
 

 

 

XMUT315 Control Systems Engineering 

Tutorial 3: Stability Analysis (Solution) 

 

A. Stability Analysis 

 

1. In control system engineering, stability is determined to be one of the criteria of performance of a 

given control system. 

 

a. What is stability?         [2 marks] 

b. Describe and compare bounded signal and unbounded signal.    [4 marks] 

c. Describe how a system that has a unit-step response as shown in the diagram below is stable. 

          [2 marks] 

 

Solution 

a. A system is said to be stable if its output is under control. Otherwise, it is said to be unstable. 

A stable system produces a bounded output for a given bounded input (BIBO). 

 

b. Bounded value of a signal represents a finite value. More specifically, we can say, the bounded 

signal holds a finite value of maxima and minima. Thus, if maxima and minima of any signal are 

finite then this means all the other values between maxima and minima will also be finite. 
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(a)                                                                            (b) 

 

The signals whose graph shows continuous rise thereby showing infinite value such as ramp signal 

are known as unbounded signals. The figure shown below represents the unbounded signal: 

Sometimes we come across asymptotically stable systems which are defined as the systems 

whose output progresses 0, when the input is not present, even when the parameters of the 

system show variation. It is to be noted here that poles of the transfer function, is a factor defining 

the stability of the control system. 

 

c. This is the response of first order control system for unit step input. This response has the values 

between 0 and 1. So, it is bounded output. We know that the unit step signal has the value of one 

for all positive values of t including zero. So, it is bounded input. Therefore, the first order control 

system is stable since both the input and the output are bounded. 

As we can see that here, the maxima and minima of the signal represented above is having finite 

values. Thus, such a signal is said to be bounded and if such an output is provided by a system, 

then it is said to be a stable system. 

Therefore, conversely, we can say that an unstable system provides an unbounded output when 

the applied input is bounded in nature. 

 

2. Before performing more specific analysis and design for a given control system, stability analysis is 

typically performed first. 

 

a. Explain how you determine stability of a system.     [2 marks] 

b. Describe types of systems based on their stabilities.    [6 marks] 

Solution 

a. The stability of a control system is defined as the ability of any system to provide a bounded 

output when a bounded input is applied to it.  

 

More specifically, we can say, that stability allows the system to reach the steady-state and 

remain in that state for that particular input even after variation in the parameters of the system. 

 

b. We can classify the systems based on their stabilities as follows. 
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• Absolutely Stable System 

If the system is stable for all the range of system component values, then it is known as 

the absolutely stable system. The open-loop control system is absolutely stable if all the poles 

of the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed-loop 

control system is absolutely stable if all the poles of the closed-loop transfer function present 

in the left half of the ‘s’ plane. 

• Conditionally Stable System 

If the system is stable for a certain range of system component values, then it is known 

as conditionally stable system. 

• Marginally Stable System 

If the system is stable by producing an output signal with constant amplitude and constant 

frequency of oscillations for bounded input, then it is known as marginally stable system. The 

open-loop control system is marginally stable if any two poles of the open-loop transfer 

function is present on the imaginary axis. Similarly, the closed-loop control system is 

marginally stable if any two poles of the closed-loop transfer function is present on the 

imaginary axis. 

 

3. Describe whether the following systems are stable or not based on their transient responses given in 

the following figures.         [8 marks] 
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Note:  

System (a) has an damped exponential response, system (b) has a damped oscillatory response , 

system (c) has a growing oscillatory response, and system (d) has a damped exponential response with 

its time constant is longer than system (a).  

 

Solution 

System (a) is stable as the output of the system settles down to a level after period-of-time. 

System (b) is stable as the output of the system settles down to a level after period-of-time, although 

initially it experiences a damped oscillation at the beginning. 

System (c) is not stable as it has a growing oscillation and it does not settle down. 

System (d) is stable as the output of the system settles down to a level after period-of-time. 

 

4. Referring to a (pole-zero) s-plane diagram of a number of systems as shown below, answer the 

following questions. 

 

Which of the unit-step responses given below correspond to which systems as above. [5 marks] 

 

 

Solution 

Response of the systems and their pole locations in the s-domain: 

• System 1 - a damped exponential response due to its simple pole (located on the x-axis) with its 

time response is shorter than the time response of System 3 i.e. response B.   

• System 2 - a damped oscillatory response due to its stable complex pole i.e. response C. 
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• System 3 - it is also a damped exponential response like the response of System 1, due to its 

simple pole, although its time response is longer than the time response of System 1 (e.g. closer to 

the y-axis) i.e. response A.   

• System 4 – a growing oscillatory response due to its unstable complex pole i.e. response E. 

• System 5 – a growing exponential response due to its unstable simple pole i.e. response D. 

 

The correct matching of the systems with their corresponding unit step responses are illustrated as 

shown in the figure below.  

 

 

B. Routh-Hurwitz Stability Criterion 

 

5. Find the number of poles in the left half-plane, the right half-plane, and on the j-axis for the system 

of the following figure.        [12 marks] 

 

Solution 

First, find the closed-loop transfer function as 

𝑇(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

  =
(

200
𝑠(𝑠3 + 6𝑠2 + 11𝑠 + 6)

)

[1 + (
200

𝑠(𝑠3 + 6𝑠2 + 11𝑠 + 6)
) (1)]

 

  =
200

𝑠4 + 6𝑠3 + 11𝑠2 + 6𝑠 + 200
 

Given the transfer function equation of the closed-loop system. 

𝑇(𝑠) =
200

𝑠4 + 6𝑠3 + 11𝑠2 + 6𝑠 + 200
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As a result, the characteristic equation of the closed-loop system is: 

𝑠4 + 6𝑠3 + 11𝑠2 + 6𝑠 + 200 

Thus, we construct the Routh table for the system.  

𝑠4 1 11 200 

𝑠3 6      1 6       1 0 

𝑠2 − |
1 11
1 1

|

1
= 10     1 

− |
1 200
1 0

|

1
= 200    20 

− |
1 0
1 0

|

1
= 0 

𝑠1 − |
1 1
1 20

|

1
= −19 

− |
1 0
1 0

|

1
= 0 

0 

𝑠0 − |
1 20

−19 0
|

−19
= 20 

− |
1 0

−19 0
|

−19
= 0 

0 

 

Then, the Routh table for the denominator of transfer function equation is shown as the following 

table. For clarity, we leave most zero cells blank.  

 

𝑠4 1 11 200 + 

𝑠3   6      1 6       1  + 

𝑠2 10     1 200     20  + 

𝑠1 -19   - 

𝑠0 20   + 

 

At the 𝑠1 row there is a negative coefficient; thus, there are two sign changes. The system is unstable, 

since it has two right-half plane poles and two left-half-plane poles. The system cannot have 𝑗𝜔 poles 

since a row of zeros did not appear in the Routh table. 

 

6. Find the number of poles in the left half-plane, the right half-plane, and on the 𝑗𝜔-axis for the system 

shown on the following figure.       [12 marks] 

 

 

Solution 

The closed-loop transfer function is: 
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𝑇(𝑠) =
1

2𝑠5 + 3𝑠4 + 2𝑠3 + 3𝑠2 + 2𝑠 + 1
 

Using the denominator of transfer function equation of the system, the characteristic equation of the 

closed-loop system is: 

2𝑠5 + 3𝑠4 + 2𝑠3 + 3𝑠2 + 2𝑠 + 1 

Form the Routh table shown as standard table using the characteristic equation. The Routh table is as 

shown below. 

𝑠5 2 2 2 

𝑠4 3 3 1 

𝑠3 − |
2 2
3 3

|

3
= 0 

− |
2 2
3 1

|

3
= 4/3 

  

𝑠2 − |
3 3
0 4/3

|

0
= ∞ 

− |
2 2
3 1

|

0
= ∞ 

  

𝑠1 − |
0 4/3
∞ ∞

|

∞
= N/A 

− |
0 0
∞ 0

|

∞
= 0 

  

𝑠0 − |
∞ ∞

N/A 0 |

N/A
= N/A 

    

 

As shown in the table above, a zero appears in the first column of the 𝑠3 row.  

Since the entire row is not zero, simply replace the zero with a small quantity, 𝜖, and continue the 

table. Permitting e to be a small, positive quantity, we find that the first term of the 𝑠2row is negative.  

Thus, there are two sign changes, and the system is unstable, with two poles in the right half-plane. 

The remaining three poles are in the left half-plane. 

 

𝑠5 2 2 2  + 

𝑠4 3 3 1  + 

𝑠3 0    𝜖 4/3   + 

𝑠2 3𝜖 − 4

𝜖
 

1   - 

𝑠1 12𝜖 − 16 − 3𝜖2

9𝜖 − 12
 

   + 

𝑠0 1    + 
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We also can use the alternative approach, where we produce a polynomial, whose roots are the 

reciprocal of the original.  

Using the denominator of the closed loop transfer function equation, we form a polynomial by writing 

the coefficients in reverse order: 

𝑠5 + 2𝑠4 + 3𝑠3 + 2𝑠2 + 3𝑠 + 2 

The Routh table for this polynomial is shown as in the following table. Unfortunately, in this case we 

also produce a zero only in the first column at the 𝑠2 row. However, the table is easier to work with 

than the table given above.  

The following table yields the same results as the table given above: three poles in the left half-plane 

and two poles in the right half-plane. The system is unstable. 

 

𝑠5 1 3 3 + 

𝑠4 2 2 2 + 

𝑠3 2 2  + 

𝑠2 0    𝜖 2  + 

𝑠1 2𝜖 − 4

𝜖
 

  - 

𝑠0 2   + 

 

7. For a control system given in the following block diagram, attempt the following tasks. 

 

a. Find the number of poles in the left half-plane, the right half-plane, and on the 𝑗𝜔-axis for the 

system.           [20 marks] 

b. Draw conclusions about the stability of the closed-loop system.   [6 marks] 

 

Solution 

a. The closed-loop transfer function for the system is: 

𝑇(𝑠) =
128

𝑠8 + 3𝑠7 + 10𝑠6 + 24𝑠5 + 48𝑠4 + 96𝑠3 + 128𝑠2 + 192𝑠 + 128
 

Using the denominator, form the Routh table as shown in the following table. A row of zeros 

appears in the 𝑠5 row.  

Thus, the closed-loop transfer function denominator must have an even polynomial as a factor. 

Return to the 𝑠6 row and form the even polynomial: 
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𝑃(𝑠) = 𝑠6 + 8𝑠4 + 32𝑠2 + 64 

The following table outlines the Routh table of the system. 

 

𝑠8 1 10 48 128 128 + 

𝑠7  3     1 24     8 96    32 192     64  + 

𝑠6 2     1  16     8  64    32 128     64  + 

𝑠5 0     6     3 0     32   16 0   64    32 0      0         0  + 

𝑠4    8/3    1 64/3     8 64    24   + 

𝑠3  8    -1   40   -5     - 

𝑠2 3      1 24     8    + 

𝑠1 3     + 

𝑠0 8     + 

 

Differentiate this polynomial with respect to 𝑠 to form the coefficients that will replace the row of 

zeros: 

𝑑𝑃(𝑠)

𝑑𝑠
= 6𝑠5 + 32𝑠3 + 64𝑠 + 0 

Replace the row of zeros at the 𝑠5 row by the coefficients of equation given above and multiply 

through by 1/2 for convenience. Then, complete the table.  

We note that there are two sign changes from the even polynomial 𝑃(𝑠) = 𝑠6 + 8𝑠4 + 32𝑠2 +

64 at row 𝑠3 evaluating the first column from the 𝑠6 row down to the end of the table. Hence, 

the even polynomial has two right half-plane poles. 

 

 

MATLAB Code: 
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H = tf(128,[1 3 10 24 48 96 128 192]); 

T=feedback(H,1); 

pzmap(T) 

 

Because of the symmetry about the origin, the even polynomial must have an equal number of 

left-half-plane poles. Therefore, the even polynomial has two left-half-plane poles.  

Since the even polynomial is of sixth order, the two remaining poles must be on the 𝑗𝜔-axis.  

There are no sign changes from the beginning of the table down to the even polynomial at the 𝑠6 

row. Therefore, the rest of the polynomial has no right half-plane poles.  

 

b. The results of stability analysis of the given control system are summarised in the table given 

below. The system has two poles in the right half-plane, four poles in the left half-plane, and two 

poles on the 𝑗𝜔-axis, which are of unit multiplicity. The closed-loop system is unstable because of 

the right-half-plane poles. 

 Polynomial 

Location Even (6th order) Other (2th order) Total (8th order) 

Right half-plane  2 0 2 

Left half-plane 2 2 4 

𝑗𝜔-axis 2 0 2 

 

8. For the transfer function tell how many poles are in the right half-plane, in the left half-plane, and on 

the 𝑗𝜔-axis.          [24 marks] 

𝑇(𝑠) =
20

𝑠8 + 𝑠7 + 12𝑠6 + 22𝑠5 + 39𝑠4 + 59𝑠3 + 48𝑠2 + 38𝑠 + 20
 

 

Solution 

Use the denominator of the transfer function equation and form the Routh table in the following 

table. For convenience the 𝑠6 row is multiplied by 1/10, and the 𝑠5 row is multiplied by 1/20. At the 

𝑠3 row we obtain a row of zeros. Moving back one row to 𝑠4, we extract the even polynomial, 𝑃(𝑠), 

as: 

𝑃(𝑠) = 𝑠4 + 3𝑠2 + 2 

This polynomial will divide evenly into the denominator of equation of the transfer function of the 

system and thus is a factor.  

Taking the derivative with respect to s to obtain the coefficients that replace the row of zeros in the 𝑠3 

row, we find:  

𝑑𝑃(𝑠)

𝑑𝑠
= 4𝑠3 + 6𝑠 + 0 
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Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for convenience. Finally, 

continue the table to the 𝑠0 row, using the standard procedure.  

𝑠8 1 12 39 48 20 + 

𝑠7 1 22 59 38 0 + 

𝑠6 -10  -1  -20    -2  10    1 20     2 0 - 

𝑠5    20   1  60     3 40    2 0 0 + 

𝑠4 1 3 2 0 0 + 

𝑠3  0   4   2  0   6   3  0   0   0 0 0 + 

𝑠2 3/2   3 2   4 0 0 0 + 

𝑠1 1/3 0 0 0 0 + 

𝑠0 4 0 0 0 0 + 

 

How do we now interpret this Routh table? Since all entries from the even polynomial  

𝑃(𝑠) = 𝑠4 + 3𝑠2 + 2 at the 𝑠4 row down to the 𝑠0 row are a test of the even polynomial, we begin 

to draw some conclusions about the roots of the even polynomial.  

  

MATLAB Code: 

T = tf(20,[1 1 12 22 39 59 48 38 20]); 

pzmap(T) 

 

No sign changes exist from the 𝑠4 row down to the 𝑠0 row. Thus, the even polynomial does not have 

right-half-plane poles.  

Since there are no right half-plane poles, no left half-plane poles are present because of the 

requirement for symmetry. Hence, the even polynomial equation 𝑃(𝑠) = 𝑠4 + 3𝑠2 + 2 must have all 



XMUT315-Tutorial 3: Stability Analysis (Solution) 

12 

four of its poles on the 𝑗𝜔-axis (note: a necessary condition for stability is that the 𝑗𝜔 roots have unit 

multiplicity).  

The even polynomial must be checked for multiple 𝑗𝜔 roots. For this case, the existence of multiple 

𝑗𝜔 roots would lead to a perfect, fourth-order square polynomial.  

Since even polynomial equation is not a perfect square, the four 𝑗𝜔 roots are distinct. These results 

are summarized in the first column of the table below.  

From row with 𝑠8 to 𝑠5, there are two sign changes in the first column. So, there are unstable two 

roots on the right half-plane. Finally, the remaining two stable poles are located on the left half-plane. 

 Polynomial 

Location Even (4th order) Other (4th order) Total (8th order) 

Right half-plane  0 2 2 

Left half-plane 0 2 2 

𝑗𝜔 4 0 4 

 

9. Find the range of gain, 𝐾, for the system given in the following figure that will cause the system to be 

stable, unstable, and marginally stable. Assume 𝐾 > 0.     [20 marks] 

 

Solution 

First, find the closed-loop transfer function as: 

𝑇(𝑠) =
𝐾

𝑠3 + 18𝑠2 + 77𝑠 + 𝐾
 

Next, form the Routh table shown as shown in the following table. 

𝑠3 1 77 

𝑠2 18 𝐾 

𝑠1 1386 − 𝐾

18
 

 

𝑠0 𝐾  

 

Since 𝐾 is assumed positive, we see that all elements in the first column are always positive except the 

𝑠1 row. This entry can be positive, zero, or negative, depending upon the value of 𝐾. If 𝐾 < 1386, all 

terms in the first column will be positive, and since there are no sign changes, the system will have 

three poles in the left half-plane and be stable.  
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If 𝐾 > 1386, the 𝑠1 term in the first column is negative. There are two sign changes, indicating that the 

system has two right-half-plane poles and one left half-plane pole, which makes the system unstable.  

If 𝐾 = 1386, we have an entire row of zeros, which could signify 𝑗𝜔 poles. Returning to the 𝑠2 row and 

replacing 𝐾 with 1386, we form the even polynomial: 

𝑃(𝑠) = 18𝑠2 + 1386 

Differentiating with respect to 𝑠, we have: 

𝑑𝑃(𝑠)

𝑑𝑠
= 36𝑠 + 0 

Replacing the row of zeros with the coefficients of equation given above, we obtain the Routh-Hurwitz 

table shown as in the following table for the case of 𝐾 = 1,386. 

 

𝑠3 1 77 + 

𝑠2 18 1386 + 

𝑠1 0        36 0         0 + 

𝑠0 1386  + 

 

Since there are no sign changes from the even polynomial (𝑠2 row) down to the bottom of the table, 

the even polynomial has its two roots on the j-axis of unit multiplicity. Since there are no sign 

changes above the even polynomial, the remaining root is in the left half-plane. Therefore, the system 

is marginally stable. 

 

C. Other Stability Analysis 

 

10. Determine the stability of the system using Bode plot if the responses of the system are given in the 

figures below.         [8 marks] 

  

(a) System 1   𝐺(𝑠) =
5

𝑠+1
 (b) System 2   𝐺(𝑠) =

5

(𝑠+1)(𝑠+10)
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(c) System 3  𝐺(𝑠) =
1

𝑠3 (d) System 4  𝐺(𝑠) =
(𝑠+25)(𝑠+35)

𝑠(𝑠+2)(𝑠+4)(𝑠+200)(𝑠+300)
 

 

Solution 

System 1: 

Stable, gain margin = ∞. For the system with transfer function as shown below: 

𝐺(𝑠) =
𝐾

𝑠𝜏1 + 1
 

The Bode plot of the system with the transfer function as given above is: 

 

System 2: 

Elementary regulator; stable; gain margin = ∞. For the system with transfer function as shown below: 

(𝑠) =
𝐾

(𝑠𝜏1 + 1)(𝑠𝜏2 + 1)
 

The Bode plot of the system with the transfer function as given above is: 
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System 3: 

Inherently unstable. For the system with transfer function as shown below: 

𝐺(𝑠) =
𝐾

𝑠3
 

The Bode plot of the system with the transfer function as given above is: 

 

System 4: 

Conditionally stable; stable at low gain, becomes unstable as gain is raised, again becomes stable as 

gain is further increased, and becomes unstable for very high gains. For the system with transfer 

function as shown below: 

𝐺(𝑠) =
𝐾(𝑠𝜏𝑎 + 1)(𝑠𝜏𝑏 + 1)

𝑠(𝑠𝜏1 + 1)(𝑠𝜏2 + 1)(𝑠𝜏3 + 1)(𝑠𝜏4 + 1)
 

The Bode plot of the system with the transfer function as given above is: 
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11. Determine the stability of the system using Nyquist plot if the responses of the system are given in the 

figures below.         [8 marks] 

  

(a) System 1  𝐺(𝑠) =
100

𝑠+5
 (b) System 2   𝐺(𝑠) =

1

(𝑠+1)(𝑠+2)
 

 
 

(c) System 3  𝐺(𝑠) =
1

𝑠2(𝑠+10)
 (d) System 4  𝐺(𝑠) =

(𝑠+1)(𝑠+12)

𝑠3  

 

Solution 

System 1: 

Stable, gain margin = ∞. For the system with transfer function as shown below:  

𝐺(𝑠) =
𝐾

𝑠𝜏1 + 1
 

The Nyquist plot of the system with the transfer function as given above is: 
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System 2: 

Elementary regulator; stable; gain margin = ∞. For the system with transfer function as shown below:

  

𝐺(𝑠) =
𝐾

(𝑠𝜏1 + 1)(𝑠𝜏2 + 1)
 

The Nyquist plot of the system with the transfer function as given above is: 

 

System 3: 

Inherently unstable; must be compensated. For the system with transfer function as shown below:

  

𝐺(𝑠) =
𝐾

𝑠2(𝑠𝜏1 + 1)
 

The Nyquist plot of the system with the transfer function as given above is: 
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System 4: 

Conditionally stable; becomes unstable if gain is too low. For the system with transfer function as 

shown below:  

𝐺(𝑠) =
𝐾(𝑠𝜏𝑎 + 1)(𝑠𝜏𝑏 + 1)

𝑠3
 

The Nyquist plot of the system with the transfer function as given above is: 

 
 

12. Determine the stability of the system using Nichols plot if the responses of the system are given in the 

figures below.         [8 marks] 

  

(a) System 1  𝐺(𝑠) =
100

𝑠+3
 𝐺(b) System 2  (𝑠) =

1

(𝑠+2)(𝑠+12)
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(c) System 3  𝐺(𝑠) =
10

𝑠(𝑠+2)(𝑠+15)
 (d) System 4  𝐺(𝑠) =

(𝑠+12)

𝑠2(𝑠+5)
         𝜏𝑎 > 𝜏1 

 

Solution 

System 1: 

Stable, gain margin = ∞. For the system with transfer function as shown below: 

𝐺(𝑠) =
𝐾

𝑠𝜏1 + 1
 

The Nichols plot of the system with the transfer function as given above is: 

 

System 2:  

Elementary regulator; stable; gain margin = ∞. For the system with transfer function as shown below: 

𝐺(𝑠) =
𝐾

(𝑠𝜏1 + 1)(𝑠𝜏2 + 1)
 

The Nichols plot of the system with the transfer function as given above is: 

 

System 3:  

Instrument servo with field control motor or power servo with elementary Ward-Leonard drive; stable 

as shown but may become unstable with increased gain. For the system with transfer function as 

shown below: 

𝐺(𝑠) =
𝐾

𝑠(𝑠𝜏1 + 1)(𝑠𝜏2 + 1)
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The Nichols plot of the system with the transfer function as given above is: 

 

System 4: 

Stable for all gains. For the system with transfer function as shown below: 

𝐺(𝑠) =
𝐾(𝑠𝜏𝑎 + 1)

𝑠2(𝑠𝜏1 + 1)
         𝜏𝑎 > 𝜏1 

The Nichols plot of the system with the transfer function as given above is: 

 

 


