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XMUT315 Control Systems Engineering 

Tutorial 4: Time Domain Analysis (Solution) 

 

A. Time Response Analysis 

 

1. The transient response of a second-order system can be determined from its transfer function 

equation. Depending on the type of roots in the equation, the response can be categorised as 

underdamped, critically damped, and overdamped. 

a. Prove the roots of the equation for second order system are:   [10 marks] 

𝑠1 = −𝜁𝜔𝑛 + 𝑗𝜔𝑛√1 − 𝜁2     or      𝑠2 = −𝜁𝜔𝑛 − 𝑗𝜔𝑛√1 − 𝜁2 

b. Prove the time domain equation of the underdamped response of a second-order system 

when it is given a step input is as shown below.     [20 marks] 

𝑐(𝑡) = 1 −
𝑒−𝜁𝜔𝑡

√1 − 𝜁2
sin[𝜔𝑑𝑡 + 𝜙] 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2     and     𝜙 = tan−1(√1 − 𝜁2/𝜁) 

 

Solution 

a. Given the general transfer function equation of second order system is given as: 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

If the denominator (e.g. characteristic equation of the second order system) is equated to 

zero, then the equation above becomes. 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 = 0 

Rearrange the equation, it becomes: 

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜁2𝜔𝑛
2 − 𝜁2𝜔𝑛

2 + 𝜔𝑛
2 = 0 

Then 

(𝑠 + 𝜁𝜔𝑛)2 − 𝜁2𝜔𝑛
2 + 𝜔𝑛

2 

So 
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(𝑠 + 𝜁𝜔𝑛)2 + (𝜔𝑛√1 − 𝜁2)
2

= 0 

The roots of the equation for second order system as shown above are: 

𝑠1 = −𝜁𝜔𝑛 + 𝑗𝜔𝑛√1 − 𝜁2     or      𝑠2 = −𝜁𝜔𝑛 − 𝑗𝜔𝑛√1 − 𝜁2 

 

b. For underdamped case (0 < 𝜁 < 1), the transfer function of the system 𝐶(𝑠)/𝑅(𝑠) can be 

written as follows: 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

(𝑠 + 𝜁𝜔𝑛 + 𝑗𝜔𝑑)(𝑠 + 𝜁𝜔𝑛 − 𝑗𝜔𝑑)
 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 (i.e. the frequency  𝜔𝑑 is called the damped natural frequency).  

For a step input, 𝑅(𝑠) = 1/𝑠 and 𝐶(𝑠) can be written: 

𝐶(𝑠) =
𝜔𝑛

2

𝑠(𝑠 + 𝜁𝜔𝑛 + 𝑗𝜔𝑑)(𝑠 + 𝜁𝜔𝑛 − 𝑗𝜔𝑑)
 

Applying partial fraction to the equation given above: 

𝐶(𝑠) =
1

𝑠
−

𝑠 + 𝜁𝜔𝑛

(𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑑
2 −

𝜁𝜔𝑛

(𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑑
2  

Hence the inverse transform of the equation above is: 

𝑐(𝑡) = 1 − 𝑒−𝜁𝜔𝑛𝑡 (cos 𝜔𝑑𝑡 +
𝜁

√1 − 𝜁2
sin 𝜔𝑑𝑡) 

This equation can be simplified into: 

𝑐(𝑡) = 1 − (
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
) (√1 − 𝜁2 cos 𝜔𝑑𝑡 + 𝜁 sin 𝜔𝑑𝑡)   

Say, 𝜁 = cos 𝜙, hence √1 − 𝜁2 = sin 𝜙 (e.g. for underdamped response 0 < 𝜁 < 1): 

𝑐(𝑡) = 1 − (
𝑒−𝜁𝜔𝑛𝑡

√1 − 𝜁2
) (sin 𝜙 cos 𝜔𝑑𝑡 + cos 𝜙 sin 𝜔𝑑𝑡) 

The expression that outlines the underdamped response of the second-order system when it 

is given a step input function is: 

𝑐(𝑡) = 1 − (
𝑒−𝜁𝜔𝑡

√1 − 𝜁2
) sin[𝜔𝑑𝑡 + 𝜙] 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2            and          𝜙 = tan−1 √1−𝜁2

𝜁
 

 

2. Prove that the time domain equations of the transient responses of the given second order 

system when it is given a step input are as shown below. 
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a. For the critically damped response second order system, the time domain equation is: 

[20 marks] 

𝑐(𝑡) = 1 − 𝑒−𝜔𝑛𝑡(1 + 𝜔𝑛𝑡)     for    𝑡 ≥ 0 

 

b. For the overdamped response second order system, the time domain equation is: 

[20 marks] 

𝑐(𝑡) = 1 +
𝜔𝑛

2√𝜁2 − 1
(

𝑒−𝑠1𝑡

𝑠1
−

𝑒−𝑠2𝑡

𝑠2
)      for    𝑡 ≥ 0 

Where: 𝑠1 = (𝜁 + √𝜁2 − 1)𝜔𝑛     and 𝑠2 = (𝜁 − √𝜁2 − 1)𝜔𝑛 

 

Solution 

a. We know that a second order system can be represented with the following standardised 

transfer function equation. 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

(𝑠 + 𝜁𝜔𝑛 + 𝑗𝜔𝑑)(𝑠 + 𝜁𝜔𝑛 − 𝑗𝜔𝑑)
 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 

Thus, in a critically damped second order system (𝜁 = 1), the two roots of the 𝐶(𝑠)/𝑅(𝑠) 

are nearly equal.  

𝜔𝑑 = 𝜔𝑛√1 − (1)2 = 0 

As a result, the standardised equation above becomes: 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

(𝑠 + 𝜔𝑛)(𝑠 + 𝜔𝑛)
 

Furthermore, the system may be approximated by a critical damped one: 

𝐶(𝑠) = [
𝜔𝑛

2

(𝑠 + 𝜔𝑛)2
] 𝑅(𝑠) 

For a unit-step input (𝑅(𝑠) = 1/𝑠) and 𝐶(𝑠) can be written as: 

𝐶(𝑠) =
𝜔𝑛

2

(𝑠 + 𝜔𝑛)2
(

1

𝑠
) 

Taking the fractional function of the equation given above 

𝐶(𝑠) = (
1

𝑠
) −

𝜔𝑛
2

(𝑠 + 𝜔𝑛)2
 

The inverse transform of the equation given above is: 

𝑐(𝑡) = 1 − 𝑒𝜔𝑛𝑡(1 + 𝜔𝑛𝑡) 
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Thus, the transient response (𝑐(𝑡)) of the critically damped second order system is an 

increase exponential function which is modulated by a time-related function.  

 

b. Knowing that a second order system can be represented with the following standardised 

transfer function equation. 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

(𝑠 + 𝜁𝜔𝑛 + 𝑗𝜔𝑑)(𝑠 + 𝜁𝜔𝑛 − 𝑗𝜔𝑑)
 

Where: 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 

Thus, in overdamped case (𝜁 > 1), the two roots of 𝐶(𝑠)/𝑅(𝑠) are negative real and 

unequal. So, the equation above becomes: 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

(𝑠 + 𝜁𝜔𝑛 + 𝑗𝜔𝑛√1 − 𝜁2)(𝑠 + 𝜁𝜔𝑛 − 𝑗𝜔𝑛√1 − 𝜁2)
 

We know that 𝑗 = √−1, as a result the equation above becomes: 

𝐶(𝑠) = [
𝜔𝑛

2

(𝑠 + 𝜁𝜔𝑛 + 𝜔𝑛√𝜁2 − 1)(𝑠 + 𝜁𝜔𝑛 − 𝜔𝑛√𝜁2 − 1)
] 𝑅(𝑠) 

For a unit-step input 𝑅(𝑠) = 1/𝑠, and 𝐶(𝑠) can be written as:  

𝐶(𝑠) = [
𝜔𝑛

2

(𝑠 + 𝜁𝜔𝑛 + 𝜔𝑛√𝜁2 − 1)(𝑠 + 𝜁𝜔𝑛 − 𝜔𝑛√𝜁2 − 1)
] (

1

𝑠
) 

Applying partial fraction to the equation given above: 

𝐶(𝑠) = (
1

𝑠
) +

𝜔𝑛
2

2 [𝑠 + 𝜔𝑛(𝜁 + √𝜁2 − 1)]
−

𝜔𝑛
2

2 [𝑠 + 𝜔𝑛(𝜁 − √𝜁2 − 1)]
 

The inverse Fourier transform of the equation above is: 

𝑐(𝑡) = 1 +
1

2√𝜁2 − 1(𝜁 + √𝜁2 − 1)
𝑒

−(𝜁+√𝜁2−1)𝜔𝑛𝑡
−

1

2√𝜁2 − 1(𝜁 + √𝜁2 − 1)
𝑒

−(𝜁−√𝜁2−1)𝜔𝑛𝑡
 

Alternatively, the equation given above can be represented as: 

𝑐(𝑡) = 1 +
𝜔𝑛

2√𝜁2 − 1
(

𝑒−𝑠1𝑡

𝑠1
−

𝑒−𝑠2𝑡

𝑠2
)          for   𝑡 ≥ 0 

Where: 𝑠1 = (𝜁 + √𝜁2 − 1)𝜔𝑛          and          𝑠2 = (𝜁 − √𝜁2 − 1)𝜔𝑛 

Thus, the transient response of the second order system (𝑐(𝑡)) for an overdamped case (𝜁 >

1) has two decaying exponential terms. 

 

3. You are given the following first order systems: 
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i. System 1: ii. System 2: 

𝐺(𝑠) =
5

𝑠 + 5
 𝐺(𝑠) =

20

𝑠 + 20
 

 

a. For both systems, calculate the time constant, rise time, and settling time for each system. 

[12 marks] 

b. Based on the results in part (a), comment on the differences in transient and steady-state 

responses of the first system with the second system.    [4 marks] 

c. Simulate and describe the transient responses of the systems when each of the systems is 

subjected to a step input.       [10 marks] 

d. Simulate and describe the transient responses of the systems when each of the systems is 

subjected to an impulse input.       [10 marks] 

 

Solution 

a. The time constant, rise time, and settling time for each system are calculated as follows.  

For System (i): 

𝐺(𝑗𝜔) =
5

(𝑠 + 5)
=

1

𝑠/5 + 1
 

Time constant: 

𝜏 =
1

5
= 0.2 second 

Rise time: 

𝑇𝑟 = 2.2𝜏 =
2.2

𝑎
=

2.2

5
= 0.44 second 

Settling time: 

𝑇𝑠 = 4𝜏 =
4

𝑎
=

4

5
= 0.8 second 

For System (ii): 

𝐺(𝑠) =
20

(𝑠 + 20)
=

1

𝑠/20 + 1
 

Time constant: 

𝜏 =
1

20
= 0.05 second 

Rise time:  

𝑇𝑟 = 2.2𝜏 =
2.2

𝑎
=

2.2

20
= 0.11 second 

Settling time: 
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𝑇𝑠 = 4𝜏 =
4

𝑎
=

4

20
= 0.2 second 

 

b. For transient response of the system, it seems System (i) has considerable longer time 

constant, rise time and settling time compared with System (ii) e.g. 𝜏 = 0.2 second, 𝑇𝑟 = 0.44 

second and 𝑇𝑠 = 0.8 second compared with 𝜏 = 0.05 second, 𝑇𝑟 = 0.11 second and 𝑇𝑠 = 0.2 

second respectively.  

 

For steady-state response, the overall response of System (ii) is more responsive e.g. take 

less time to settle down compared with System (i). 

 

c. Simulate and describe the transient responses of the systems when each of these systems 

subjected to a step input. For System (i) and a step input of 1/𝑠: 

𝐺(𝑠) =
5

𝑠(𝑠 + 5)
 

Take partial fraction of the equation given above: 

𝐺(𝑠) =
1

𝑠
−

1

𝑠 + 5
 

The inverse transform of the equation given above is: 

𝑔(𝑡) = 1 − 𝑒−5𝑡 

The transient response of the System (i) is an increasing exponential response with a time 

constant of 5 seconds. 
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For System (ii) and a step input of 1/𝑠: 

𝐺(𝑠) =
20

𝑠(𝑠 + 20)
 

Take partial fraction of the equation above: 

𝐺(𝑗𝜔) =
1

𝑠
−

1

𝑠 + 20
 

Therefore, the inverse transform of the equation given above is: 

𝑔(𝑡) = 1 − 𝑒−20𝑡 

The transient response of the System (ii) is an increasing exponential response with a time 

constant of 20 seconds. 
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d. Simulate and describe the transient responses of the systems when each of these systems 

subjected to an impulse input. For System (i) and impulse input: 

𝐺(𝑠) =
5

(𝑠 + 5)
 

The inverse transform of the equation given above is: 

𝑔(𝑡) = 5𝑒−5𝑡 

The transient response of the System (i) is a decreasing exponential response with a time 

constant of 5 seconds. 

 

For System (ii) and impulse input: 

𝐺(𝑠) =
20

(𝑠 + 20)
 

Therefore 

𝑔(𝑡) = 20𝑒−20𝑡 

The transient response of the System (ii) is a decreasing exponential response with a time 

constant of 20 seconds. 
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4. Given the transfer function as shown below, find damping factor (𝜁) and natural frequency (𝜔𝑛) 

of the system.         [4 marks] 

𝐺(𝑠) =
36

𝑠2 + 4.2𝑠 + 36
 

Solution 

Comparing the above equation to the standard equation of the second order transfer function: 

𝐺(𝑠) =
𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

As a result, 𝜔𝑛
2 = 36 from which 𝜔𝑛 = 6.  

Also, 2𝜁𝜔𝑛 = 4.2. Substituting the value of 𝜔𝑛, as a result, 𝜁 = 0.35.  

 

5. Given the transfer function as shown below: 

𝐺(𝑠) =
100

𝑠2 + 15𝑠 + 100
 

Determine the parameters of the time response of the system as follow:  

a. Natural frequency (𝜔𝑛) and damping ratio (𝜁).     [4 marks] 

b. Time-to-peak (𝑇𝑝), percentage overshoot (%𝑂𝑆) and settling time (𝑇𝑠).  [6 marks] 

c. Rise time (𝑇𝑟) using the following methods: derived equation, alternative equation, and 

graph of normalised damping ratio. Simulate the system in MATLAB for rise time and 

determine which method gives the most accurate result.   [8 marks] 
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Solution 

a. Comparing the transfer equation of the system with the standard second order equation as 

given below, 𝜔𝑛 and 𝜁 are calculated as follow. 

𝐺(𝑠) =
𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 

Thus 

𝜔𝑛 = √100 = 10 

And 

2𝜁𝜔𝑛 = 15 

With 𝜔𝑛 = 10, the damping ratio is: 

𝜁 =
15

2(10)
= 0.75 

 

As a result, natural frequency 𝜔𝑛 and damping ratio 𝜁 are 10 and 0.75 respectively.  

 

b. Now substitute 𝜁 and 𝜔𝑛 found in part (a) into the following equations. First, measuring the 

time-to-peak. 

𝑇𝑝 =
𝜋

𝜔𝑛√1 − 𝜁2
 

The following equation is used for calculating the percentage overshoot. 

%𝑂𝑆 = 𝑒
−(𝜁𝜋/√1−𝜁2)

× 100 

The equation given below is for calculating the settling time. 

𝑇𝑠 =
4

𝜁𝜔𝑛
 

We found respectively that 𝑇𝑝 = 0.475 second, %𝑂𝑆 = 2.838, and 𝑇𝑠 = 0.533 second.  

 

c. The rise time (𝑇𝑟) are determined and calculated using the three methods as follows. 

 

(i) Derived Equation: 

Using the derived equation as shown below, the rise time (𝑇𝑟) is:  

𝑇𝑟 =
𝜋 − 𝜙

𝜔𝑛√1 − 𝜁2
=

𝜋 − 0.722

10√1 − (0.75)2
=

2.419

6.614
= 0.366 

Where: 
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𝜙 = arctan (
√1 − 𝜁2

𝜁
) = arctan (

√1 − (0.75)2

0.75
) = 41.4° = 0.722 rad 

 

(ii) Alternative Equation: 

Using the alternative equation as shown below, the rise time (𝑇𝑟) is: 

𝑇𝑟 =
(1.76𝜁3 − 0.417𝜁2 + 1.039𝜁 + 1)

𝜔𝑛
 

     =
(1.76(0.75)3 − 0.417(0.75)2 + 1.039(0.75) + 1)

10
 

     =
0.7425 − 0.2345 + 1.77925

10
= 0.229 

 

(iii) Graph of (Normalised) Damping Ratio vs. Rise Time: 

The normalised damping ratio vs. rise time graph shown below is constructed from the 

following equation: 

𝑡𝑟𝜔0 = 2.230𝜁2 − 0.078𝜁 + 1.12 

 

Using the table in the figure above, when the damping ratio (𝜁)  is 0.75, the normalized rise 

time is approximately 2.3 seconds. Divided this value by 𝜔𝑛 (i.e. 10), this yields: 

𝑇𝑟 =
𝜁

𝜔𝑛
=

2.3

10
= 0.23 s 

MATLAB code: 

sys = tf([100],[1 15 100]); 

step(sys) 
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S = stepinfo(sys) 

 

The results of MATLAB simulation are as shown in the figures below. 

       

As shown above, the result of simulation in MATLAB gives a rise time (𝑇𝑟) of 0.2288 s. 

The most accurate method for determining rise time (𝑇𝑟) is using the alternative method as its 

result is close to the simulation result. 

This question demonstrates that we can find 𝑇𝑝, %𝑂𝑆, 𝑇𝑠, and 𝑇𝑟 without the tedious task of 

taking an inverse Laplace transform, plotting the output response, and taking measurements 

from the plot. 

 

6. Find the step response of each of the transfer functions shown in the equations given below and 

compare them.          [12 marks] 

• System 1: 

𝑇1(𝑠) =
24.542

𝑠2 + 4𝑠 + 24.542
 

• System 2: 

𝑇2(𝑠) =
245.42

(𝑠 + 10)(𝑠2 + 4𝑠 + 24.542)
 

• System 3: 

𝑇3(𝑠) =
73.626

(𝑠 + 3)(𝑠2 + 4𝑠 + 24.542)
 

 

Solution 
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The step response,  𝐶𝑖(𝑠), for the transfer function, 𝑇𝑖(𝑠), can be found by multiplying the 

transfer function by 1/𝑠, a step input, and using partial-fraction expansion followed by the 

inverse Laplace transform to find the response, 𝑐𝑖(𝑡). The results are:  

𝑐1(𝑡) = 1 − 1.09𝑒−2𝑡 cos(4.532𝑡 +  23.8°) 

𝑐2(𝑡) = 1 − 0.29𝑒−10𝑡 − 1.189𝑒−2𝑡 cos(4.532𝑡 −  53.34°) 

𝑐3(𝑡) = 1 − 1.14𝑒−3𝑡 + 0.707𝑒−2𝑡 cos(4.532𝑡 + 78.63°) 

The three responses are plotted in the figure given below (e.g. step responses of system 𝑇1(𝑠), 

system 𝑇2(𝑠) and System 𝑇3(𝑠)).  

 

Notice the first effect of distance of the poles to the imaginary or y-axis: the farther from the y-

axis, the quicker to settle down and the closer to the y-axis the slower to settle down.  

Observe also the second effect of distance of the poles to the imaginary or y-axis: the farther 

from the y-axis, the smaller is damping ratio (underdamped) and the closer to the y-axis the 

bigger is the damping ratio (overdamped). 

Here, that 𝑐2(𝑡), with its third pole at -10 and farthest from the dominant poles, is the better 

approximation of 𝑐1(𝑡), the pure second-order system response; 𝑐3(𝑡), with a third pole close to 

the dominant poles, yields the most error. 

 

B. Steady-State Analysis  

 

7. For the system shown below, find the steady-state errors for the inputs: 

a. Step input, 5𝑢(𝑡).        [2 marks] 

b. Ramp input, 5𝑡𝑢(𝑡).        [2 marks] 

c. Parabolic input, 5𝑡2𝑢(𝑡).       [2 marks] 



XMUT315-Tutorial 4: Time Domain Analysis (Solution) 
 

14 

 

Solution 

First, check that closed-loop system is stable. We need the poles are all in the left-hand side of 

the s-plane for the system is stable. 

Apply the equation for the feedback system, the transfer function equation for the closed-loop 

system is: 

𝑇(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
 

For a unity feedback system, the equation above becomes: 

𝑇(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)
 

Entering the 𝐺(𝑠) of the system into the equation above, it is now: 

𝑇(𝑠) =

120(𝑠 + 2)
(𝑠 + 3)(𝑠 + 4)

1 +
120(𝑠 + 2)

(𝑠 + 3)(𝑠 + 4)

=
120(𝑠 + 2)

(𝑠 + 3)(𝑠 + 4) + 120(𝑠 + 2)
 

         =
120(𝑠 + 2)

𝑠2 + 127𝑠 + 252
 

Applying Routh-Hurwitz method, the closed-loop transfer function of the system is stable. 

 

a. Consider step input 𝑟(𝑡) = 5𝑢(𝑡), the Laplace transform of the step input is:  

𝑅(𝑠) = 5/𝑠 

The steady-state error of the system is then: 

𝑒(∞) = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)
=

𝑠 (
5
𝑠)

1 + lim
𝑠→0

120(𝑠 + 2)
(𝑠 + 3)(𝑠 + 4)

=
5

1 + 20
=

5

21
 

 

b. For the ramp input 𝑟(𝑡) = 5𝑡𝑢(𝑡), the Laplace transform is given by: 

𝑅(𝑠) = 5/𝑠2 

The steady-state error of the system is: 

𝑒(∞) = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)
=

𝑠 (
5
𝑠2)

1 + lim
𝑠→0

𝐺(𝑠
=

5

lim
𝑠→0

𝑠𝐺(𝑠)
=

5

0
= ∞ 
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c. For the parabolic input 𝑟(𝑡) = 5𝑡2𝑢(𝑡), the Laplace transform is given by: 

𝑅(𝑠) = 10/𝑠3 

The steady-state error of the system is: 

𝑒(∞) = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠𝑅(𝑠)

1 + 𝐺(𝑠)
=

𝑠 (
10
𝑠3 )

1 + lim
𝑠→0

𝐺(𝑠
=

10

lim
𝑠→0

𝑠2𝐺(𝑠)
=

10

0
= ∞ 

 

8. For the system below, evaluate the static-error constants and find the steady-state errors for: 

• Step input, 5𝑢(𝑡).        [4 marks] 

• Ramp input, 5𝑡𝑢(𝑡).         [4 marks] 

• Parabolic input, 5𝑡2𝑢(𝑡).         [4 marks] 

 

Solution 

Check first the stability of the closed-loop system. The system is stable if there is no pole in the 

right-hand side of the s-plane.  

For a unity feedback system, the closed-loop transfer function equation is: 

𝑇(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)
 

Entering the 𝐺(𝑠) of the system into the equation above, it is now: 

𝑇(𝑠) =

500(𝑠 + 2)(𝑠 + 5)
(𝑠 + 8)(𝑠 + 10)(𝑠 + 12)

1 +
500(𝑠 + 2)(𝑠 + 5)

(𝑠 + 8)(𝑠 + 10)(𝑠 + 12)

 

         =
500(𝑠 + 2)(𝑠 + 5)

(𝑠 + 8)(𝑠 + 10)(𝑠 + 12) + 500(𝑠 + 2)(𝑠 + 5)
 

         =
500(𝑠 + 2)(𝑠 + 5)

𝑠3 + 530𝑠2 + 3796𝑠 + 5960
 

Applying Routh-Hurwitz method, the closed-loop transfer function of the system is stable. 

 

The static-error constants are: 

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠) =
(500)(2)(5)

(8)(10)(12)
= 5.208 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) = 0 
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𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠) = 0 

 

The steady-state errors of the system are: 

𝑒𝑠𝑡𝑒𝑝(∞) =
1

1 + 𝐾𝑝
=

1

1 + 5.208
= 0.161 

𝑒𝑟𝑎𝑚𝑝(∞) =
1

𝐾𝑣
=

1

0
= ∞ 

𝑒𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎(∞) =
1

𝐾𝑎
=

1

0
= ∞ 

 

9. Find the steady-state error for the system in the figure given below if 𝑇(𝑠) = 5/(𝑠2 + 7𝑠 + 10) 

and the input is a unit step.        [6 marks] 

     

 

Shown in the diagram above is closed loop control system error, as a general representation of 

the system given in (a) and a representation for unity feedback system in (b). 

 

Solution 

From the problem statement, 𝑅(𝑠) = 1/𝑠 and 𝑇(𝑠) = 5/(𝑠2 + 7𝑠 + 10). Substituting into 

equation below.  

𝐸(𝑠) = 𝑅(𝑠)[1 − 𝑇(𝑠)] 

This yields:  

𝐸(𝑠) =
1

𝑠
(1 −

5

𝑠2 + 7𝑠 + 10
) =

𝑠2 + 7𝑠 + 5

𝑠(𝑠2 + 7𝑠 + 10)
 

Since 𝑇(𝑠) is stable and, subsequently, 𝐸(𝑠) does not have right-half-plane poles or j poles 

other than at the origin, we can apply the final value theorem. Substituting the equation given 

above into the following equation.  

𝑒(∞) = lim
𝑒→∞

𝑒(𝑡) = lim
𝑠→0

𝑠𝐸(𝑠) = lim
𝑠→0

𝑠 [
𝑠2 + 7𝑠 + 5

𝑠(𝑠2 + 7𝑠 + 10)
] =

5

10
 

This gives 𝑒(∞) = 1/2. 
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10. Match up the steady-state conditions for inputs of 5𝑢(𝑡), 5𝑡𝑢(𝑡), and 5𝑡2𝑢(𝑡) to the system 

shown in the following figure with the simulation results. The function 𝑢(𝑡) is the unit step. 

           [12 marks] 

 

Solution 

First, we verify that the closed-loop system is indeed stable. For this example, we leave out the 

details.  

Next, for the step input 5𝑢(𝑡), whose Laplace transform is 5/𝑠, the steady-state error will be five 

times as large as that given by the equation below.  

𝑒(∞) = 𝑒𝑠𝑡𝑒𝑝(∞) = lim
𝑠→0

𝑠(5/𝑠)

1 + 𝐺(𝑠)
=

5

1 + lim
𝑠→0

𝐺(𝑠)
 

Or 

𝑒(∞) = 𝑒𝑠𝑡𝑒𝑝(∞) =
5

1 + lim
𝑠→0

𝐺(𝑠)
=

5

1 + 20
=

5

21
 

This implies a response similar to output 2 of the following figure.  

 

For the ramp input 5𝑡𝑢(𝑡), whose Laplace transform is 5/𝑠2, the steady-state error will be five 

times as large as that given by the equation given below.  

𝑒(∞) = 𝑒𝑟𝑎𝑚𝑝(∞) = lim
𝑠→0

𝑠(5/𝑠2)

1 + 𝐺(𝑠)
= lim

𝑠→0

5

𝑠 + 𝑠𝐺(𝑠)
=

5

lim
𝑠→0

𝑠𝐺(𝑠)
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Or 

𝑒(∞) = 𝑒𝑟𝑎𝑚𝑝(∞) =
5

lim
𝑠→0

𝑠𝐺(𝑠)
=

5

0
= ∞ 

This implies a response similar to output 3 of the figure given below.  

 

For the parabola input  5𝑡2𝑢(𝑡), whose Laplace transform is 10/𝑠3, the steady-state error will 

be 10 times as large as that given by the equation given below.  

𝑒(∞) = 𝑒𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎(∞) = lim
𝑠→0

𝑠(10/𝑠3)

1 + 𝐺(𝑠)
= lim

𝑠→0

10

𝑠2 + 𝑠2𝐺(𝑠)
=

10

lim
𝑠→0

𝑠2𝐺(𝑠)
 

Or 

𝑒(∞) = 𝑒𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎(∞) =
10

lim
𝑠→0

𝑠2𝐺(𝑠)
=

10

0
= ∞ 

This implies a response similar to output 2 of the figure given below.  
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11. For the control system shown in the figure below, attempt the following tasks.  

 

a. Determine the steady-state errors for inputs of 5𝑢(𝑡), 5𝑡𝑢(𝑡), and 5𝑡2𝑢(𝑡) to the system 

shown in the figure above and match them up with simulation results. The function 𝑢(𝑡) is 

the unit step.         [6 marks] 

b. Compare the steady-state conditions of the system for the inputs given.   [3 marks] 

c. Describe the role of integral component towards steady-state characteristics of the system. 

Compare the results with the steady-state characteristics of the system from the previous 

question.         [5 marks] 

 

Solution 

a. First, verify that the closed-loop system is indeed stable. For this question, we leave out the 

details.  

For the step input 5𝑢(𝑡), whose Laplace transform is 5/𝑠, the steady-state error will be five 

times as large as that given by the following equation.  

𝑒(∞) = 𝑒𝑠𝑡𝑒𝑝(∞) = lim
𝑠→0

𝑠(5/𝑠)

1 + 𝐺(𝑠)
=

5

1 + lim
𝑠→0

𝐺(𝑠)
 

Or 

𝑒(∞) = 𝑒𝑠𝑡𝑒𝑝(∞) =
5

1 + lim
𝑠→0

𝐺(𝑠)
=

5

∞
= 0 

This implies a response similar to output 1 of the figure given below.  
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For the ramp input 5𝑡𝑢(𝑡), whose Laplace transform is 5/𝑠2, the steady-state error will be 

five times as large as that given by the equation given below.  

𝑒(∞) = 𝑒𝑟𝑎𝑚𝑝(∞) = lim
𝑠→0

𝑠(5/𝑠2)

1 + 𝐺(𝑠)
= lim

𝑠→0

5

𝑠 + 𝑠𝐺(𝑠)
=

5

lim
𝑠→0

𝑠𝐺(𝑠)
 

Or 

𝑒(∞) = 𝑒𝑟𝑎𝑚𝑝(∞) =
5

lim
𝑠→0

𝑠𝐺(𝑠)
=

5

100
=

1

20
 

This implies a response similar to output 2 of the figure below.  

 

For the parabola input, 5𝑡2𝑢(𝑡), whose Laplace transform is 10/𝑠3, the steady-state error 

will be 10 times as large as that given by the equation below.  

𝑒(∞) = 𝑒𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎(∞) = lim
𝑠→0

𝑠(10/𝑠3)

1 + 𝐺(𝑠)
= lim

𝑠→0

10

𝑠2 + 𝑠2𝐺(𝑠)
=

10

lim
𝑠→0

𝑠2𝐺(𝑠)
 

Or 
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𝑒(∞) = 𝑒𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎(∞) =
10

lim
𝑠→0

𝑠2𝐺(𝑠)
=

10

0
= ∞ 

Response of system is similar to output 2.  

 

 

b. Comparing the steady-state responses of the system with various inputs, the steady-state 

responses of the system are: 

• Step input – steady state error is zero. 

• Ramp input – steady state error is a constant (1/20). 

• Parabolic input - steady-state response is infinity. 

 

c. Since there is an integration in the forward path, it is expected that the steady-state errors 

for some of the input waveforms will be less than those found in the previous question. 

Having integral function in the forward path reduces significantly the stead-state error in the 

given system. 

• For step input, the integration in the forward path yields zero stead-state error, rather 

than finite steady-state error found in the previous question.  

• For ramp input, the integration in the forward path yields a finite steady-state error, 

rather than the infinite steady-state error found in the previous question.  

• For the parabolic input, the integration in the forward path does not yield any 

improvement in steady-state error over that found in the previous question for a 

parabolic input. 

 

12. For each system of the figure below, evaluate the static error constants and find the expected 

error for the standard step, ramp, and parabolic inputs.    [18 marks] 
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Solution 

First, verify that all closed-loop systems shown are indeed stable. For this example, we leave out 

the details.  

a. Next, for the figure (a), the static-error constants of the system (a) are: 

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠) =
500 × 2 × 5

8 × 10 × 12
= 5.208 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) = 0 

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠) = 0 

As a result, the steady-state errors of the system (a) for various inputs: 

Step input Ramp input Parabolic input 

𝑒(∞) =
1

1 + 𝐾𝑝
= 0.161 𝑒(∞) =

1

𝐾𝑣
= ∞ 𝑒(∞) =

1

𝐾𝑎
= ∞ 

 

b. Now, for the figure (b), the static-error constants of the system (b) are: 

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠) = ∞ 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) =
500 × 2 × 5 × 6

8 × 10 × 12
= 31.25 

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠) = 0 

As a result, the steady-state errors of the system (b) for various inputs: 
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Step input Ramp input Parabolic input 

𝑒(∞) =
1

1 + 𝐾𝑝
= 0 𝑒(∞) =

1

𝐾𝑣
=

1

31.25
= 0.032 𝑒(∞) =

1

𝐾𝑎
= ∞ 

 

c. Finally, for the figure (c), the static-error constants of the system (c) are: 

𝐾𝑝 = lim
𝑠→0

𝐺(𝑠) = ∞ 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) = ∞ 

𝐾𝑎 = lim
𝑠→0

𝑠2𝐺(𝑠) =
500 × 2 × 4 × 5 × 6 × 7

8 × 10 × 12
= 875 

As a result, the steady-state errors of the system (c) for various inputs: 

Step input Ramp input Parabolic input 

𝑒(∞) =
1

1 + 𝐾𝑝
= 0 𝑒(∞) =

1

𝐾𝑣
= 0 𝑒(∞) =

1

𝐾𝑎
=

1

875
= 1.14 × 10−3 

 

13. For the system shown in the figure below, find the system type, the appropriate error constant 

associated with the system type, and the steady-state error for a unit step input. Assume input 

and output units are the same.       [12 marks] 

 

Solution 

After determining that the system is indeed stable, one may impulsively declare the system to 

be Type 1. This may not be the case, since there is a non-unity feedback element, and the plant's 

actuating signal is not the difference between the input and the output.  

The first step in solving the problem is to convert the system of the figure above into an 

equivalent unity feedback system. Using the equivalent forward transfer function of the figure 

given above along with. 

Consider the non-unity feedback control system. 
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Form a unity feedback system by adding and subtracting unity feedback paths. 

 

Combine 𝐻(𝑠) with the negative unity feedback. 

 

Combine the feedback system consisting of 𝐺(𝑠) and [𝐻(𝑠) – 1], leaving an equivalent forward 

path and a unity feedback. 

 

Knowing that: 

𝐺(𝑠) =
100

𝑠(𝑠 + 10)
 

And 

𝐻(𝑠) =
1

(𝑠 + 5)
 

We find: 
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𝐺𝑒(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠) − 𝐺(𝑠)
=

100(𝑠 + 5)

𝑠3 + 15𝑠2 − 50𝑠 − 400
 

Thus, the system is Type 0 since there are no pure integrations in the equation above. The 

appropriate static-error constant is then 𝐾𝑝, whose value is: 

𝐾𝑝 = lim
𝑠→0

𝐺𝑒(𝑠) =
100 × 5

−400
= −

5

4
 

The steady-state error, 𝑒(), is: 

𝑒(∞) =
1

1 + 𝐾𝑝
=

1

1 − (5/4)
= −4 

The negative value for steady-state error implies that the output step is larger than the input 

step. 

 

14. Find the steady-state errors component due to a step disturbance for the system given below. 

Comment on the result.        [4 marks] 

 

Solution 

By inspection, the system is stable. Using the transformation steps for converting system with 

disturbance, we find: 

𝑒𝐷(∞) = −
1

lim
𝑠→0

1
𝐺2(𝑠)

+ lim
𝑠→0

𝐺1(𝑠)
= −

1

0 + 1000
= −

1

1000
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The result shows that the steady-state error produced by the step disturbance is inversely 

proportional to the DC gain of 𝐺1(𝑠). The DC gain of 𝐺2(𝑠) is infinite in this example. 

 

15. For the system shown below, perform the following tasks. 

 

a. Find the system type, the appropriate error constant associated with the system type, and 

the steady-state errors for a unit step input. Assume input and output units are the same.

          [8 marks] 

b. Find the steady-state actuating signal for the system (𝐸𝑎(𝑠)) for a unit step input. Repeat for 

a unit ramp input.        [8 marks] 

 

Solution 

a. The system is indeed stable. Although the system looks like is a Type 1, since there is a non-

unity feedback element, and the plant’s actuating signal is not the difference between the 

input and output. 

Convert the system into an equivalent unity feedback system. Using the equivalent forward 

transfer function: 

𝐺(𝑠) =
100

𝑠(𝑠 + 10)
       and        𝐻(𝑠) =

1

𝑠 + 5
 

We find: 

𝐺𝑒(𝑠) =
𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠) − 𝐺(𝑠)
=

100(𝑠 + 5)

𝑠3 + 15𝑠2 − 50𝑠 − 400
 

Thus, the system is actually a Type 0, since there is no integral in the above equation.  

The appropriate static error constant is then 𝐾𝑝, whose value is: 

𝐾𝑝 = lim
𝑠→0

𝐺𝑒(𝑠) =
(100)(5)

(−400)
= −

5

4
 

The steady-state error, 𝑒(∞), is: 

𝑒(∞) =
1

1 + 𝐾𝑝 
=

1

1 − (5/4)
= −4 

The negative value for steady-state error implies that the output step is larger than the input 

step. 
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b. With 𝑅(𝑠) = 1/𝑠, a unit step input, 𝐺1(𝑠) = 1; 𝐺2(𝑠) = 100/[𝑠(𝑠 + 10)], and 𝐻1(𝑠) =

1/(𝑠 + 5).  

The following diagram shows the activating steady-state error in a non-unity feedback 

control system with disturbance. 

 

Thus, the activating steady-state error of the system given above is: 

𝑒𝑎1(∞) = lim
𝑠→0

𝑠𝑅(𝑠)𝐺1(𝑠)

1 + 𝐺2(𝑠)𝐻1(𝑠)
 

Also, realize that 𝑒𝑎1(∞) = 𝑒𝑎(∞), since 𝐺1(𝑠) = 1. Thus, 

𝑒𝑎(∞) = lim
𝑠→0

𝑠 (
1
𝑠)

1 + (
100

𝑠(𝑠 + 10)
) (

1
𝑠 + 5

)
= 0 

Now, with 𝑅(𝑠) = 1/𝑠2, a unit ramp input, and obtain: 

𝑒𝑎(∞) = lim
𝑠→0

𝑠 (
1
𝑠2)

1 + (
100

𝑠(𝑠 + 10)
) (

1
𝑠 + 5

)
=

1

2
 

 

16. Given the system of the figure below, calculate the sensitivity of the closed-loop transfer 

function to changes in the parameter 𝑎. How would you reduce the sensitivity? [6 marks] 

 

Solution 

The closed-loop transfer function is: 

𝑇(𝑠) =
𝐾

𝑠2 + 𝑎𝑠 + 𝐾
 

The sensitivity is given by: 

𝑆𝑇:𝑎 =
𝑎

𝑇

𝛿𝑇

𝛿𝑎
=

𝑎

(
𝐾

𝑠2 + 𝑎𝑠 + 𝐾
)

(−
𝐾𝑠

(𝑠2 + 𝑎𝑠 + 𝐾)2
) 

Thus, the sensitivity of the given system is: 
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𝑆𝑇:𝑎 =
−𝑎𝑠

𝑠2 + 𝑎𝑠 + 𝐾
 

This is, in part, a function of the value of 𝑠.  

For any value of 𝑠, however, an increase in 𝐾 reduces the sensitivity of the closed-loop transfer 

function to changes in the parameter 𝑎. 


