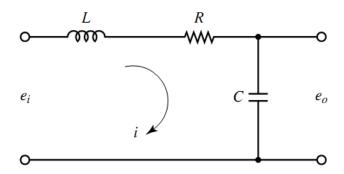


XMUT315 Control Systems Engineering

Mid-Term Test Revision Questions

A. System Modelling

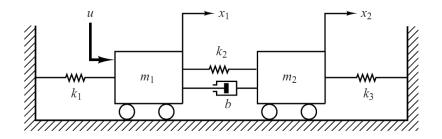
1. Consider the electrical circuit shown in figure below.



a. Describe three types of modelling techniques in control systems.

[3 marks]

- b. The circuit consists of an inductance L (Henry), a resistance R (Ohm), and a capacitance C (Farad). Determine the system's transfer function. [10 marks]
- c. If L = 1 mH, R = 1 k Ω , and C = 10 μ F, calculate the roots of the characteristics equation of the system. Predict the time response of the system. [6 marks]
- 2. You are given a mechanical system that consists of two interconnected moving carts as shown in the figure below. Note that u = force, m_1 = m_2 = masses, k_1 = k_2 = k_3 = spring constants, b = damper constant, and x_1 = x_2 = displacements. Assume zero initial conditions of the system.



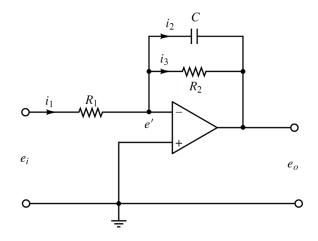
a. Describe the significant of signal in control systems.

[2 marks]

b. Obtain the transfer functions of the system.

[10 marks]

3. Figure below shows an electrical circuit involving an operational amplifier.



a. What is the two main goals of modelling physical systems?

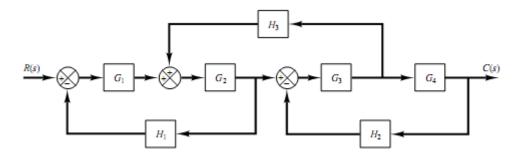
[2 marks]

b. Obtain the transfer function equation of the circuit $e_o(t)/e_i(t)$.

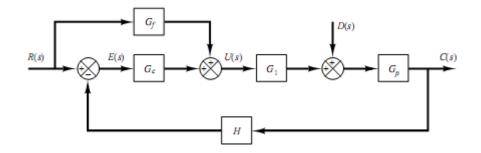
[10 marks]

B. Feedback Control Systems

4. Given a physical system represented as a block diagram given below.



- a. Simplify the block diagram shown in figure below. Then, obtain the closed-loop transfer function C(s)/R(s). [10 marks]
- b. The blocks H_1 , H_2 , and H_3 are identified as compensators. Why do we need compensators in control systems? [2 marks]
- 5. Referring to the system shown in the figure below, perform the following tasks.



a. Obtain transfer functions C(s)/R(s) and C(s)/D(s).

[10 marks]

b. What are things required for analyzing a system?

[2 marks]

C. Stability Analysis

6. Apply Routh Hurwitz stability criterion for system given in the following equation:

$$s^3 + 2s^2 + s + 2 = 0$$

a. Determine stability and the roots of the system.

[10 marks]

b. Compare the stability and roots of the system in part (a) with the following system:

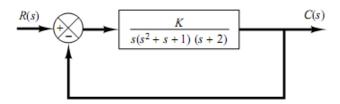
[5 marks]

$$s^3 - 3s + 2 = 0$$

7. Given a control system that is represented by the following equation:

$$s^5 + 2s^4 + 24s^3 + 48s^2 - 25s - 50 = 0$$

- a. By applying Routh Hurwitz criterion, evaluate the stability of a system. [10 marks]
- b. Determine the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis. [5 marks]
- 8. Consider the system shown below.



The closed-loop transfer function of the system is given as:

$$\frac{C(s)}{R(s)} = \frac{K}{s(s^2 + s + 1)(s + 2) + K}$$

a. Determine the range of K for stability.

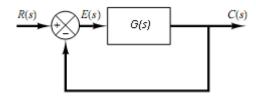
[10 marks]

b. Define stability of the system by contrasting stable condition with unstable condition.

[2 marks]

D. Time Responses & Steady State Analysis

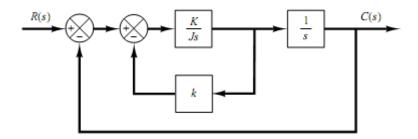
9. Consider the second order system shown in the figure given below.



a. If the transfer function of the plant G(s) is as given below, determine the damping ratio (ζ) and natural frequency of the system (ω_n). [5 marks]

$$G(s) = \frac{100}{4s^2 + 24s + 100}$$

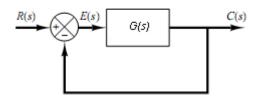
- b. Obtain the rise time (T_r) , peak time (T_r) , maximum overshoot (M_p) , and settling time (T_s) when the system is subjected to a unit-step input. [10 marks]
- 10. Given a system in the figure below.



- a. Determine the values of K and k of the closed-loop system shown in the figure below, so that the maximum overshoot in unit-step response is 25% and the peak time is 2 sec.

 Assume that $J = 1 \text{ kg-m}^2$. [10 marks]
- b. What is the time response of a system when its poles are moved along a constant radial line? [2 marks]

11. Consider the closed-loop feedback system shown in the figure given below.



a. Derive the equation for steady-state error of the system.

[4 marks]

- b. Define steady-state error and describe three types of input used for testing steady-state condition of a system. [4 marks]
- c. If the transfer function of the plant G(s) is as stated below, calculate the static-error constants of the system $(K_p, K_v, \text{ and } K_a)$. [6 marks]

$$G(s) = \frac{s+5}{s(s+2)(s+10)}$$

- d. Based on the results in part (c), calculate the steady-state error of the system whenever they are subjected to the following test inputs:
 - a. Step input. [2 marks]
 - b. Ramp input. [2 marks]
 - c. Parabolic input. [2 marks]

Formulas for Control Systems Engineering

A. Common Laplace Transforms

Time Domain	Laplace Domain
$\delta(t)$	1
$\delta^n(t)$	s ⁿ
u(t)	$\frac{1}{s}$
t	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
e^{-at}	$\frac{1}{s+a}$
te ^{-at}	$\frac{1}{(s+a)^2}$
$\frac{t^n}{n!}e^{at}$	$\frac{1}{(s+a)^{n+1}}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$
$\frac{\omega_n}{\sqrt{1-\xi^2}}e^{-\xi\omega_n t}\sin(\omega_n\sqrt{1-\xi^2}t)$	$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$

In all cases above, the symbols have their normal meanings.

B. Properties of the Laplace Transform

$$\mathcal{L}\lbrace f(t)\rbrace = \int\limits_{0}^{\infty} f(t)e^{-st}\,dt \qquad \qquad \mathcal{L}^{-1}\lbrace F(s)\rbrace = \frac{1}{2\pi j}\int\limits_{c-j\infty}^{c+j\infty} F(s)e^{-st}\,ds$$

Definition:	$f(t) \Leftrightarrow F(s)$
Linearity:	$af(t) + bg(t) \Leftrightarrow aF(s) + bG(s)$

t-scaling	$f(ct) \Leftrightarrow \frac{1}{ c } F\left(\frac{s}{c}\right)$		
t-shifting:	$f(t-t_0)u(t-t_0) \Leftrightarrow e^{-st_0}F(s)$		
s-shifting:	$e^{-s_0t}f(t) \Leftrightarrow F(s-s_0)$		
Differentiation in t:	$f'(t) \Leftrightarrow sF(s) - f(0)$		
	$f''(t) \Leftrightarrow s^2 F(s) - sf(0) - f'(0)$		
Integration in t:	$f^{(k)} \Leftrightarrow s^k F(s) - s^{k-1} f(0) - s^{k-2} f'(0) \dots - f^{(k-1)}(0)$		
	$\int_0^t f(\tau) d\tau \Longleftrightarrow \frac{1}{s} F(s)$		
Differentiation in s:	$tf(t) \Leftrightarrow -F'(s)$		
Integration in s:	$\frac{f(t)}{t} \Longleftrightarrow \int_{s}^{\infty} F(\tilde{s}) d\tilde{s}$		
Convolution:	$f(t) * g(t) \Leftrightarrow F(s)G(s)$		
	$f(t)g(t) \Leftrightarrow \frac{1}{2\pi j} F(s) * G(s)$		
Periodicity	$F(t) \Leftrightarrow F_1(s) \frac{1}{1 - e^{-sp}}$		
	For $f_1(t)$ one cycle of $f(t)$ with period p .		
Initial value theorem:	$f(0+) = \lim_{t \to \infty} sF(s)$		
Final value theorem:	$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} sF(s)$		

(for
$$a, b, t_0, s_0 \in R, c \in R_{++}$$
).

C. Partial Fractions Expansion

If a partial fraction expansion of Y(s) includes terms,

$$\frac{A_m}{(s-a)^m} \frac{A_{m-1}}{(s-a)^{m-1}} + \dots + \frac{A_1}{s-a}$$

then the coefficients of factors having multiplicity m>1 are given by the following expressions, where $k\neq m$.

$$A_m = \lim_{s \to a} (s - a)^m Y(s)$$

$$A_k = \frac{1}{(m - k)!} \lim_{s \to a} \frac{d^{m - k}}{ds^{m - k}} (s - a)^m Y(s)$$

D. Trigonometric Identities

$$\sin(\theta \pm \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi \Longrightarrow \begin{cases} \sin(\theta + \pi/2) = \cos(\theta) \\ \sin(\theta - \pi/2) = -\cos(\theta) \end{cases}$$

$$\cos(\theta \pm \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi \Rightarrow \begin{cases} \cos(\theta + \pi/2) = -\sin\theta \\ \cos(\theta - \pi/2) = \sin\theta \end{cases}$$
$$\sin(2\theta) = 2\sin\theta \cos\theta$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$$

E. First Order Systems

For a first order system with transfer function:

$$G(s) = \frac{1}{(s+a)}$$

Time constant is:

$$\tau = 1/a$$

Rise time (10-90%) is:

$$t_r = 2.2\tau$$

Settling time (to 2% of final value standard) is:

$$t_s = 4\tau$$

F. Second Order Systems

For an underdamped second order system, the following relationships hold.

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

The rise time

$$T_r = \frac{(1.76\zeta^3 - 0.417\zeta^2 + 1.039\zeta + 1)}{\omega_n}$$

Or

$$T_r = \frac{\pi - \phi}{\omega_n \sqrt{1 - \zeta^2}}$$
 where: $\phi = \tan^{-1} \left(\frac{\sqrt{1 - \zeta^2}}{\zeta} \right)$

The settling time (i.e. 2% of final value standard):

$$T_{s} = \frac{4}{\zeta \omega_{n}}$$

The time taken to reach the peak value (n = #peak) is:

$$T_p = \frac{n\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

The percentage overshoot is related to damping ratio by:

$$\%OS = e^{-\left(\frac{\zeta\pi}{\sqrt{1-\zeta^2}}\right)} \times 100$$

Damping ratio.

$$\zeta = -\frac{\ln\left(\frac{\%OS}{100}\right)}{\sqrt{\pi^2 + \ln^2\left(\frac{\%OS}{100}\right)}}$$

G. Steady State

Steady-state errors.

Type	Input		
Туре	Step	Ramp	Parabola
0	$e_{ss} = \frac{1}{1 + K_p}$	œ	8
1	$e_{ss}=0$	$\frac{1}{K_v}$	8
2	$e_{ss}=0$	0	$\frac{1}{K_a}$

Steady-state error constants.

$$K_p = \lim_{s \to 0} G(s) \qquad K_v = \lim_{s \to 0} sG(s) \qquad K_a = \lim_{s \to 0} s^2G(s)$$