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M i d - Te r m  Te s t

2 hours.

Bring non-programmable calculator, dictionary and ruler.

6 questions, 10-25 marks each.

Selected formulas in control system (see revision midterm questions).•

Time and place: T.B.A.•



Q u e s t i o n  T y p e s
Expect 3 types of question in the midterm test:

• Explain…

a. Describe the significant of coefficients a and  in feedback system. [5 marks]

• Calculate …

b. Calculate time constant (𝜏), rise time (𝑇𝑟), time to peak (𝑡𝑝), settling time (𝑡𝑠) 

and percentage overshoot (%OS) of a second order system. [15 marks]

• Analyse …

c. Determine and sketch an over damped second order system with damping 

ratio of 1.5 and natural frequency of 2 rad/sec. [10 marks]



Mid-Term Test Topics

1. Physical system modelling

• Laplace transform.

• Modelling from physical system. 

2. Feedback control system

• Feedback systems.

• Block manipulations.

3. Stability of system

• Concept and criteria of stability.

• Routh-Hurwitz criterion.

• Other approaches (e.g. Nyquist, Nichols, Bode and Root Locus).

4. Time-domain analysis

• First-order systems.

• Second-order systems.

• Steady-state analysis.



1. System Modelling
• What is a system?

• Components acting together to carry out an activity, perform a duty, or solve a
problem

• A system is built of:

• Sub-systems

• Processes

• Input and output

• What is our condition of stability?

• Natural response must eventually approach zero (or oscillate)

• Advantages and disadvantages of open loop systems

• Does not monitor output so cannot correct for disturbances

• Simpler and less expensive

• Advantages and disadvantages of closed loop systems:

• Monitors the output and compares it to the input, correcting for errors

• More complex and expensive than open loop, can create instability.



1. System Modelling
• When building up a model of a physical system:

• Components should be easily identifiable.

• Components should have a simple and clearly defined interaction with other

components.

• Components numbers should be minimised.

• In order to analyse a system:

1. We identify an input signal

2. Using block diagram components,  
we combine internal signals

to produce the output signal

[a variable]

[Basic block, summing junction, take-off point]  
[modified variables]

[another variable]

The Input-Output relationship may then be determined



1. System Modelling
1. Signals

• Components are connected together by signal

• Signals have many different forms.

• Must also have direction & name.

• Signals continue until interrupted.

• Signals and components are considered ideal.

• We add other signals and components to alter the properties.

2. Components

Voltage V1 V1 – V2

Electrical

V2

+ _

V1Voltage V1

Electrical

V1



1. System Modelling
2. Components (cont..)

Block is/ or function of the system signal.

Spring

V

Force F Distance x

Current I

Electrical

Only one input and only one output.



1. System Modelling
Modelling mechanical systems:

• Newton Law: σ 𝐹 = 𝑀𝑎

• Mass: 𝑀𝑑2𝑥/𝑑𝑡2.

• Spring: 𝑘𝑥 (𝑘 =  spring constant).

• Damper: 𝐷𝑑𝑥/𝑑𝑡 (𝐷 = damper constant).



1. System Modelling
Modelling electrical systems:

• Ohm Law: 𝐼 = 𝑉/𝑅
• Kirchoff laws: 𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑎 + 𝐼𝑏 + ⋯ and     𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑎 + 𝑉𝑏 + ⋯

• Resistor: 𝑅
• Capacitor: 1/𝑗𝜔𝐶
• Inductor: 𝑗𝜔𝐿



Modelling electromechanical systems:

1. System Modelling

Electrical Part:

• Ohm Law: 𝐼 = 𝑉/𝑅
• Kirchoff laws: 𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑎 + 𝐼𝑏 +

⋯ and   𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑎 + 𝑉𝑏 + ⋯

• Resistor: 𝑅
• Capacitor: 1/𝑗𝜔𝐶
• Inductor: 𝑗𝜔𝐿

Mechanical Part:

• Newton Law: σ 𝐹 = 𝑀𝑎

• Mass: 𝑀𝑑2𝑥/𝑑𝑡2

• Spring: 𝑘𝑥 (𝑘 =  spring constant)

• Damper: 𝐷𝑑𝑥/𝑑𝑡 (𝐷 = damper constant)



1. System Modelling
Laplace transforms:

• Simple Real Poles

𝑌 𝑠 =
𝑠 + 1

𝑠3 + 𝑠2 − 6𝑠
=

𝐴

𝑠
+

𝐵

𝑠 − 2
+

𝐶

𝑠 + 3

• Unique Complex Factors

𝑌 𝑠 =
1

𝑠(𝑠2 + 𝑠 + 1)
=

1

𝑠
+

𝐴2𝑠 + 𝐴3

𝑠2 + 𝑠 + 1

𝑌 𝑠 =
3𝑠 + 8

(𝑠 + 2)2
=

𝐴2

(𝑠 + 2)2
+

𝐴1

𝑠 + 2

• Repeated Real Factors



2. Feedback Control Systems
We would like to control the output of a system

i.e. we have the output resemble the input, despite disturbances

Process

P

Disturbance
D

Output

O

Input

I

Open loop system (no feedback)

Process with transfer function P perturbed by a disturbance D.

Suppose P is 10 and disturbance D is 0. 

If the output O is to be 1, we make input I = 0.1.  But, if P changes by 

10% to 11 then O changes by 10% to 1.1.

If disturbance D is 0.1, then O will also change by 0.1.



2. Feedback Control Systems
Closed loop system: Feedback added

Now consider the ‘closed-loop’ system below:

• If I is 1, then O is 0.99 (within 1% of being 1)  

• If P changes to 11; O = I * 110/111;

• if I is 1, O is still about 0.99.

P represents the device being controlled; C is the controller.

We will (initially) ignoring disturbances (D = 0), by forward over 1 plus loop rule  

Let P = 10, as before, and C = 10;

O =
C * P

1 + C * P
I

Controller Process  

C P

Disturbance  
D

Output
O

Input

I

Closed loop system



2. Feedback Control Systems
Closed loop system: Disturbance control

To see the effect of disturbances, assume I is 0.

We will see:

If C = 10, P = 10 and D = 0.1

Negative Feedback

if • Reduces effects of disturbances on output

• Reduces effects of parameter changes on output

|closed loop gain| < |open loop gain|

Controller Process  

C P

Disturbance  
D

Output
O

Input

I

1011+10*10
O = 0.1 = 

0.1 
= 0.00099

D 1- Loop 1+ C* P

1

O
=

Forward
=

1



2. Feedback Control Systems
Principle of Superposition

What is superposition?

If CP large: O ~ I + 0 = I  

So feedback:

• Makes output almost same as input.

• Minimises effects of disturbances.

• Reduces effect of change in device.

This is true because the ‘loop gain’, C * P is high.

Controller Process  

C P

Disturbance  
D

Output
O

Input

I

D
1+ C * P

1

1 + C * P

C* P
O = I +



2. Feedback Control Systems
Feedback Equation

You are given a given feedback system as shown in the following diagram.

The equation that represents the feedback system is:



2. Feedback Control Systems
Compensator is needed for improving the control systems:

• In order to obtain the desired performance of the system, we use 

compensators. 

• Compensators are applied to the system in the form of feed forward path gain 

adjustment.

• Compensate an unstable system to make it stable.

• A compensating network is used to minimise overshoot.

• Compensators could increase the steady state accuracy of the system. 

• An important point to be noted here is that the increase in the steady state 

accuracy brings instability to the system.

• Compensator could also introduce poles and zeros in the system thereby 

causes changes in the transfer function of the system. 

• Due to this, performance specifications of the system change.



2. Feedback Control Systems

Types of controller for managing or controlling specific behavior/ characteristics 

of the control systems in control systems engineering:

• Proportional controller

• Integral controller

• Derivative controller

• PID controller

• Fuzzy logic controller

The simplest compensating networks used for compensators: 

• Lead compensators. 

• Lag compensators.

• Lead-lag compensators.



Stability:

• A linear, time-invariant system is stable if: the natural response approaches 

zero as time  approaches infinity.

• A linear, time-invariant system is stable if: the natural response grows 

without bound as  time approaches infinity.

• A linear, time-invariant system is marginally stable if: the natural response 

neither decays  nor grows but remains constant, or oscillates as time 

approaches infinity.

We want to build up a relationship between the total response and stability

- if input is bounded and C(t) does not approach infinity (∞) as t approaches ∞,  

natural response is not approaching ∞.

- if input is unbounded, we can not conclude stability.

A system is stable if every bounded input yields a bounded output, or Bounded-

input, bounded-output (BIBO).

3. Stability



Stability (cont..)

1. A system is stable if every bounded input yields a bounded output, or Bounded-

input, bounded-output (BIBO)

We want to build up a relationship between the total response and instability:

- If the input is bounded but the output, C(t) is unbounded, the system is  unstable.

- If input is unbounded, we can not conclude instability.

2. A system is unstable if any bounded input yields an unbounded output.

3. Stability



Routh-Hurwitz Criterion

• Using this method, we can tell how many closed-loop system poles are in the 
left half-plane,  in the right half-plane, and on the j⍵-axis.

• We can not tell where, but only how many are in each plane determining 
the system stability.

• The method requires two steps:

• Generate a data table called a Routh table and

• Interpret the Routh table to tell how many closed-loop system poles are in 
the left half-plane, the right half-plane, and on the j⍵ -axis.

3. Stability



Generating a Routh Table

Equivalent closed loop transfer function

𝑁(F)

𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎 2 𝑠 2 + 𝑎1𝑠 +𝑎0

𝑠4 𝑎4 𝑎 2 𝑎0

𝑠3 𝑎3 𝑎1 0

𝑠 2
−

𝑎4

𝑎3

𝑎3

𝑎 2

𝑎1 = 𝑏1

−
𝑎4

𝑎3

𝑎3

𝑎0

0
= 𝑏 2

−
𝑎4

𝑎3

𝑎3

0

0
= 0

𝑠1
−

𝑎3

𝑏1

𝑏1

𝑎1

𝑏 2 = 𝑐1

−
𝑎3

𝑏1

𝑏1

0

0
= 0

−
𝑎3

𝑏1

𝑏1

0

0
= 0

𝑠0
−

𝑏1

𝑐1

𝑐1

𝑏 2

0
= 𝑑1

−
𝑏1

𝑐1

𝑐1

0

0
= 0

−
𝑏1

𝑐1

𝑐1

0

0
= 0

3. Stability



Interpreting a Routh Table:

Simply stated, the Routh-Hurwitz criterion declares that the number of roots of 

the  polynomial that are in the right hand-plane is equal to the number of sign 

changes in the  first column.

3. Stability



Routh-Hurwitz Special Cases

1. Zero in the first row/column

In this case, zero is replaced with epsilon (𝜖) and will tend to zero

1

2𝑠5 + 3𝑠4 + 2𝑠3 + 3𝑠2 + 2𝑠 + 1

𝑠5

𝑠4

𝑠3

2 +

3 +

𝜖 +

𝑠2
3𝜖 − 4

𝜖

-

𝑠1
12𝜖 − 16 − 3𝜖 .

9𝜖−12

+

𝑠0 1 +

3 LH poles and 2 RH poles

3. Stability



Routh-Hurwitz Special Cases (cont.)

2. Entire row of zeros

A: Real and symmetrical about the origin

B: Imaginary and symmetrical about the origin  

C: Quadrantal and symmetrical about the origin

3. Stability



Bode plot:

3. Stability



Gain Margin and Phase Margin in the Bode plot

3. Stability

Stability criteria:

• Stable Systems: Gain Margin and 

Phase Margin are (+)

• Unstable Systems: Gain Margin and 

Phase Margin are (-)

• Marginally Stable Systems: Gain 

Margin and Phase Margin are 0



Nyquist plot

Stability criteria:

Unity gain point in the plot (-1, j0) is not encircled by the plot

3. Stability



Nichols chart

3. Stability

Stability criteria:



3. Stability

Stability Criteria:

• Pole in the Left Hand Side: Stable systems

• Pole in the Imaginary- or Y-axis: Marginal stable systems

• Pole in the Right Hand Side: Unstable system

Pole and zero diagram



4. Time Domain Analysis
Estimating System Response

• The systems examined so far can be modelled by transfer functions:

or

• Given a particular input, what is the system output?  We 

can use differential equation techniques.

• Easier to define the approximate response, just from the transfer function.

• We will do this, assuming that the input is a step.

K

1+ sT

K

As2 + Bs +C



4. Time Domain Analysis
First Order: Step Response

For R = step input:

Tr = Rise Time (2.2/a)

Ts = Settling time (4/a)

𝑎

𝑠 + 𝑎

𝑅(F) 𝑂(F)

𝐺(F)

Exponential Frequency

𝑒 J t



4. Time Domain Analysis
First Order: Steady-State Response

In s domain,

Step input:

where t is large: 1

1− t
T

e → 0

O(s) K

1
I (s)

=
1+T s

s → 0

K K
ss = = KO (s)=

1+ T1 0 1

Time

O

u

t

p

u

t
Transient

Steady-

state

𝑂(𝑡) = 𝐾 1 − 𝑒
−

1
𝑇1

𝑡



4. Time Domain Analysis
General second order response

• Steady-state response. In the s domain:

• Natural frequency: 𝜔𝑛

It is the frequency of oscillation of the system without damping

• Damping ratio: 𝜁

It is the quantitatively describe this damped oscillation regardless of the time

scale

s → 0



4. Time Domain Analysis

Undamped

Overdamped

Time

Criticallydamped

Underdamped

O

u

t

p

u

t

2a

− b  b2 −4ac
R1,2=

Damping of second order system response

𝜁 = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑒𝑐𝑎𝑦 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑟𝑎𝑑/𝑠𝑒𝑐𝑜𝑛𝑑)



4. Time Domain Analysis
Determine Damping

Roots

Real,  different

Real, same

Complex,  different

Complex,  same

− 4ac 0b2

Undamped

Overdamped

Critically damped

Underdamped

− 4ac =0b2

− 4ac 0

− 4ac 0b2

ResponsesDeterminant



4. Time Domain Analysis
Second Order Time Response

Second order (underdamped)
We would like to consider these parameters 

for time domain analysis of second order 

system:

• Rise time.

• Settling time.

• Time-to-peak.

• Percentage overshoot (%OS).

• Steady-state error.



4. Time Domain Analysis
Second Order Time Response:

Rise time, peak time, and settling time yield information about the speed of 

the transient  response.

• Rise time (𝑇r) - The time required for the waveform to go from 0.1 of the 

final value to 0.9 of the final value.

• Settling time (𝑇s) - The time required for the transient’s damped

oscillations to reach and  stay within +/- 2% of the steady-state value.

• Time-to-peak (𝑇p) - The time required to reach the first, or maximum,

peak.



4. Time Domain Analysis
Rise time (Tr):

• Time taken for 0.1 of the final value to 0.9 of the final value.



4. Time Domain Analysis
Rise time (𝑇𝑟):

• Normalized rise time vs. damping ratio for a second-order underdamped

response



4. Time Domain Analysis
Settling time (𝑇𝑠):

• Time to reach and stay within +/-2% of the steady-state value

n

s


4
T =



4. Time Domain Analysis

Time-to-Peak (𝑇𝑝):

• We have the time to all n peaks, but only need n=1:

 1− 2

=


n

pT

• Time to reach the peak of oscillation of underdamped second order system. 



4. Time Domain Analysis
Percentage overshoot (%𝑂𝑆) :

• Ratio of the maximum overshoot and steady-state value

• C(max) is C(t) evaluated at the peak time C(𝑇𝑝):

• Note %OS is a function of damping ratio only.

• %OS can be rearranged to find damping ratio.



4. Time Domain Analysis
Steady-state error (e(∞)):

• Steady-state error, is the difference between the input and output for a

prescribed test input as

• We will look in a little bit more detail.

t →



Steady state error:

• The system error 𝑒(𝑡) for a feedback control system is given by the difference 

between the  demanded output 𝑟(𝑡) and the actual output 𝑐(𝑡):

𝑒(𝑡) = 𝑟(𝑡)– 𝑐(𝑡)

• The steady state error is then defined as the difference between demanded and 

actual output  when 𝑡 → ∞.

• The steady state error is now defined for specific test inputs:

* Step

* Ramp

* Parabola C(s)

R(s) E(s)
+

-

4. Time Domain Analysis



Various test inputs used for evaluating and testing control systems are listed below: 

4. Time Domain Analysis



Sources of steady state error:

• Consider steady-state errors due to system configuration.

System output, C(s)=KE(s)

• The steady-state error can then never be = 0 or the output of the system will be zero, there 
will  thus always be a steady state error present. 

• If css is the steady-state value of the output and ess  is the steady-state value of the error,
then:

css(t) = K . ess(t)  

• Error will diminish as K increases.

4. Time Domain Analysis



Steady-state error in terms of G(s):

For the system: E(s) = R(s) – C(s)

Thus E(s) = R(s) – E(s)G(s)

so that:

From the final value theorem:

Above equation will thus allow us to calculate the steady-state error given a 
particular input R(s).

R(s)

1+G(s)
E(s) =

e() = lim sE(s) = lim
sR(s)

s→0 1+G(s)s→0

4. Time Domain Analysis



Static error constant:

• The term in the denominator of the definition of the steady-state error for 

each  input type is taken to limit the steady state error.

• These are then called the static error constants and are defined as follows:

Position constant Kp =

Velocity constant Kv =

aAcceleration constant K =

limG(s)
s→0

limsG(s)
s→0

2lim s G(s)
s→0

• These constants depend on the form of G(s) and will determine the value 

of the steady-state  error. (Error decreases as the value of the static error 

constant increases).

4. Time Domain Analysis



• The system type is taken to be the number of integration in the feed-forward path (the 

value of 𝑛 in 𝑠𝑛 of denominator). 

• This value of 𝑛 (the system type)  then determines the steady-state error of a unit feedback 

system for a particular type of input.

System type:

4. Time Domain Analysis
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