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Mid-Term Test

6 questions, 10-25 marks each.

2 hours.

Bring non-programmable calculator, dictionary and ruler.

Selected formulas in control system (see revision midterm guestions).

Time and place: T.B.A.



Question Types

Expect 3 types of question in the midterm test:

* Explain...

a. Describe the significant of coefficients a and B in feedback system. [5 marks]

e Calculate ...

b. Calculate time constant (z), rise time (T.), time to peak (t,), settling time (t;)
and percentage overshoot (%0S) of a second order system. [15 marks]

e Analyse ...

c. Determine and sketch an over damped second order system with damping
ratio of 1.5 and natural frequency of 2 rad/sec. [10 marks]



Mid-Term Test Topics

1.  Physical system modelling

. Laplace transform.

. Modelling from physical system.
2.  Feedback control system

. Feedback systems.

. Block manipulations.
3.  Stability of system

. Concept and criteria of stability.

. Routh-Hurwitz criterion.

. Other approaches (e.g. Nyquist, Nichols, Bode and Root Locus).
4.  Time-domain analysis

. First-order systems.

. Second-order systems.

. Steady-state analysis.



|. System Modelling

* What Is a system?

« Components acting together to carry out an activity, perform a duty, or solve a
problem

« A system is built of:
« Sub-systems
* Processes
* Input and output
« What Is our condition of stability?
 Natural response must eventually approach zero (or oscillate)
 Advantages and disadvantages of open loop systems
 Does not monitor output so cannot correct for disturbances
 Simpler and less expensive
« Advantages and disadvantages of closed loop systems:
« Monitors the output and compares It to the input, correcting for errors
« More complex and expensive than open loop, can create instability.



|. System Modelling

* When building up a model of a physical system:
« Components should be easily identifiable.

« Components should have a simple and clearly defined interaction with other
components.

« Components numbers should be minimised.

* In order to analyse a system:

1. We identify an input signal a variable]

2. Using block diagram components, [Basic block, summing junction, take-off point]
we combine internal signals 'modified variables]
to produce the output signal [another variable]

The Input-Output relationship may then be determined



|. System Modelling

1. Signals
« Components are connected together by signal
« Signals have many different forms.
« Must also have direction & name.

« Signals continue until interrupted.
 Signals and components are considered ideal.
« \We add other signals and components to alter the properties.

2. Components

\oltage  V; @ V-V, \oltage — V,
> -+ >
— Electrical

Electrical
V,




. System Modelling

2. Components (cont..)

Block is/ or function of the system signal.

Current I V
R
Electrical
Force F Distance x
1/k
Spring

Only one input and only one output.



. System Modelling

Modelling mechanical systems:

Newton Law: ), F = Ma

Mass: Md?x/dt?.
Spring: kx (k = spring constant).
Damper: Ddx/dt (D = damper constant).

u(t) I



. System Modelling

Modelling electrical systems:

F

> @

ut), LS |y

Sl

« OhmLaw:I =V/R
« Kirchoff laws: Iip¢qr = Ig +1p + - and  Vippqr = Vo +Vp + -

* Resistor: R
« Capacitor: 1/jwC
 Inductor: jwL



. System Modelling

Modelling electromechanical systems:

R L

MW\N—

‘ : - - ‘
o «IoH)

Electromechanical model of dc motor.

(o 0
»

Mechanical Part: Electrical Part:
* Newton Law: ). F = Ma e OhmlLaw:I =V/R

o Kirchoff laws: I;piq; = 1, + I}, +
e Mass: Md?x/dt? voand Vege =V, +Vp + -

« Spring: kx (k = spring constant)
« Damper: Ddx/dt (D = damper constant) Resistor: R
Capacitor: 1/jwC

Inductor: jwL



. System Modelling

Laplace transforms:

« Simple Real Poles

V(s) = s+ 1 —A+ B N C
S_53+SZ—6S_S s—2 s+3

« Unique Complex Factors

1 1 Ays+ As

=+
s(s?+s+1) s s?+s+1

Y(s) =
* Repeated Real Factors

3s+8 A N Aq
(s+2)2 (s+2)2 s+2




). Feedback Control Systems

We would like to control the output of a system

I.e. we have the output resemble the input, despite disturbances

Disturbance

Process D
Input Output
| — P 0

Open loop system (no feedback)

Process with transfer function P perturbed by a disturbance D.
Suppose P is 10 and disturbance D is O.

If the output O is to be 1, we make input | = 0.1. But, if P changes by
10% to 11 then O changes by 10% to 1.1.

If disturbance D is 0.1, then O will also change by 0.1.



). Feedback Control Systems

Closed loop system: Feedback added

Now consider the ‘closed-loop’ system below:

Disturbance

Controller Process D
Input Output

1

Closed loop system

P represents the device being controlled; C is the controller.

We will (initially) ignoring disturbances (D = 0), by forward over 1 plus loop rule
Let P =10, as before, and C =10;

 Iflis 1, then O is 0.99 (within 1% of being 1) 0= cC*P |

 |f Pchangesto 11; O = | * 110/111; 1+C*P

e Iflis 1, Oisstill about 0.99.




). Feedback Control Systems

Closed loop system: Disturbance control

To see the effect of disturbances, assume | 1s 0.

Disturbance

Controller Process D
Input Output
P, clJr ﬁ(%} , Outp

1

We will see: O Forward 1

D 1+Loop 1+C*P

IfC=10,P=10and D =0.1
Negative Feedback 0 = 1 0.1 = 01_ 0.00099
1+10*10 101
If + Reduces effects of disturbances on output
« Reduces effects of parameter changes on output

Iclosed loop gain| < |open loop gain|




). Feedback Control Systems

Principle of Superposition

What Is superposition?

Disturbance

Controller Process D
Input Output

C*P 1
| +
1+C *P

If CPlarge: O ~1+0=1 O= D

So feedback: 1+C*P

« Makes output almost same as input.

« Minimises effects of disturbances.

» Reduces effect of change in device.

This is true because the ‘loop gain’, C * Pis high.



). Feedback Control Systems

Feedback Equation

You are given a given feedback system as shown in the following diagram.

xi xd N x()

S
ource o\ a/ LLoad
X p ‘——]

The equation that represents the feedback system is:

Xl S) _ 7

xi{s) T+ ap



). Feedback Control Systems

Compensator is needed for improving the control systems:

* In order to obtain the desired performance of the system, we use
compensators.

« Compensators are applied to the system in the form of feed forward path gain
adjustment.

« Compensate an unstable system to make it stable.
« A compensating network is used to minimise overshoot.
« Compensators could increase the steady state accuracy of the system.

« An important point to be noted here is that the increase in the steady state
accuracy brings instability to the system.

« Compensator could also introduce poles and zeros in the system thereby
causes changes in the transfer function of the system.

 Due to this, performance specifications of the system change.



). Feedback Control Systems

The simplest compensating networks used for compensators:
 Lead compensators.

 Lag compensators.

 Lead-lag compensators.

Types of controller for managing or controlling specific behavior/ characteristics
of the control systems in control systems engineering:

 Proportional controller
* Integral controller
 Derivative controller
* PID controller
 Fuzzy logic controller



3. Stability

Stability:

« A linear, time-invariant system is stable if: the natural response approaches
zero as time approaches infinity.

* A linear, time-invariant system is stable if: the natural response grows
without bound as time approaches infinity.

A linear, time-invariant system is marginally stable if: the natural response
neither decays nor grows but remains constant, or oscillates as time
approaches infinity.

We want to build up a relationship between the total response and stability

- If input is bounded and C(t) does not approach infinity (co) as t approaches oo,
natural response is not approaching oo.

- If input is unbounded, we can not conclude stability.

A system is stable if every bounded input yields a bounded output, or Bounded-
Input, bounded-output (BIBO).



3. Stability

Stability (cont..)

1. A system is stable if every bounded input yields a bounded output, or Bounded-
Input, bounded-output (BIBO)

We want to build up a relationship between the total response and instability:

- If the input is bounded but the output, C(t) is unbounded, the system is unstable.
- If input is unbounded, we can not conclude instability.

2. A system Is unstable if any bounded input yields an unbounded output.



3. Stability

Routh-Hurwitz Criterion

* Using this method, we can tell how many closed-loop system poles are in the
left half-plane, In the right half-plane, and on the jw-axis.

* \We can not tell where, but only how many are in each plane determining
the system stability.

« The method requires two steps:

 (Generate a data table called a Routh table and

* Interpret the Routh table to tell how many closed-loop system poles are in
the left half-plane, the right half-plane, and on the jw -axis.



3. Stability

Generating a Routh Table

N
> >
azs* +azs3 +azs? +ags +ag
Equivalent closed loop transfer function
s4 s ao Qo
s3 as aq 0
g2 _ |a4 ar . |a4 aop a, 0
a a a
3_aal_ 3 01 _ b, as 0] _ 0
as as as
sl . |a3 ai __|as 0 as 0
bi b
1 b1 b1
SO . b1 bz . b1 0 b1 0
C
1 0 = d, (1 0 —0 it 0 —0
C1 C1 C1




3. Stability

Interpreting a Routh Table:

Simply stated, the Routh-Hurwitz criterion declares that the number of roots of
the polynomial that are in the right hand-plane is equal to the number of sign

changes in the first column.



3. Stability

Routh-Hurwitz Special Cases

1. Zero in the first row/column
In this case, zero is replaced with epsilon (¢€) and will tend to zero

1
255+ 3s4+2s3+3s2+2s+ 1

s5 2 +|
S4 3 +*I
s3 € + ‘l

3¢ — 4 R |
2
S €

|

p 12 — 16 — 3¢ vV

9e—12 |
sV 1 £V

3 LH poles and 2 RH poles



3. Stability

Routh-Hurwitz Special Cases (cont.)

2. Entire row of zeros

A: Real and symmetrical about the origin
B: Imaginary and symmetrical about the origin

C: Quadrantal and symmetrical about the origin

10
T(s) =— 7 : ;
jo, s> + 75 + 6s° + 42s* + 8s + 56
X B
s-plane ) .
¢ X /)( C Routh table
\ -
\\\ /// Hw l 6 8
7
A & [P g A E 2 1 i 2 g
—% > ¢ X—» O )
| L 0 0 0
N\
/// \\ - 3 8 []
// \\ l
CYX ~ C . 1 " ;
_ 3
N B '\“ 8 [} []




3. Stability

Bode plot:

20 |

Bode Diagram
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[
o

.
=

i
L
o

i
Lo
o0

T

-0

-

90 }

270 -

Phase Margin

-~

10%

e

4\1::‘" Gain Margin

o,

-
kT

ABO P HH-*}} .H-"r-\__-- ...................

107

Frequency (rad/s)

Gm =6.24 dB (at 5.44 rad/s), Pm =13.6 deg (at 4.35 rad/s)



3. Stability R

vl
x “‘ 1 81
Gain Margin and Phase Margin in the Bode plot
LM w
—————— t of - 3B
Stability criteria:
« Stable Systems: Gain Margin and wo\ | e '
Phase Margin are (+) N
» Unstable Systems: Gain Margin and
Phase Margin are (-)
_ _ .’ 0dB
« Marginally Stable Systems: Gain ;
Margin and Phase Margin are 0 Eu.\trp.v. "

- 1809



3. Stability

Nyquist plot o R

Re{Hs)(is)}
-

Ll

1,70}

Stability criteria:

Unity gain point in the plot (-1, jO) is not encircled by the plot



3. Stability .

Nichols chart

Open-loop gain (dB)

Stability criteria:

di3

2

0dB

-1 B0(2&+1)°
Crossing at @= ay, 0 < oy < 4+
\L{j e)| = 0 dB, finite at crossing
Add N, = £2 at each - 180(2k+1)°

20 fii

-200
Open-loop phase (degrees)

dis dB

(b) (c)

+] *

0 dB

o
-1 B0(2k+1)°
Crossing at ev = on = ()
\L{fex) = 0 dB, finite at crossing
Add Ny = =1

-

¢
-1 BO(2k+1)°
Crossing at = a,
\L{jea. )| = 0 dB, finite at crossing
Add N. = %]

=

0 dB

a0



3. Stability

Pole and zero diagram

< stable region unstable region >

Stability Criteria:
* Pole in the Left Hand Side: Stable systems
 Pole in the Imaginary- or Y-axis: Marginal stable systems

 Pole in the Right Hand Side: Unstable system



4. Time Domain Analysis

Estimating System Response

« The systems examined so far can be modelled by transfer functions:

K or K
1+sT As? + Bs +C

 Given a particular input, what is the system output? We
can use differential equation techniques.
 Easier to define the approximate response, just from the transfer function.

« We will do this, assuming that the input is a step.



4. Time Domain Analysis

First Order: Step Response G
Rp | a O

For R = step input: S {‘%\ Exponential Frequency

4
{
c(t) 8]
A Initial slope = ——— =q
time constant
1.0 /
0.9 4
0.8 ¥
0.7
0.6 F 63% of final value A .
at t = one time constant Tr = Rise Time (2.2/a)

05F

04 r

03

021 . .

s / Ts = Settling time (4/a)
3 —




4. Time Domain Analysis

First Order: Steady-State Response

1,

O(t) = K(l —e I ) where t is large: e

In s domain, S — 0 Q(i): L
1(s) 1+Tgs
K K

K

Step input: OSS(S): T 0 1
1

Steady-
state |

T coT < QO

003
Time



4. Time Domain Analysis

General second order response

C(s) Wy
R(s) s2427w,s + w?

 Natural frequency: w,,
It is the frequency of oscillation of the system without damping

« Damping ratio: ¢

It is the quantitatively describe this damped oscillation regardless of the time
scale

* Steady-state response. In the s domain: s — 0



4. Time Domain Analysis

Damping of second order system response

_ _Exponential decay frequency

_ —b++b’-4ac)

Natural frequency (rad/second)

: ndamped
[ Md rdampe

~coT ~+tc QO

18

18

14

1.2

0.8

06

04r

02r

R —
12 2a

riti

damped

\/ Overdampe

| |
0 2 4

B

| | | |
8 10 12 14 16 18 20

Time



4. Time Domain Analysis

Determine Damping

Determinant Roots

b? — 4ac >0 Real, different

b? — 4ac =0 Real. same

b? —4ac <0  Complex, different

—4ac >0 Complex, same

Responses

Overdamped

Critically damped

Underdamped

Undamped

IIIIIIIIIIIIIIIIII

> 0,1
0 123 456 78 910111213 1415 16 17



4. Time Domain Analysis

Second Order Time Response

We would like to consider these parameters

v Second order (underdamped)
for time domain analysis of second order s —— >
1.02¢ina1 N
System. o;l;cﬁml Vs / < -
* Rise time. e

« Settling time.

0.1¢ fina1

* Time-to-peak. : -

Y

* Percentage overshoot (%0S).

* Steady-state error.



4. Time Domain Analysis

Second Order Time Response:

Rise time, peak time, and settling time yield information about the speed of

the transient response.

 Rise time (Tr) - The time required for the waveform to go from 0.1 of the
final value to 0.9 of the final value.

« Settling time (T's) - The time required for the transient’s damped
oscillations to reach and stay within +/- 2% of the steady-state value.

* Time-to-peak (T'p) - The time required to reach the first, or maximum,

peak.



4. Time Domain Analysis

Rise time (Tr):

 Time taken for 0.1 of the final value to 0.9 of the final value.

_ (1.768° —0.4178% 4+ 1.039¢ + 1)

T
A w,

c(t)
A

Cmax Lt
1.02¢ final \
il ‘;b Cfinal -

/ AN
T — - i ~
T 0.98Cﬁnal /

W1 — E2

Where: ¢ = tan™! (—*’1;"{2)




4. Time Domain Analysis

Rise time (T;.):

* Normalized rise time vs. damping ratio for a second-order underdamped
response

Damping | Normalized
A ratio rise time
30 0.1 1.104
0.2 1.203
' 2.8 0.3 1.321
526 0.4 1.463
o
é 24k 0.5 1.638
= 0.6 1.854
§ 22 0.7 2.126
<
Z 120 0.8 2.467
é 0.9 2.883
g 1.8
2 1.6
3
1.4
1.2
1.0

I
[S—

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Damping ratio



4. Time Domain Analysis

Settling time (T5):

« Time to reach and stay within +/-2% of the steady-state value

5 4
. ~In(0.024/1 — &2) T ="

{wy é/a)n

c(t)
A

Al
/]
\




4. Time Domain Analysis

Time-to-Peak (T3,):
« Time to reach the peak of oscillation of underdamped second order system.

« \We have the time to all n peaks, but only need n=1:

)
T _ 72' c“f

" o 1= e

1.02¢ final

Y

vy
1

0.98¢ final /
c(1)

0.9¢ipal

0.1¢finar

y




4. Time Domain Analysis

Percentage overshoot (%0S) :

Ratio of the maximum overshoot and steady-state value

C(max) is C(t) evaluated at the peak time C(T,):

™=

Yoovershoot = exp __{ﬂ » 100% «w
\l_gl c -
1.02¢ fipg1 \
* Note %0S is a function of damping ratio only. -
0.9¢ final
* %0S can be rearranged to find damping ratio.
- —In(% 0S/100) et — o

/7 + In?(%0S/100) ~




c(t)

4. Time Domain Analysis

Steady-state error (e(0)):

 Steady-state error, Is the difference between the input and output for a
prescribed test input as t — o

 We will look in a little bit more detail.

Input X

“+— Qutput 1 e;(c)

< Qutput 2

Output | —=»
/ <~ Output 3

Time

c(?)

“— Qutput 2

Y

Time



4. Time Domain Analysis

Steady state error:

« The system error e(t) for a feedback control system is given by the difference
between the demanded output r(t) and the actual output c(t):

e(t) =r(t)-c(t)

» The steady state error is then defined as the difference between demanded and
actual output whent — oo.

« The steady state error is now defined for specific test inputs:
* Step R(s E(s)
* Ramp
* Parabola C(S

o
»



4. Time Domain Analysis

Various test inputs used for evaluating and testing control systems are listed below:

Physical Time Laplace
Waveform Name interpretation function transform
1)
A
. , 5 I
Step Constant position l -
A
-/
rr)
i}
: : |
Ramp Constant velocity t -
5=
- |
i)
)

Parabola  Constant acceleration

Lo

2 §




4. Time Domain Analysis

Sources of steady state error:

Consider steady-state errors due to system configuration.

System output, C(s)=KE(s)

« The steady-state error can then never be = 0 or the output of the system will be zero, there
will thus always be a steady state error present.

 |f c, IS the steady-state value of the output and e Is the steady-state value of the error,
then:

Ris) - E(x) C(s)
o

Cos(t) = K . €g(1)

 Error will diminish as K increases.
()



4. Time Domain Analysis

Steady-state error in terms of G(s):

For the system:  E(S) = R(s) — C(s) R(s) 4

Cis)
-

Thus E(s) = R(s) — E(s)G(s)
so that: E(s) = R(S)
1+ G(s)
From the final value theorem:
e(e0) = lim sE(s) = lim R
s—0 s—0 1-|— G(S)

Above equation will thus allow us to calculate the steady-state error given a
particular input R(s).



4. Time Domain Analysis

Static error constant:

* The term in the denominator of the definition of the steady-state error for
each Input type is taken to limit the steady state error.

* These are then called the static error constants and are defined as follows:

Position constant K, = 11MG(s)
Velocity constant K, = Iin;sG(s)
S

Acceleration constant K, = lIm s°G(s)

« These constants depend on the form of G(s) and will determine the value
of the steady-state error. (Error decreases as the value of the static error
constant increases).



4. Time Domain Analysis

System type:

* The system type is taken to be the number of integration in the feed-forward path (the

value of n in s™ of denominator).

« This value of n (the system type) then determines the steady-state error of a unit feedback

system for a particular type of input.

Type O Type 1 Type 2
Static Static Static
Steady-state error error error
Input error formula constant Error constant Error constant Error
K, = 0 K, = 0
u(t) | + K, Constant | + K, P p= >
Ramp, 1 K, = [
tu(t) K, Ky =0 * Constant K, Ky == 0
lelrabola, | . . K, - |
Etzu(r) K, a = * a = * Constant K.

a
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