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Tutorial 3: Stability Analysis (Solution)

A. Stability Analysis

1. Incontrol system engineering, stability is determined to be one of the criteria of performance of a
given control system.

a. What s stability? [2 marks]
b. Describe and compare bounded signal and unbounded signal. [4 marks]
C. Describe how a system that has a unit-step response as shown in the diagram below is stable.
[2 marks]
c(t)
A
1
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Solution

a. Asystem is said to be stable if its output is under control. Otherwise, it is said to be unstable.
A stable system produces a bounded output for a given bounded input (BIBO).

b. Bounded value of a signal represents a finite value. More specifically, we can say, the bounded
signal holds a finite value of maxima and minima. Thus, if maxima and minima of any signal are
finite then this means all the other values between maxima and minima will also be finite.
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The signals whose graph shows continuous rise thereby showing infinite value such as ramp signal
are known as unbounded signals. The figure shown below represents the unbounded signal:

Sometimes we come across asymptotically stable systems which are defined as the systems
whose output progresses 0, when the input is not present, even when the parameters of the
system show variation. It is to be noted here that poles of the transfer function, is a factor defining
the stability of the control system.

This is the response of first order control system for unit step input. This response has the values
between 0 and 1. So, it is bounded output. We know that the unit step signal has the value of one
for all positive values of t including zero. So, it is bounded input. Therefore, the first order control
system is stable since both the input and the output are bounded.

As we can see that here, the maxima and minima of the signal represented above is having finite
values. Thus, such a signal is said to be bounded and if such an output is provided by a system,
then it is said to be a stable system.

Therefore, conversely, we can say that an unstable system provides an unbounded output when
the applied input is bounded in nature.

2. Before performing more specific analysis and design for a given control system, stability analysis is

typically performed first.

a. Explain how you determine stability of a system. [2 marks]
b. Describe types of systems based on their stabilities. [6 marks]
Solution
a. The stability of a control system is defined as the ability of any system to provide a bounded
output when a bounded input is applied to it.
More specifically, we can say, that stability allows the system to reach the steady-state and
remain in that state for that particular input even after variation in the parameters of the system.
b. We can classify the systems based on their stabilities as follows.
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e  Absolutely Stable System

If the system is stable for all the range of system component values, then it is known as

the absolutely stable system. The open-loop control system is absolutely stable if all the poles
of the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed-loop
control system is absolutely stable if all the poles of the closed-loop transfer function present
in the left half of the ‘s’ plane.

e Conditionally Stable System

If the system is stable for a certain range of system component values, then it is known
as conditionally stable system.

e Marginally Stable System

If the system is stable by producing an output signal with constant amplitude and constant
frequency of oscillations for bounded input, then it is known as marginally stable system. The
open-loop control system is marginally stable if any two poles of the open-loop transfer
function is present on the imaginary axis. Similarly, the closed-loop control system is
marginally stable if any two poles of the closed-loop transfer function is present on the
imaginary axis.

3. Describe whether the following systems are stable or not based on their transient responses given in
the following figures. [8 marks]

Time
(@)

Time
(b)

(c)

Time
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Note:

System (a) has an damped exponential response, system (b) has a damped oscillatory response,
system (c) has a growing oscillatory response, and system (d) has a damped exponential response with
its time constant is longer than system (a).

Solution
System (a) is stable as the output of the system settles down to a level after period-of-time.

System (b) is stable as the output of the system settles down to a level after period-of-time, although
initially it experiences a damped oscillation at the beginning.

System (c) is not stable as it has a growing oscillation and it does not settle down.

System (d) is stable as the output of the system settles down to a level after period-of-time.

Referring to a (pole-zero) s-plane diagram of a number of systems as shown below, answer the
following questions.

Imaginary
.
L]
System 2 oystem 4
- . . Real
Systern 1 System 3 System 5

Which of the unit-step responses given below correspond to which systems as above.  [5 marks]

A B C D E
}/ oy
‘ vVo\J
Time Time Time Time Time
Solution

Response of the systems and their pole locations in the s-domain:

e System 1 - a damped exponential response due to its simple pole (located on the x-axis) with its
time response is shorter than the time response of System 3 i.e. response B.
e System 2 - a damped oscillatory response due to its stable complex pole i.e. response C.
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e System 3 -itis also a damped exponential response like the response of System 1, due to its
simple pole, although its time response is longer than the time response of System 1 (e.g. closer to
the y-axis) i.e. response A.

e System 4 —a growing oscillatory response due to its unstable complex pole i.e. response E.

e System 5—a growing exponential response due to its unstable simple pole i.e. response D.

The correct matching of the systems with their corresponding unit step responses are illustrated as
shown in the figure below.

Imaginary
E
L ]

L

Real

o é
p- 1
O

B. Routh-Hurwitz Stability Criterion

5. Find the number of poles in the left half-plane, the right half-plane, and on the jw-axis for the system
of the following figure. [12 marks]

R(s) + E(s) 200 )
s(s2+ 652+ 115+ 6)

Solution

First, find the closed-loop transfer function as

G(s)

") = 136n6)

( 200 )
s(s®+ 652+ 11s +6)

) [1 + (5(53 + 65220-8 11s + 6)) (1)]

B 200
"~ s* 4+ 653+ 11s2 + 65 + 200

Given the transfer function equation of the closed-loop system.

200

T =
(5) = 5653+ 1152 7 65 T 200
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As a result, the characteristic equation of the closed-loop system is:

s* 4+ 653+ 11s% 4+ 65 + 200

Thus, we construct the Routh table for the system.

s* 1 11 200
s3 6 1 6 1 0
52 _|1 11| _|1 200| _|1 0
1 1 1 0 1.0
1 =10 1 1 =200 20 T=0
st _|1 1| _|1 0 0
1120=_19 110=0
50 11 20| 11 0 0

Then, the Routh table for the denominator of transfer function equation is shown as the following
table. For clarity, we leave most zero cells blank.

s* 1
s3 6 1
s? 10 1
st -19
s° 20

11
6 1
200 20

200

At the s row there is a negative coefficient; thus, there are two sign changes. The system is unstable,

since it has two right-half plane poles and two left-half-plane poles. The system cannot have jw poles

since a row of zeros did not appear in the Routh table.

Find the number of poles in the left half-plane, the right half-plane, and on the jw-axis for the system

shown on the following figure.

R(s) +

Solution

E(s)

1

[12 marks]

C(s) N

sQ2s* +357 + 252+ 35+ 2)

The closed-loop transfer function is:
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1
s54+3s%+2s34+352+25+1

T(s) =
() =3
Using the denominator of transfer function equation of the system, the characteristic equation of the
closed-loop system is:

2s°+3s*+2s3+3s2+2s5s+1

Form the Routh table shown as standard table using the characteristic equation. The Routh table is as
shown below.

s> 2 2 2
st 3 3 1
s3 _|2 2 _|2 2
3 3 3 1
—2 3 -9 —2 = —4/3
3 3 /
52 _|3 3| _|2 2
0 4/3] 3 1l _
T_m —0
st _|0 4/3| _|0 0
o = N/A OZO 0:0
s ~In7a ol
— = N/A
N/A /

As shown in the table above, a zero appears in the first column of the s3 row.

Since the entire row is not zero, simply replace the zero with a small quantity, €, and continue the
table. Permitting e to be a small, positive quantity, we find that the first term of the s%row is negative.

Thus, there are two sign changes, and the system is unstable, with two poles in the right half-plane.
The remaining three poles are in the left half-plane.

s° 2 2 2 +
s 3 3 1 +
s3 0 € 4/3 +
52 3¢ — 4 1 i
€
st 12¢ — 16 — 3€2 +
9¢ — 12
s0 1 +
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We also can use the alternative approach, where we produce a polynomial, whose roots are the
reciprocal of the original.

Using the denominator of the closed loop transfer function equation, we form a polynomial by writing
the coefficients in reverse order:

s>+ 2s* +3s3 + 25243542

The Routh table for this polynomial is shown as in the following table. Unfortunately, in this case we
also produce a zero only in the first column at the s2 row. However, the table is easier to work with
than the table given above.

The following table yields the same results as the table given above: three poles in the left half-plane
and two poles in the right half-plane. The system is unstable.

s5 1 3 3 +

st 2 2 2 +

s3 2 2 +

s? 0 € 2 +

st 2e — 4 -
€

s 2 +

For a control system given in the following block diagram, attempt the following tasks.

R(s) + E(s) 128 Cls)

s(s7 + 350 4+ 1055 + 245% + 485° + 9652 + 1285 + 192)

a. Find the number of poles in the left half-plane, the right half-plane, and on the jw-axis for the

system. [20 marks]
b. Draw conclusions about the stability of the closed-loop system. [6 marks]
Solution

a. The closed-loop transfer function for the system is:

128
s8 4+ 357 + 105° + 2455 + 48s% + 9653 + 12852 + 1925 + 128

T(s) =
Using the denominator, form the Routh table as shown in the following table. A row of zeros
appears in the s° row.

Thus, the closed-loop transfer function denominator must have an even polynomial as a factor.
Return to the s® row and form the even polynomial:
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P(s) = s®+8s* + 32s5% + 64

The following table outlines the Routh table of the system.

1 10 48 128 128 +

3 1 24 8 96 32 192 64 +

2 1 6 8 64 32 128 64 +

0 6 3 6 32 16 0 64 32 e 0 0 +
83 1 64/3 8 64 24 +
g -1 40 -5 -

3 1 24 8 +

3 +

8 +

Differentiate this polynomial with respect to s to form the coefficients that will replace the row of
zeros:

dP(s)
ds

Replace the row of zeros at the s° row by the coefficients of equation given above and multiply

=65°>+32s34+64s+ 0

through by 1/2 for convenience. Then, complete the table.

We note that there are two sign changes from the even polynomial P(s) = s® + 8s* + 3252 +
64 at row s evaluating the first column from the s row down to the end of the table. Hence,
the even polynomial has two right half-plane poles.

Pole-Zero Map

25 5

Imaginary Axis (seconds'1)
L8 o .
I T T T

|
)S]
T

. . % ‘
-1.5 -1 -0.5 0 0.5 1 1.5
Real Axis (seconds'1)

[
!{JU!
w
%)

MATLAB Code:
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H= tf(128,[1 3 10 24 48 96 128 192]);
T=feedback (H, 1) ;

pzmap (T)

Because of the symmetry about the origin, the even polynomial must have an equal number of
left-half-plane poles. Therefore, the even polynomial has two left-half-plane poles.

Since the even polynomial is of sixth order, the two remaining poles must be on the jw-axis.

There are no sign changes from the beginning of the table down to the even polynomial at the s°
row. Therefore, the rest of the polynomial has no right half-plane poles.

The results of stability analysis of the given control system are summarised in the table given
below. The system has two poles in the right half-plane, four poles in the left half-plane, and two
poles on the jw-axis, which are of unit multiplicity. The closed-loop system is unstable because of
the right-half-plane poles.

Polynomial
Location Even (6™ order) Other (2*" order) Total (8" order)
Right half-plane 2 0 2
Left half-plane 2 2 4
Jw-axis 2 0 2

For the transfer function tell how many poles are in the right half-plane, in the left half-plane, and on
[24 marks]

the jw-axis.

T(s) =

Solution

Use the denominator of the transfer function equation and form the Routh table in the following
table. For convenience the s° row is multiplied by 1/10, and the s row is multiplied by 1/20. At the
53 row we obtain a row of zeros. Moving back one row to s#, we extract the even polynomial, P(s),

as:

20

s8 4+ 57 + 1256 + 2255 + 395% 4+ 5953 + 4852 + 38s + 20

P(s) =s*+3s2+2

This polynomial will divide evenly into the denominator of equation of the transfer function of the

system and thus is a factor.

Taking the derivative with respect to s to obtain the coefficients that replace the row of zeros in the s3

row, we find:

dP(s)
ds

=4s34+654+0

10
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Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for convenience. Finally,
continue the table to the s° row, using the standard procedure.

s® 1 12 39 48 20 +
s’ 1 22 59 38 0 +
s® -0 -1 20 -2 10 1 20 2 0 -
s° 20 1 60 3 40 2 0 0 +
s* 1 3 2 0 0 +
s3 042 063 000 0 0 +
s? 3/2 3 24 0 0 0 +
st 1/3 0 0 0 0 +
s 4 0 0 0 0 +

How do we now interpret this Routh table? Since all entries from the even polynomial
P(s) = s* + 3s? + 2 at the s* row down to the s° row are a test of the even polynomial, we begin
to draw some conclusions about the roots of the even polynomial.

Pole-Zero Map

Imaginary Axis (seconds'1)

4 . . ‘ ‘ .
-1.2 -1 0.8 -06 -04 0.2 0 0.2 0.4 0.6

Real Axis (seconds‘1)
MATLAB Code:
T = tf(20,[1 1 12 22 39 59 48 38 20]);

pzmap (T)

No sign changes exist from the s* row down to the s° row. Thus, the even polynomial does not have
right-half-plane poles.

Since there are no right half-plane poles, no left half-plane poles are present because of the
requirement for symmetry. Hence, the even polynomial equation P(s) = s* + 352 + 2 must have all

11
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four of its poles on the jw-axis (note: a necessary condition for stability is that the jw roots have unit
multiplicity).

The even polynomial must be checked for multiple jw roots. For this case, the existence of multiple
Jw roots would lead to a perfect, fourth-order square polynomial.

Since even polynomial equation is not a perfect square, the four jw roots are distinct. These results
are summarized in the first column of the table below.

From row with s& to s>, there are two sign changes in the first column. So, there are unstable two
roots on the right half-plane. Finally, the remaining two stable poles are located on the left half-plane.

Polynomial
Location Even (4*" order) Other (4 order) Total (8" order)
Right half-plane 0 2 2
Left half-plane 0 2 2
jw 4 0 4

Find the range of gain, K, for the system given in the following figure that will cause the system to be
stable, unstable, and marginally stable. Assume K > 0. [20 marks]

R(s) + E(s) K Cls)

s(s+Ns+11)

Solution

First, find the closed-loop transfer function as:

K
1) = S 182 4 775 + K
Next, form the Routh table shown as shown in the following table.
s3 1 77
s? 18 K
st 1386 — K
18
s K

Since K is assumed positive, we see that all elements in the first column are always positive except the
s row. This entry can be positive, zero, or negative, depending upon the value of K. If K < 1386, all
terms in the first column will be positive, and since there are no sign changes, the system will have
three poles in the left half-plane and be stable.

12
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If K > 1386, the s term in the first column is negative. There are two sign changes, indicating that the
system has two right-half-plane poles and one left half-plane pole, which makes the system unstable.

If K = 1386, we have an entire row of zeros, which could signify jw poles. Returning to the s row and
replacing K with 1386, we form the even polynomial:

P(s) = 18s% + 1386
Differentiating with respect to s, we have:

dP(s)
ds

Replacing the row of zeros with the coefficients of equation given above, we obtain the Routh-Hurwitz

=36s+0

table shown as in the following table for the case of K =1,386.

s3 1 77 +
s? 18 1386 +
st 0 36 06 o0 +
s 1386 +

Since there are no sign changes from the even polynomial (s? row) down to the bottom of the table,
the even polynomial has its two roots on the jo-axis of unit multiplicity. Since there are no sign
changes above the even polynomial, the remaining root is in the left half-plane. Therefore, the system
is marginally stable.

C. Other Stability Analysis

10. Determine the stability of the system using Bode plot if the responses of the system are given in the

figures below. [8 marks]

Bode Diagram
Gm = Inf, Pm =102 deg (at 4.9 rad/s)
20
T
=~ 10r .
: ~~
B Qe e
h= e
= N
‘E 101 ~
g S
2 .
-20 \\\
-30
e :
T :
—_ . :
g ™ :
@ 45F \ :
] H
2 ™ :
o \‘\h :
~
| B
90 — .
102 107 10° 10’ 102

Frequency (rad/s)

-5
(a) System1 G(s) = e

Magnitude (dB)

Phase (deg)

20
40
60
80

-100

0
45
90

135

-180

Bode Diagram
Gm = Inf dB (at Inf rad/s), Pm = Inf

—

\\\

102

(b) System 2 G(s) =

107! 10° 10" 102 10?
Frequency (radis)
5

(s+1)(s+10)
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Bode Diagram Bode Diagram
Gm = Inf, Pm = -90 deg (at 1 rad/s) Gm=74.4dB (at 3.55 rad/s) , Pm =89.9 deg (at 0.00182 rad/s)
100 100
@ os0r T @ o
Y TT— @
3 0 i e 3 1m0
= : T <
=] : Te— =] : : -
S sof T S 2007 ]
100 : 300 :
269 20 — " §
o 2695 F I~ f
g g \\ .
@ 270 F A0 Fbe e N TN
N
o o057 T \
271 270 R
107! 10° 10’ 102 10° 102 104
Frequency (rad/s) Frequency (rad/s)
1 (s+25)(s+35)
(c) System3 G(s) = = (d) System 4 G(s) =
s s(s+2)(s+4)(s+200)(s+300)
Solution
System 1:

Stable, gain margin = co. For the system with transfer function as shown below:

G(s) =
() st +1

The Bode plot of the system with the transfer function as given above is:
o

~45°

_gﬂu _, e ———

0 dB/dec .
I e
¢ M Kun ! . Phase margin
—180° 42 '
0dB 1 log
.
' ~20 dB/dec

Elementary regulator; stable; gain margin = co. For the system with transfer function as shown below:

B K
T (st 4+ D(st, + 1)

By

System 2:

(s)

The Bode plot of the system with the transfer function as given above is:

14
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PPhase margin

System 3:

Inherently unstable. For the system with transfer function as shown below:

K
G(S) = 5_3

The Bode plot of the system with the transfer function as given above is:

System 4.

0dB .
Phase log ;,
margin = —90°

* - <

Conditionally stable; stable at low gain, becomes unstable as gain is raised, again becomes stable as

gain is further increased, and becom
function as shown below:

es unstable for very high gains. For the system with transfer

K(sty + 1) (st + 1)

G(s) =

s(sty + 1)(sty + 1)(st3 + 1)(st4, + 1)

The Bode plot of the system with the transfer function as given above is:

-90°
é M
~ 180°

-270°

Gain
£ margin

|

Phase
margin

15
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11. Determine the stability of the system using Nyquist plot if the responses of the system are given in the

Imaginary Axis

-0.01

-0.02

-0.03

-0.04

figures below.

Nyquist Diagram

—

Imaginary Axis

Real Axis

100
(a) System1 G(s) = e

Nyquist Diagram

20

0.05 ~——
0.04 T

0.03 —_
0.02

0.01

005 —=——

-2.5 -2 -1.5 1 0.5

Real Axis

(c) System 3 G(s) = L

Solution

System 1:

s2(s+10)

Imaginary Axis

Imaginary Axis

[8 marks]
Nyquist Diagram
0.4 :
02 P
. /N
[ A\
0.1 [ i
\:
0.1 \ :
\: /
02 \\
N P
03 LT
0.4
-1 05 0 05
Real Axis
1
b) System2 G(s) = ———
(b) Sy ) = Gioe
Nyquist Diagram
3=
2 \
1 S~
0 i
K . T
//—
2 ///
N |
5 5 -3 -2 -1 0 1
Real Axis
(s+1)(s+12)
(d) System 4 G(s) = —a

Stable, gain margin = co. For the system with transfer function as shown below:

G(s) =

st +1

The Nyquist plot of the system with the transfer function as given above is:

16
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—
f"'——#hhk
! \
Al \
SE TS
w=10
+

System 2:

Elementary regulator; stable; gain margin = co. For the system with transfer function as shown below:

K

Gs) = (sty + (st + 1)

The Nyquist plot of the system with the transfer function as given above is:

—
1I,,,----.-—«---.-
&

‘\

,*P"‘-h.‘

| -

System 3:

Inherently unstable; must be compensated. For the system with transfer function as shown below:

K

G(s) = s?(sty + 1)

The Nyquist plot of the system with the transfer function as given above is:

,”’J»~~‘\
/' \\

/ <4
/ \
" tw “
L :l W= x !
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\ _w~~4 ’l
\ /’
\ 7/
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System 4:

Conditionally stable; becomes unstable if gain is too low. For the system with transfer function as
shown below:

K(sty +1)(stp + 1)

G(s) = 3

The Nyquist plot of the system with the transfer function as given above is:

———

12. Determine the stability of the system using Nichols plot if the responses of the system are given in the

figures below. [8 marks]
Nichels Chart Nichols Chart
36 20
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100 1
a)System1 G(s) = — G(b) System2 (s) = ———
(a) Sy () =33 (b) Sy ) = e
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2 00t ¢] —
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Open-Loop Phase (d
Open-Loop Phase (deg) P p (deg)
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10 _ (s+12)
G265 (d) System 4 G(s) = 2(515)

(c) System 3 G(s) = T, > 1
Solution
System 1:

Stable, gain margin = co. For the system with transfer function as shown below:

G(s) =
() st +1

The Nichols plot of the system with the transfer function as given above is:

Phase
margio
0dB | | @

System 2:

Elementary regulator; stable; gain margin = co. For the system with transfer function as shown below:

K

G(s) = (sty + (st + 1)

The Nichols plot of the system with the transfer function as given above is:

Phase
margin w
ml/
0dB i 1
&
—180° —g0° 0
o+ =

System 3:

Instrument servo with field control motor or power servo with elementary Ward-Leonard drive; stable
as shown but may become unstable with increased gain. For the system with transfer function as
shown below:

K

Gls) = s(sty + 1)(st, + 1)

19
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The Nichols plot of the system with the transfer function as given above is:

System 4:

Stable for all gains. For the system with transfer function as shown below:

T, > T

The Nichols plot of the system with the transfer function as given above is:

M
Phase
rargin
___0dB | >
-180° S90° &
W~ x

20



