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Tutorial 4: Time Domain Analysis (Solution)
A. Time Response Analysis

1. The transient response of a second-order system can be determined from its transfer function
equation. Depending on the type of roots in the equation, the response can be categorised as
underdamped, critically damped, and overdamped.

a. Prove the roots of the equation for second order system are: [10 marks]

51 = —Cwy +J'wnv1—52 or 52:_((071_]'0)11\/1_(2
b. Prove the time domain equation of the underdamped response of a second-order system
when it is given a step input is as shown below. [20 marks]

qr
c(t)=1- e—sin[wdt + ¢]

Jie
Where: w; = wp/1—{? and ¢=tan‘1(\/1—fz/()

Solution
a. Given the general transfer function equation of second order system is given as:

C(s) wy,
R(S)  s2+2{w,s + w?

If the denominator (e.g. characteristic equation of the second order system) is equated to
zero, then the equation above becomes.

s2+2(wps+ w2 =0
Rearrange the equation, it becomes:
s2 4+ 20wps + (Pw? — w2+ w2 =0
Then
(s +{wn)? = Pt + wi

So
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(s +Cw)? + (0 T=37) =0

The roots of the equation for second order system as shown above are:

51 = —Cwy +jwn\/ 1 _Zz or  s;=—(wy _jwn\/ 1- ZZ

b. For underdamped case (0 < ¢ < 1), the transfer function of the system C(s)/R(s) can be
written as follows:

C(s) w?
R(S) B (5 + ((‘)n +jwd)(5 + (wn _jwd)

Where: w; = wy/1 — {2 (i.e. the frequency wy is called the damped natural frequency).

For a step input, R(s) = 1/s and C(s) can be written:

wi

¢ = s(s + {wp + jwg)(s + {wy — jwg)

Applying partial fraction to the equation given above:

; 1 s+ {w, Cwp
@)_E_@+Q%P+w§_®+&%y+w§

Hence the inverse transform of the equation above is:

c(t) =1—eS@nt <cos wgt + sin a)dt>

s
J1—=277
This equation can be simplified into:

—{wnt

J1-—2¢%
Say, { = cos ¢, hence \/1 — {? = sin ¢ (e.g. for underdamped response 0 < { < 1):

—{wnt

J1-=2¢%
The expression that outlines the underdamped response of the second-order system when it
is given a step input function is:

c(t)zl—( >(w/1—(2coswdt+{sinwdt)

) (sin ¢ cos wyt + cos ¢ sinwgt)

c(t)=1—<

e_zwt
c(t)y =1- (—) sinfwgt + @]
J1-02
Where: wy = wyy/1 — 2 and ¢ =tan™! 1;{2

Prove that the time domain equations of the transient responses of the given second order
system when it is given a step input are as shown below.
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a. For the critically damped response second order system, the time domain equation is:
[20 marks]

c(t)=1—e (1 +w,t) for t=>0

b. Forthe overdamped response second order system, the time domain equation is:

[20 marks]

w e—Slt e—Szt
ct) =1+ I < - > for t>0
2,/02 =1\ $1 S2

Where: s; = (¢ +/ZZ—1)w, ands, =(¢—7Z=1)w,

Solution

a. We know that a second order system can be represented with the following standardised
transfer function equation.

C(s) w?
R(s) (s +{wp +jwa)(s + {wn — jwa)
Where: wgy = w,+/1 — {2

Thus, in a critically damped second order system (¢ = 1), the two roots of the C(s)/R(s)

are nearly equal.

wg =wp/1—(1)?=0
As a result, the standardised equation above becomes:

C(s) w?
R(s) (s+ wp) (s + wy)

Furthermore, the system may be approximated by a critical damped one:
wh
C(s) = |=—=|R(s
(s) [(S . wn)z] )

For a unit-step input (R(s) = 1/s) and C(s) can be written as:

e =2 (Y
5= (s + wy)?\s
Taking the fractional function of the equation given above
1 w?
C(s) = (_> S L
(s) s/ (s+ wy)?

The inverse transform of the equation given above is:

c(t) =1—e“'(1+ w,t)
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Thus, the transient response (c(t)) of the critically damped second order system is an
increase exponential function which is modulated by a time-related function.

b. Knowing that a second order system can be represented with the following standardised
transfer function equation.

C(s) wh
R(s) (s+wp+jwa)(s + {w, — jwg)

Where: w; = wy/1 — {?

Thus, in overdamped case ({ > 1), the two roots of C(s)/R(s) are negative real and
unequal. So, the equation above becomes:

C(s) wp
R(s) (5 + Con + joT=T2)(s + Cwn — jany/T = C2)

We know that j = v —1, as a result the equation above becomes:

wi

(s + {wy + wpr/ (% — 1)(5 + {wy — wpA/ (% — 1)

For a unit-step input R(s) = 1/s, and C(s) can be written as:

C(s) = R(s)

wi

1
(s + {w, + wn\/fz——l)(s + {w, — wn\/m) <§)

Applying partial fraction to the equation given above:

C(s) =

wp wn

C(s) = (%)+2[S+wn(€+\/(2—_1)]_2[S+wn(€_\/{2—_1)]

The inverse Fourier transform of the equation above is:

=1+ . o (ot _ ! (e~
2/ =1(e+ 27 1) 2/ =1(c+ 7= 1)

Alternatively, the equation given above can be represented as:

w’n e—Slt e—Szt
( - > for t =0
272 -1

S1 S,
Where: s; = ({ +./¢7%— 1)wn and S, = (Z -/ - 1)wn

Thus, the transient response of the second order system (c(t)) for an overdamped case ({ >

c(t)y=1+

1) has two decaying exponential terms.

3. You are given the following first order systems:
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i System 1: ii. System 2:

20

5
G =575 6 =570

s+5

For both systems, calculate the time constant, rise time, and settling time for each system.
[12 marks]

Based on the results in part (a), comment on the differences in transient and steady-state
responses of the first system with the second system. [4 marks]

Simulate and describe the transient responses of the systems when each of the systems is
subjected to a step input. [10 marks]

Simulate and describe the transient responses of the systems when each of the systems is
subjected to an impulse input. [10 marks]

Solution

The time constant, rise time, and settling time for each system are calculated as follows.
For System (i):

5 1
(s+5) s/5+1

G(jw) =
Time constant:

1
T= 3 = 0.2 second

Rise time:
22 2.2
T, = 2.2t = — = — = 0.44 second
a 5
Settling time:
4
Ty=41=—= T = 0.8 second
For System (ii):
G(s) = 20 1
T 5 +20) s/20+1
Time constant:
T= 0= 0.05 second
Rise time:
22 2.2
T, =22t = = =20 0.11 second
Settling time:
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4
Ts =4T=E=%= 0.2 second

For transient response of the system, it seems System (i) has considerable longer time
constant, rise time and settling time compared with System (ii) e.g. T = 0.2 second, T, = 0.44
second and T = 0.8 second compared with 7 = 0.05 second, T;- =0.11 second and T = 0.2
second respectively.

Step response of 1st order system (i) Step response of 1st order system (ii)
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For steady-state response, the overall response of System (ii) is more responsive e.g. take
less time to settle down compared with System (i).

Simulate and describe the transient responses of the systems when each of these systems
subjected to a step input. For System (i) and a step input of 1/s:

5
‘() =61
Take partial fraction of the equation given above:
SN S
s s+5

The inverse transform of the equation given above is:
gy =1-e>

The transient response of the System (i) is an increasing exponential response with a time
constant of 5 seconds.
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For System (ii) and a step input of 1/s:

20

G(s)

Take partial fraction of the equation above:

1

- s(s + 20)

1

G(](IJ) =E—

s+ 20

Therefore, the inverse transform of the equation given above is:

g(t) =12t

The transient response of the System (ii) is an increasing exponential response with a time

constant of 20 seconds.

Step response of 1st order system (ii)
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Simulate and describe the transient responses of the systems when each of these systems
subjected to an impulse input. For System (i) and impulse input:

5
~ (s+5)

G(s)
The inverse transform of the equation given above is:

g(t) = 5e~>*

The transient response of the System (i) is a decreasing exponential response with a time

constant of 5 seconds.

Impulse response of 1st order system (i)

4.5 [\

3.5: \

Amplitude

= [
n P n [£+]
= —

=
T
e

0.5 T

0 02 0.4 0.6 0.8 1 12
Time (seconds)

For System (ii) and impulse input:
G(s) = —22
(s +20)
Therefore
g(t) = 20e20¢

The transient response of the System (ii) is a decreasing exponential response with a time
constant of 20 seconds.
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Impulse response of 1st order system (ii)
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4. Given the transfer function as shown below, find damping factor () and natural frequency (w,,)

of the system. [4 marks]

6(s) 36

S)=—"7-7T7-—

s2 4425+ 36

Solution

Comparing the above equation to the standard equation of the second order transfer function:
W}

52+ 2{wys + w?

G(s) =

As a result, w;; = 36 from which w,, = 6.

Also, 2{w,, = 4.2. Substituting the value of w,,, as a result, { = 0.35.

Given the transfer function as shown below:

100
s2+15s+ 100

Determine the parameters of the time response of the system as follow:

G(s) =

a. Natural frequency (w,,) and damping ratio ({). [4 marks]
b. Time-to-peak (T,), percentage overshoot (%0S) and settling time (T). [6 marks]

c. Rise time (T;.) using the following methods: derived equation, alternative equation, and
graph of normalised damping ratio. Simulate the system in MATLAB for rise time and
determine which method gives the most accurate result. [8 marks]
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Solution

a.

Comparing the transfer equation of the system with the standard second order equation as
given below, w, and { are calculated as follow.

2

G(s) = o ——
§% + 20wy s + wy
Thus
w, =100 = 10
And
2w, =15
With w,, = 10, the damping ratio is:
{ = 1—5 = (0.75
2(10)

As a result, natural frequency w,, and damping ratio ¢ are 10 and 0.75 respectively.

Now substitute ¢ and w,, found in part (a) into the following equations. First, measuring the
time-to-peak.

Vs
T. =

P o J1-02

The following equation is used for calculating the percentage overshoot.
%05 = e~ ("N1=) 5 100

The equation given below is for calculating the settling time.
T 4
R

We found respectively that T}, = 0.475 second, %0S = 2.838, and T = 0.533 second.
The rise time (T,.) are determined and calculated using the three methods as follows.

(i) Derived Equation:
Using the derived equation as shown below, the rise time (T.) is:

_om—¢  m—0722 2419
wnf1—¢% 10/1-(0.75)2 6.614

= 0.366

T

Where:

10
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7 0.75

J1—102 J1—1(0.75)2
¢ = arctan <—Z) = arctan (#> =41.4°=0.722rad

(i) Alternative Equation:
Using the alternative equation as shown below, the rise time (T}.) is:

. (1.76¢% — 0.417% + 1.039¢ + 1)

T

wn
_ (1.76(0.75)* — 0.417(0.75)* + 1.039(0.75) + 1)
B 10
0.7425 — 0.2345 + 1.77925
= 0 =0.229

(iii) Graph of (Normalised) Damping Ratio vs. Rise Time:

The normalised damping ratio vs. rise time graph shown below is constructed from the
following equation:

t,wo = 2.230¢% — 0.0787 + 1.12

Damping |Normalized
'y ratio rise time
3.0F 0.1 1.104
0.2 1.203
2.8+
é”’ 0.3 1.321
S 26 0.4 1.463
g 0.5 1.638
= 240
- 0.6 1.854
i 22 0.7 2.126
o3
Z 2ok 0.8 2.467
X 0.9 2.883
-+
g 1.8
o 1.6
% 14
1.2
10 1 1 | 1 | | 1 |

o

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Damping ratio

Using the table in the figure above, when the damping ratio (¢) is 0.75, the normalized rise
time is approximately 2.3 seconds. Divided this value by w,, (i.e. 10), this yields:

¢ 23
T, =—=2"2023
ET! s

MATLAB code:
sys = tf£([100],[1 15 1001]);

step(sys)

11
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S = stepinfo(sys)

The results of MATLAB simulation are as shown in the figures below.

Step Response
1.2 : :
-] i P e —
0.8
S =
0.6 struct with fields:
RiseTime: 0.2288
04r TransientTime: 0.5743
SettlingTime: 0.5743
SettlingMin: 0.9049
02r 1 SettlingMax: 1.0284
Overshoot: 2.8369
0 ) ) . . . ) . . Undershoot: 0
0 0.1 02 03 04 05 06 07 0.8 0.9 Peak: 1.0284
Time (seconds) PeakTime: 0.4728

As shown above, the result of simulation in MATLAB gives a rise time (T,.) of 0.2288 s.

The most accurate method for determining rise time (7}.) is using the alternative method as its

result is close to the simulation result.

This question demonstrates that we can find T,,, %0S, T, and T,- without the tedious task of
taking an inverse Laplace transform, plotting the output response, and taking measurements

from the plot.

Find the step response of each of the transfer functions shown in the equations given below and

compare them. [12 marks]
e System 1:
T.(s) = 24.542
) = 2 1 45 + 24,542
e System 2:
T,(s) = 245.42
285 = (54 10)(s2 + 45 + 24.542)
e System 3:
Ty(s) = 73.626
3 = (s ¥ 3)(s2 + 45 + 24.542)
Solution

12
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The step response, C;(s), for the transfer function, T;(s), can be found by multiplying the
transfer function by 1/s, a step input, and using partial-fraction expansion followed by the
inverse Laplace transform to find the response, c¢;(t). The results are:

c1(t) =1—1.09¢ 2! cos(4.532t + 23.8°)
cy(t) =1 —0.29e71% — 1,189¢72¢ cos(4.532t — 53.34°)
c3(t) =1—1.14e73t + 0.707e~%t cos(4.532t + 78.63°)

The three responses are plotted in the figure given below (e.g. step responses of system T; (),
system T, (s) and System T5(s)).

1.4

[
(3]

Normalized response
e o =
=l oo o

it
.

o
2

1 |

1 | 1
-

1
0 0.5 1.0 1.5 2.0 2.5 3.0
Time (seconds)

Notice the first effect of distance of the poles to the imaginary or y-axis: the farther from the y-
axis, the quicker to settle down and the closer to the y-axis the slower to settle down.

Observe also the second effect of distance of the poles to the imaginary or y-axis: the farther
from the y-axis, the smaller is damping ratio (underdamped) and the closer to the y-axis the
bigger is the damping ratio (overdamped).

Here, that ¢, (t), with its third pole at -10 and farthest from the dominant poles, is the better
approximation of ¢4 (t), the pure second-order system response; c3(t), with a third pole close to
the dominant poles, yields the most error.

B. Steady-State Analysis

7. For the system shown below, find the steady-state errors for the inputs:

a. Stepinput, 5u(t). [2 marks]
b. Ramp input, 5tu(t). [2 marks]
c. Parabolicinput, 5t%u(t). [2 marks]

13
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120(s + 2) C(s)
(s +3)(s + 4) -

Solution

First, check that closed-loop system is stable. We need the poles are all in the left-hand side of
the s-plane for the system is stable.

Apply the equation for the feedback system, the transfer function equation for the closed-loop
system is:

G(s)

(o) = 1+ G(s)H(s)

For a unity feedback system, the equation above becomes:

T(s) = G(s)
T 14 6(s)
Entering the G(s) of the system into the equation above, it is now:
120(s + 2)
(s+3)(s+4) _ 120(s + 2)

T(s) =

120(s +2)  (s+3)(s+4) +120(s + 2)
(s+3)(s+4)

_ 120(s+2)
" s24127s + 252

Applying Routh-Hurwitz method, the closed-loop transfer function of the system is stable.

1+

a. Consider step input r(t) = 5u(t), the Laplace transform of the step input is:

R(s) =5/s
The steady-state error of the system is then:
5
lim SE i SR(s) S (g) 5 5
[ele] — — — — — —
e(o0) = limsE(s) = lim ===+ 120(s +2) 1420 21

M3 G6+4

b. Forthe ramp input r(t) = 5tu(t), the Laplace transform is given by:

R(s) = 5/s?
The steady-state error of the system is:
5
) = s = iR _ () 5 s
o) = = = = = — = 00
€ sDp 5 sl—I>%1+G(s) 1+lin&G(s lir%sG(s) 0
S— Nad

14
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c. For the parabolic input r(t) = 5t?u(t), the Laplace transform is given by:
R(s) = 10/s3
The steady-state error of the system is:
sR(s) S (g) 10 10

e(e) o5 ° (s) S501 + G(s) 1+ lir’% G(s lir’% s2G(s) 0 @
s— s—

For the system below, evaluate the static-error constants and find the steady-state errors for:

e Stepinput, 5u(t). [4 marks]
e Ramp input, Stu(t). [4 marks]
e Parabolic input, 5t%u(t). [4 marks]

R(s) + E(s) 500(s +2)(s +5) Cl(s)

(s +8)(s+ 10)(s + 12)

Solution

Check first the stability of the closed-loop system. The system is stable if there is no pole in the
right-hand side of the s-plane.

For a unity feedback system, the closed-loop transfer function equation is:

G(s)

") =16m

Entering the G(s) of the system into the equation above, it is now:

500(s + 2)(s +5)
(s+8)(s+10)(s+12)

500(s + 2)(s +5)
(s+8)(s+10)(s+12)
B 500(s +2)(s +5)
"~ (s+8)(s+10)(s +12) + 500(s + 2)(s + 5)

B 500(s +2)(s+5)
~ s34+ 53052 + 37965 + 5960

Applying Routh-Hurwitz method, the closed-loop transfer function of the system is stable.

T(s) =

1+

The static-error constants are:

L _(500)(2)(5) _
Kp = LI_I;% G(S) = W = 5.208

K, =limsG(s) =0
s—0

15



XMUT315-Tutorial 4: Time Domain Analysis (Solution)

K, =lims?G(s) =0
s—0

The steady-state errors of the system are:

1 1

ester(©) = Tk =17 5208
1

eramp(oo) = K_v = 6 = o

eparabola(oo) = = 6 = o

Find the steady-state error for the system in the figure given below if T(s) = 5/(s? + 7s + 10)
and the input is a unit step. [6 marks]

+
Ris C(s) — Els Ris s C(s
(s) o |69 é 6 ROt EO [ (s)_

(a) (b)

Shown in the diagram above is closed loop control system error, as a general representation of
the system given in (a) and a representation for unity feedback system in (b).

Solution

From the problem statement, R(s) = 1/s and T(s) = 5/(s? + 7s + 10). Substituting into
equation below.

E(s) = R(s)[1 - T(s)]
This yields:

5 ) s2+7s+5

1
E(s)==(1- =
Q s( s2+7s+10 s(s? +7s+ 10)

Since T(s) is stable and, subsequently, E(s) does not have right-half-plane poles or jo poles
other than at the origin, we can apply the final value theorem. Substituting the equation given
above into the following equation.

[ s+ 7s+5 ]_ 5

e(ee) = Jim e(®) =i sE ) =13 | = 7 70y| = 10

s—-0

This gives e() = 1/2.

16
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10. Match up the steady-state conditions for inputs of 5u(t), 5tu(t), and 5t2u(t) to the system
shown in the following figure with the simulation results. The function u(t) is the unit step.
[12 marks]

120(s + 2) Ci (.‘5‘)__
(s +3)(s + 4) -

Solution

First, we verify that the closed-loop system is indeed stable. For this example, we leave out the
details.

Next, for the step input 5u(t), whose Laplace transform is 5/s, the steady-state error will be five

times as large as that given by the equation below.

i oSG s
d“)—%wﬂ“)‘ﬁ%1+6@)_1+§%G@)

Or

5 5 5
1+H%G@)_1+20_21
S—

e() = estep(oo) =

This implies a response similar to output 2 of the following figure.

4
Input X

- Output 1 e5(c0)

(1)

Output 2

Time
For the ramp input 5tu(t), whose Laplace transform is 5/s2, the steady-state error will be five

times as large as that given by the equation given below.

i SG/SD 5 5

) = ) = —= =

() = ergmp () Sl_r,r(l)l + G(s) sl—r>%s+sG(S) lirr(}SG(S)
S—

17



XMUT315-Tutorial 4: Time Domain Analysis (Solution)

Or

5 5

e() = eramp(®) = mr s =5 = @

s—0

This implies a response similar to output 3 of the figure given below.

ez(co)

Output 2

c(1)

Input

Output 1
Output 3

Time
For the parabola input 5t2u(t), whose Laplace transform is 10/s3, the steady-state error will

be 10 times as large as that given by the equation given below.

s(10/s%) 10 10

e(x) = eparabola(oo) = y_r)% 1+ G(s) - Sl_r%sz + SZG(S) - “r% SZG(S)
S—

Or

10 10

—_— = — =00
lims2G(s) O
s—0

e(o) = eparabola(oo) =

This implies a response similar to output 2 of the figure given below.

| Output 1

c(fn)

Time

18
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11. For the control system shown in the figure below, attempt the following tasks.

R(s) + E(s)

100(s +2)(s + 6) C(-\‘)_L
s(s+3)s+4)

a. Determine the steady-state errors for inputs of 5u(t), 5tu(t), and 5t2u(t) to the system
shown in the figure above and match them up with simulation results. The function u(t) is
the unit step. [6 marks]

b. Compare the steady-state conditions of the system for the inputs given. [3 marks]

c. Describe the role of integral component towards steady-state characteristics of the system.
Compare the results with the steady-state characteristics of the system from the previous
question. [5 marks]

Solution

a. First, verify that the closed-loop system is indeed stable. For this question, we leave out the

details.
For the step input 5u(t), whose Laplace transform is 5/s, the steady-state error will be five

times as large as that given by the following equation.

B o s(5/s) 5
e(©0) = seep(o0) = lim 1+G(s) 1+ lim G (s)

Or

5 5

T+ImeE) o 0
s—0

e() = estep(oo) =

This implies a response similar to output 1 of the figure given below.

19
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Input 3

e3(c0)

Output 1

el

Output 2

Time

For the ramp input 5tu(t), whose Laplace transform is 5/s2, the steady-state error will be
five times as large as that given by the equation given below.
() () = i s(5/s%) y 5 5
e(c0) =e ) = lim = lim =
ramp 5201+ G(s) s-0s+ sG(s) lirré sG(s)
S—
Or
5 5 1

e(%0) = eramp(%) = limsG(s) 100 20
S—

This implies a response similar to output 2 of the figure below.
es(o0)

Output 2

Input

c(n)

Output 1
Output 3

Y

Time

For the parabola input, 5t%u(t), whose Laplace transform is 10/s3, the steady-state error

will be 10 times as large as that given by the equation below.
s(10/s%) . 10 B 10
sS0s2 + s2G(s) lir% s2G(s)
S—

e(o) = eparabola(oo) - !91_{13 1+G(s) B

Or
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10 10

—_— e — = 00
lims2G(s) O
s—0

e(o) = eparabola(oo) =

Response of system is similar to output 2.

Output 1

c(r)

Time
b. Comparing the steady-state responses of the system with various inputs, the steady-state
responses of the system are:
e Step input — steady state error is zero.
e Ramp input — steady state error is a constant (1/20).

e Parabolic input - steady-state response is infinity.

c. Since there is an integration in the forward path, it is expected that the steady-state errors
for some of the input waveforms will be less than those found in the previous question.
Having integral function in the forward path reduces significantly the stead-state error in the
given system.

e Forstep input, the integration in the forward path yields zero stead-state error, rather
than finite steady-state error found in the previous question.

e Forramp input, the integration in the forward path yields a finite steady-state error,
rather than the infinite steady-state error found in the previous question.

e For the parabolic input, the integration in the forward path does not yield any
improvement in steady-state error over that found in the previous question for a
parabolic input.

12. For each system of the figure below, evaluate the static error constants and find the expected
error for the standard step, ramp, and parabolic inputs. [18 marks]
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500(s + 2)(s + 5) C'(s)__
(s +8)(s + 10)(s + 12) -

(a)

S500(s + 2)(s + 5)(s + 6) C'(S)___
s(s + 8)(s + 10)(s + 12) )

(b)

S500(s + 2)(s + 4)(s +5)(s +6)(s +7) Cls)
s +8)(s + 10)(s + 12) -

(c)
Solution

First, verify that all closed-loop systems shown are indeed stable. For this example, we leave out
the details.

a. Next, for the figure (a), the static-error constants of the system (a) are:
K = limG _500><2><5_5208
p=IMGE) =g Tox1z >

K, =1limsG(s) =0
s—0

K, =lims2G(s) =0
s—0

As a result, the steady-state errors of the system (a) for various inputs:

Step input Ramp input Parabolic input

() 0.161 | e(e0) =~ () =
o) = = . V) = — =00 o0) = — = 00

¢ 1+K, ¢ K, ¢ K,

b. Now, for the figure (b), the static-error constants of the system (b) are:
K, = ?—I»% G(s) =

K =1i G _500><2><5><6_3125
v =lmsG(s) = =5 Tox12 - on

K, = y_r)részG(s) =0

As a result, the steady-state errors of the system (b) for various inputs:
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Step input Ramp input Parabolic input

(0)=— =0 | e(0) == =" =0032 | e(e) =
o) = = ) m— = — = . D) =m — =00

¢ 1+K, ¢ K, 3125 ¢ K,

c. Finally, for the figure (c), the static-error constants of the system (c) are:
K, = Ll_r)r(l) G(s) =00
K, =1limsG(s) = o
s—-0

500 x2Xx4x5%x6%x7

8x 10 x 12 =875

K, =£i£r(1)sza(s) =

As a result, the steady-state errors of the system (c) for various inputs:

Step input Ramp input Parabolic input
() ! 0 ()10 ()1 L o 114x10°3
) = = ) = — = ©0)=—=—==114 X
¢ 1+K, ¢ K, ¢ K, 875

13. For the system shown in the figure below, find the system type, the appropriate error constant
associated with the system type, and the steady-state error for a unit step input. Assume input
and output units are the same. [12 marks]

R(s) + E,(s) 100

Cls)
s(s+ 10) o

(s+5)

Solution

After determining that the system is indeed stable, one may impulsively declare the system to
be Type 1. This may not be the case, since there is a non-unity feedback element, and the plant's
actuating signal is not the difference between the input and the output.

The first step in solving the problem is to convert the system of the figure above into an
equivalent unity feedback system. Using the equivalent forward transfer function of the figure
given above along with.

Consider the non-unity feedback control system.

Rﬂ + Cis) N

> Egls)

G(s)

His) |=
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Form a unity feedback system by adding and subtracting unity feedback paths.

R -~ E C
5) + al5) G(s) (s) .
ng

\
\

——

His) |=

Combine H(s) with the negative unity feedback.

R(s) E,(s)

Cls)
(:(5) -

His)—1 |=

Combine the feedback system consisting of G(s) and [H(s) — 1], leaving an equivalent forward
path and a unity feedback.

Ris) + EQ E(s) Gls) C(s)
L
By 1 + G(s)H(s) — G(s)

Knowing that:

G(s) = 100
()= s(s +10)
And
HE) =555
We find:
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G(s) - 100(s + 5)

Ge(S) = T GIH() —G(s) _ 5° + 1552 — 505 — 400

Thus, the system is Type 0 since there are no pure integrations in the equation above. The
appropriate static-error constant is then K,, whose value is:

K, l c 100 x5 5
=G ="350 =3
The steady-state error, e(0), is:
1 1
e(oo) = = = —4

1+K, 1-(5/4)

The negative value for steady-state error implies that the output step is larger than the input
step.

Cutput 2

Input A l

cli)

Output |

Time

14. Find the steady-state errors component due to a step disturbance for the system given below.
Comment on the result. [4 marks]

G(s) D(s) Gs)

Controller Plant
. +
R(s) + E(s) 1000 + | C(s)=
s(s +25)

Solution

By inspection, the system is stable. Using the transformation steps for converting system with
disturbance, we find:

() 1 1 1
eép(™®) = — = — = —
0+ 1000 1000
lsl_r% Gz(s) + llm G,(s)
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The result shows that the steady-state error produced by the step disturbance is inversely

proportional to the DC gain of G4 (s). The DC gain of G,(s) is infinite in this example.

15. For the system shown below, perform the following tasks.

R(s) + <> Eqls) 100 Cis)
s(s+ 10) -
1 _—
(s+5)
a. Find the system type, the appropriate error constant associated with the system type, and
the steady-state errors for a unit step input. Assume input and output units are the same.
[8 marks]
b. Find the steady-state actuating signal for the system (E, (s)) for a unit step input. Repeat for
a unit ramp input. [8 marks]
Solution
a. The system is indeed stable. Although the system looks like is a Type 1, since there is a non-

unity feedback element, and the plant’s actuating signal is not the difference between the
input and output.

Convert the system into an equivalent unity feedback system. Using the equivalent forward
transfer function:

G(s) = 100 4 H(s) = 1
s ~ s(s+10) an s s+5
We find:
G(s) 100(s + 5)

Ge(s) =

1+ G(s)H(s) — G(s) ~ 53 + 1552 — 505 — 400
Thus, the system is actually a Type 0, since there is no integral in the above equation.

The appropriate static error constant is then K,, whose value is:

K =limG B (100)(5) _ 5
p =M Ge() =300y = 732
The steady-state error, e(0), is:
1 1
e() = —4

1+K, 1-(5/4)

The negative value for steady-state error implies that the output step is larger than the input
step.
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b. With R(s) = 1/s, a unit step input, G;(s) = 1; G,(s) = 100/[s(s + 10)], and H;(s) =
1/(s+5).
The following diagram shows the activating steady-state error in a non-unity feedback
control system with disturbance.

Ris)

= C(s)
—e (yls) -

C:‘T' -

H(s) |w

Thus, the activating steady-state error of the system given above is:

eq1(0) = limM
AT 501 + Gy (s)H,(5)

Also, realize that e, () = e, (), since G;(s) = 1. Thus,

eq(0) = lim ° (%) =0
@ s 100 1
1+ (s(s + 10)) (s + 5)

Now, with R(s) = 1/s2, a unit ramp input, and obtain:

s ()

_ 1
ea(m)z?ﬁ‘&H( 100 )( 1 )_E
s(s+10)/\s+5

16. Given the system of the figure below, calculate the sensitivity of the closed-loop transfer

function to changes in the parameter a. How would you reduce the sensitivity? [6 marks]
R(sy + E(s) K Cls)
s(s+a) -
Solution

The closed-loop transfer function is:

K

T(s) =—————
(s) s2+as+K

The sensitivity is given by:

s _a6T_ a ( Ks )
T:a_T(?a_( K ) (s2+as +K)?
s2+as+K

Thus, the sensitivity of the given system is:
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—as

Sry =——
e =24 as+ K

This is, in part, a function of the value of s.

For any value of s, however, an increase in K reduces the sensitivity of the closed-loop transfer
function to changes in the parameter a.
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