𝑒 𝑡 = 𝑟 𝑡 − 𝑐(𝑡)

• The steady-state error is then defined as the difference between 

demanded and actual output when 𝑡 → ∞.

• The steady-state error is now defined for specific test inputs:

• Step.

• Ramp.

• Parabola.

4. (Time Responses) Steady-State



4. (Time Responses) Steady-State
Specific test inputs in control systems engineering:



Sources of steady-state error:

• Consider steady-state errors due to system configuration.

• System with pure gain element.

• System output: 

C(s) = K . E(s)

• The steady-state error can then never be = 0 or the output of the system 

will be zero, there will  thus always be a steady state error present. 

• If 𝑐𝑠𝑠 is the steady-state value of the output and 𝑒𝑠𝑠 is the steady-state 

value of the error, then:

css(t) = K . ess(t)  Error

will diminish as K increases.

4. (Time Responses) Steady-State



Steady-state error in terms of G(s):

For the system: E(s) = R(s) – C(s)

Thus E(s) = R(s) – E(s)G(s)

So that:

From the final value theorem:

Above equation will thus allow us to calculate the steady-state error 

given a particular input R(s).

R(s)
1+G(s)

E(s) =

e() = lim sE(s) = lim
sR(s)

s→0 1+G(s)s→0

4. (Time Responses) Steady-State



Static error constant and system type:

• The term in the denominator of the definition of the steady state 

error for each  input type is taken to limit the steady state error.

• These are then called the static error constants and are defined as

follows:

Position constant, 𝐾𝑝 = lim
𝑠→0

𝐺(𝑠)

Velocity constant, 𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠)

Acceleration constant, 𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠)

• These constants depend on the form of 𝐺(𝑠) and determine the steady-

state error (i.e. error decreases as static error constant increases).

4. (Time Responses) Steady-State



System type:

• The system type is taken to be the number of integration in the 

feed-forward  path. (the value of n in 𝑠𝑛 of denominator). 

• This value of 𝑛 (the system type) then determines the steady state 

error of a unit feedback system for a particular  type of input.

4. (Time Responses) Steady-State



5. Controllers/Compensators
Controllers:

• Proportional Controllers, Integral 

Controllers, Derivative Controllers, 

and PI, PD, PID controllers.

Compensators:

• Lag Compensators, Lead 

Compensators, and Lag-Lead 

Compensators.



5. Controllers/Compensators
Controller/ 

Compensator 

Function Transfer Function Characteristics

P Improve 

transient 

response (up 

to a point)

𝐾 a. Increases gain of the system.

b. Often result in non-zero steady-state error.

c. Relatively easy to implement.

PI Improve 

steady-state 

error

𝐾
𝑠 + 𝑧𝑐
𝑠

a. Increases system type.

b. Error becomes zero.

c. Zero at 𝑧𝑐is small and negative.

d. Active circuits are required to implement.

Lag Improve 

steady-state 

error

𝐾
𝑠 + 𝑧𝑐
𝑠 + 𝑝𝑐

a. Error is improved, but not driven to zero.

b. Pole at −𝑝𝑐 is small and negative.

c. Zero at −𝑧𝑐 is close to, and to the left of, the 

pole at −𝑝𝑐.

d. Active circuits are not required t implement.



5. Controllers/Compensators
PD Improve 

transient 

response

𝐾(𝑠 + 𝑧𝑐) a. Zero at −𝑧𝑐 is selected to put design point on root locus.

b. Active circuits are required to implement.

c. It can cause noise and saturation; implement with rate 

feedback or with a pole (lead). 

Lead Improve 

transient 

response

𝐾
𝑠 + 𝑧𝑐
𝑠 + 𝑝𝑐

a. Zero at −𝑧𝑐 and pole at −𝑝𝑐 at are selected to put design point 

on root locus.

b. Pole at −𝑝𝑐 is more negative than zero at −𝑧𝑐.

c. Active circuits are not required to implement.

PID Improve 

steady-state 

error and 

transient 

response

𝐾
(𝑠 + 𝑧𝑙𝑎𝑔)(𝑠 + 𝑧𝑙𝑒𝑎𝑑)

𝑠

a. Lag zero at −𝑧𝑙𝑎𝑔 and pole at the origin improve steady-state 

error.

b. Lead zero at −𝑧𝑙𝑒𝑎𝑑 improves transient response.

c. Lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, the origin.

d. Lead zero at −𝑧𝑙𝑒𝑎𝑑 is selected to put design point on root 

locus.

e. Active circuits are required to implement.

f. It can cause noise and saturation; implement with rate 

feedback or with an additional pole.



5. Controllers/Compensators
Lag-lead Improve 

steady-state 

error and 

transient 

response

𝐾
(𝑠 + 𝑧𝑙𝑎𝑔)(𝑠 + 𝑧𝑙𝑒𝑎𝑑)

(𝑠 + 𝑝𝑙𝑎𝑔)(𝑠 + 𝑝𝑙𝑒𝑎𝑑)

a. Lag pole at −𝑝𝑙𝑎𝑔 and lag zero at −𝑧𝑙𝑎𝑔 are used to 

improve steady-state error.

b. Lead pole at −𝑝𝑙𝑒𝑎𝑑 and lead zero at −𝑧𝑙𝑒𝑎𝑑 are used to 

improve transient response.

c. Lag pole at −𝑝𝑙𝑎𝑔 is small and negative.

d. Lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, lag pole 

at −𝑝𝑙𝑎𝑔

e. Lead zero at −𝑧𝑙𝑒𝑎𝑑 and lead pole at −𝑝𝑙𝑒𝑎𝑑 are 

selected to put design point on root locus.

f. Lead pole at −𝑝𝑙𝑒𝑎𝑑 is more negative than lead zero at 

− 𝑧𝑙𝑒𝑎𝑑.

g. Active circuits are not required to implement.



5. Controllers/Compensators

• In the PD controller, phase added near (and above) the crossover 

frequency e.g.  an increase of the phase margin and giving a 

stabilizing effect. 

• Then, the gain continues to rise at high frequencies, but this 

causes the sensor noise to be amplified and as a result a lead 

compensation is usually preferable.

PD Controller:

𝐶 𝑠 = 𝑇𝐷(𝑠 + 4)



5. Controllers/Compensators

• At low frequency, the gain of proportional-integral compensator is 

infinite at DC (0 rad/s) and this compensator can increase system type of 

the system. 

• For frequency above the cut-off frequency of the compensator (𝜔 ≫ 1
/𝑇𝐷), the gain of the system is unaffected, there is a slight change in the 

phase, but phase margin of the system is unaffected. 

• In the end, the proportional-integral compensator has a tendency to

increase low frequency gain of the system. 

PI Controller:

𝐶 𝑠 =
1

𝑇𝐷

𝑇𝐷𝑠 + 1

𝑠



5. Controllers/Compensators

• For frequency below the cut-off frequency of the compensator (𝜔 ≪

1/𝑇) the gain is ~0 dB and Phase is ~0°. 

• For frequency above the cut-off frequency of the compensator (𝜔 ≫
1/𝛽𝑇) the gain is +20 dB and phase is ~0°. 

• Thus, lead compensator adds phase lead near the crossover frequency 

and/or alter the crossover frequency.

Lag Compensator:

𝐶 𝑠 =
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1

Where: 𝛽 < 1



5. Controllers/Compensators

• For frequency less than cut-off frequency of the compensator (𝜔 ≪

1/𝛼𝑇), the gain of the system is 20 log () dB and phase is 0°. 

• For frequency more than the cut-off frequency of the compensator 

(𝜔 ≫ 1/𝛼𝑇), both the gain and phase are 0 dB and 0° respectively. 

• In short, lag compensator adds a gain of  at low frequencies 

without affecting phase margin.

Lag Compensator:

𝐶 𝑠 = 𝛼
𝑇𝑠 + 10

𝛼𝑇𝑠 + 1

Where: 𝛼 > 1



6. Bode Plots
Bode plots:

• Frequency response analysis method in control system for measuring: 

stability, time domain performance, and frequency domain 

performance.



6. Bode Plots

Analysis of Bode plots:

• Stability: Gain, Phase Shift Angle, Phase Margin, and Gain 

Margin.

• Transient Performance (e.g. Damping Factor, Rise Time, 

Settling Time, Time-to-Peak, % Oscillation, Steady State 

Errors, etc.): break points, slopes, peaking.

Components of analysis:

• Gain or magnitude 

plot.

• Phase shift plot.

• Gain and phase 

margins.



7. Root Locus Diagram
Root locus diagram:

S-plane (roots of transfer function of the system) based analysis method 

for measuring: stability, time domain performance, and frequency 

domain performance.

Components of root locus analysis 

(Evan’s rule):

• Roots (poles and zeros) 

locations in the s-plane.

• Real axis intercept and 

asymptotes.

• Break-away and break-in points.

• Angle of departure from 

complex poles pair.

• Imaginary axis (y-axis) intercept 

point with the root locus.



7. Root Locus Diagram
Analysis of root locus:

• Stability: Gain, Phase Shift Angle and Interception with y-axis.

• Transient Performance (Damping Factor, Rise Time, Settling Time, 

Time-to-Peak, %OS, Steady State Errors, etc.): location of poles and 

zeros in the diagram.



8. Nyquist Diagram
Nyquist Diagram

• Frequency domain analysis 

method for measuring: 

stability, time domain 

performance, and frequency 

domain performance.

• Component of analysis:

• Magnitude.

• Phase shift angle.

• Encirclement at test point 

(-1,0).

• Gain and phase margins.



8. Nyquist Diagram
Analysis of Nyquist diagram:

• Stability: Gain, Phase Shift Angle, Phase Margin, Gain Margin and 

encirclement at test point (-1,0).

• Transient Performance (e.g. Damping Factor, Rise Time, Settling 

Time, Time-to-Peak, %OS, Steady-State Errors, etc.): 

encirclement, type of contour, and detour on contour.



8. Nyquist Diagram
Derivation of Nyquist diagram:

• From Bode plots: straight plotting of the points of interest in the 

graph from the gain or magnitude and phase shift of the Bode plots 

to the Nyquist diagram. 

• Although the gain or magnitude needs to be converted from 

logarithmic scale (dB) in Bode plots to linear scale in Nyquist 

diagram.



8. Nyquist Diagram
Derivation of Nyquist diagram:

• From root locus diagram: Conversion of the sum of the magnitude

or gain contribution at unity gain and sum of phase shift angle 

contribution at -180 of all poles and zeros in the root locus diagram 

to magnitude or gain and phase shift in the Nyquist diagram.  
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