
 

XMUT315 Control Systems Engineering 

Tutorial 5: Controllers and Compensators (Solution) 

 

A. Controllers and Compensators (Introduction) 

 

1. Controllers and compensators are typically used for managing and controlling systems in control 

system. 

a. Describe where controllers and compensators are used in control systems.  [4 marks] 

b. List three types of these controllers and compensators.    [6 marks] 

c. How can controllers and compensators change the characteristics and behaviours of the 

system? Give at least three examples.      [3 marks] 

 

Solution 

a. Applications of controllers and compensators in control systems: 

• Controller: It is used in the control systems as an element whose role is to maintain a 

physical quantity in a desired level.  

• Compensator: It is used as an element for modification of system dynamics and to 

improve characteristics of the open-loop plant that can be used with feedback control.  

 

b. Types of compensator and controller: 

• Three main types of controller: Gain/Proportional, Integral/Derivative, and PID 

(Proportional, Integral, and Derivative). 

• Three main types of compensator: Lag, Lead and Lead-lag. 

 

c. Functions of controllers and compensators: 

• They change the natural response of the system. 

• They adjust the poles of the system. 

• They help achieve the desired output from a given input. 



2. List and describe various types of controller or compensator in control systems in terms of their transfer functions, functionalities, and characteristics. 

[21 marks] 

Solution 

The following table outlines description of various types of standard controllers/compensators in control systems in terms of their transfer functions, 

functionalities, and characteristics. 

Controller/ 

Compensator  

Function Transfer Function Characteristics 

P Improve transient 

response (up to a 

point) 

𝐾 a. Increases gain of the system. 

b. Often result in non-zero steady-state error. 

c. Relatively easy to implement. 

PI Improve steady-

state error 
𝐾 (

𝑠 + 𝑧𝑐

𝑠
) 

a. Increases system type. 

b. Error becomes zero. 

c. Zero at 𝑧𝑐is small and negative. 

d. Active circuits are required to implement. 

Lag Improve steady-

state error 
𝐾 (

𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
) 

a. Error is improved, but not driven to zero. 

b. Pole at −𝑝𝑐 is small and negative. 

c. Zero at −𝑧𝑐 is close to, and to the left of, the pole at −𝑝𝑐. 

d. Active circuits are not required t implement. 

 PD Improve transient 

response 

𝐾(𝑠 + 𝑧𝑐) a. Zero at −𝑧𝑐 is selected to put design point on root locus. 

b. Active circuits are required to implement. 
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c. It can cause noise and saturation; implement with rate 

feedback or with a pole (lead).  

Lead Improve transient 

response 
𝐾 (

𝑠 + 𝑧𝑐

𝑠 + 𝑝𝑐
) 

a. Zero at −𝑧𝑐 and pole at −𝑝𝑐 at are selected to put design 

point on root locus. 

b. Pole at −𝑝𝑐 is more negative than zero at −𝑧𝑐. 

c. Active circuits are not required to implement. 

PID Improve steady-

state error and 

transient 

response 

𝐾 [
(𝑠 + 𝑧𝑙𝑎𝑔)(𝑠 + 𝑧𝑙𝑒𝑎𝑑)

𝑠
] 

a. Lag zero at −𝑧𝑙𝑎𝑔 and pole at the origin improve steady-

state error. 

b. Lead zero at −𝑧𝑙𝑒𝑎𝑑 improves transient response. 

c. Lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, the origin. 

d. Lead zero at −𝑧𝑙𝑒𝑎𝑑 is selected to put design point on root 

locus. 

e. Active circuits are required to implement. 

f. It can cause noise and saturation; implement with rate 

feedback or with an additional pole. 

Lag-lead Improve steady-

state error and 

transient 

response 

𝐾 [
(𝑠 + 𝑧𝑙𝑎𝑔)(𝑠 + 𝑧𝑙𝑒𝑎𝑑)

(𝑠 + 𝑝𝑙𝑎𝑔)(𝑠 + 𝑝𝑙𝑒𝑎𝑑)
] 

a. Lag pole at −𝑝𝑙𝑎𝑔 and lag zero at −𝑧𝑙𝑎𝑔 are used to improve 

steady-state error. 

b. Lead pole at −𝑝𝑙𝑒𝑎𝑑 and lead zero at −𝑧𝑙𝑒𝑎𝑑 are used to 

improve transient response. 

c. Lag pole at −𝑝𝑙𝑎𝑔 is small and negative. 

d. Lag zero at −𝑧𝑙𝑎𝑔 is close to, and to the left of, lag pole at 

−𝑝𝑙𝑎𝑔 
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e. Lead zero at −𝑧𝑙𝑒𝑎𝑑 and lead pole at −𝑝𝑙𝑒𝑎𝑑 are selected to 

put design point on root locus. 

f. Lead pole at −𝑝𝑙𝑒𝑎𝑑 is more negative than lead zero at 

−𝑧𝑙𝑒𝑎𝑑. 

g. Active circuits are not required to implement. 

 



3. Given the following unity-gain feedback-control system as shown in the diagram below. 

 

By using Bode plots, outline and describe briefly the frequency responses of the following 

controllers or compensators:       [24 marks]  

No Controller/Compensator (C(s)) Transfer function 

a PD controller 𝐶(𝑠) = 𝑇𝐷(𝑠 + 1) 

b PI controller 
𝐶(𝑠) =

1

𝑇𝐷
(

𝑇𝐷𝑠 + 1

𝑠
) 

c Lead compensator 
𝐶(𝑠) = (

𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
)         𝛽 < 1 

d Lag compensator 
𝐶(𝑠) = 𝛼 (

𝑇𝑠 + 1

𝛼𝑇𝑠 + 1
)             𝛼 > 1 

 

Solution 

a. The frequency responses (gain and phase) of PD controller are shown as below. 

 

In the PD controller, phase added near (and above) the crossover frequency e.g.  an increase 

of the phase margin and giving a stabilizing effect.  

𝐶(𝑠) = 𝑇𝐷(𝑠 + 4) 
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Then, the gain continues to rise at high frequencies, but this causes the sensor noise to be 

amplified and as a result a lead compensation is usually preferable. 

 

b. The frequency responses (gain and phase) of PI controller are as shown in the diagram 

below. 

 

At low frequency, the gain of proportional-integral compensator is infinite at DC (0 rad/s) 

and this compensator can increase system type of the system.  

𝐶(𝑠) =
1

𝑇𝐷
(

𝑇𝐷𝑠 + 1

𝑠
) 

For frequency above the cut-off frequency of the compensator (𝜔 ≫ 1/𝑇𝐷), the gain of the 

system is unaffected, there is a slight change in the phase, but phase margin of the system is 

unaffected. In the end, the given proportional-integral compensator has a tendency to 

increase low frequency gain of the system.  

 

c. The frequency responses (gain and phase) of lead compensator are shown in the figure 

below. 
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For frequency below the cut-off frequency of the compensator (𝜔 ≪ 1/𝑇) the gain is ~ 0 dB 

and Phase is ~ 0°.  

𝐶(𝑠) = (
𝑇𝑠 + 1

𝛽𝑇𝑠 + 1
)         𝛽 < 1 

For frequency above the cut-off frequency of the compensator (𝜔 ≫ 1/𝛽𝑇) the gain is and 

phase is ~0°. Thus, lead compensator adds phase lead near the crossover frequency and/or 

alter the crossover frequency. 

 

d. The frequency responses (gain and phase) of lag compensator are as shown in the diagram 

given below. 
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For frequency less than cut-off frequency of the compensator (𝜔 ≪ 1/𝛼𝑇), the gain of the 

system is 20 log () dB and phase is 0°.  

𝐶(𝑠) = 𝛼 (
𝑇𝑠 + 10

𝛼𝑇𝑠 + 1
)             𝛼 > 1 

For frequency more than the cut-off frequency of the compensator (𝜔 ≫ 1/𝛼𝑇), both the gain 

and phase are 0 dB and 0° respectively. In short, lag compensator adds a gain of  at low 

frequencies without affecting phase margin. 

 

4. Describe similarities and differences between the following controllers or compensators. 

a. Lead compensator and PD controller.      [4 marks] 

b. Lag compensator and PI controller.      [4 marks] 

c. Lead-lag compensator and PID controller.     [4 marks] 

 

Solution 

a. Lead compensator and PD controller. 

Similarity: 

• Both are applied in the control system to improve the transient performance. 

• Both use some sorts of derivation function in their functions. 

Difference: 
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• As gain of PD controller keeps increasing at high frequency, it suffers from noise 

problem as sensor noise is typically amplified, especially the noise due to its high 

frequency components. On the other hand, lead compensator is not prone for this 

type of problem. 

• Lead compensator only target the dynamic response improvement of the system 

near the intended design crossover frequency. 

 

b. Lag compensator and PI controller. 

Similarity: 

• Both are used for improving the steady-state condition of the control system. 

• Both use some forms of integration function in their transfer functions. 

Difference: 

• Proportional-integral controller is susceptible to integrator overflow and on the 

other hand, lag compensator does not suffer from this type of problem.   

• Lag compensator is often preferable than PI controller for solving steady-state 

problems. 

 

c. Lead-lag compensator and PID controller. 

Similarity: 

• Both are used for improving both transient response and steady-state condition of 

the control system. 

• Both have integration and differentiation functions in their transfer functions. 

Difference: 

• Compensator is preferred rather than controller for solving the control system 

problems due to its simplicity in its implementation. It can be created with passive 

components, not active components like the controller. 

• Controller is preferable if you require some sorts of control flexibility in its 

application compared with the compensator. 

 

5. The arrangement of compensator or controller is very important to be considered, so the 

modification and improvement that we wish to apply to the control system could be effectively 

and efficiently achieved. 

a. Outline and describe a variety of typically arrangements of the controller or compensator in 

the control systems.        [12 marks] 

b. Describe the differences between the arrangement of the controllers or compensators in the 

control system based on their flexibility in modifying the control system.  [4 marks] 



XMUT315-Tutorial 5: Controllers/Compensators (Solution) 
 

10 

Solution 

a. The arrangement of the controller or compensator in the control systems are as follows. 

[Various controller configurations in control-system compensation, (a) Series or cascade 

compensation, (b) Feedback compensation, (c) State-feedback control, (d) Series-feedback 

compensation (two degrees of freedom), (e) Forward compensation with series 

compensation (two degrees of freedom), and (f) Feedforward compensation (two degrees of 

freedom)]. 

 

Series (cascade) compensation: (a) shows the most commonly used system configuration 

with the controller placed in series with the controlled process, and the configuration is 

referred to as series or cascade compensation. 

 

Feedback compensation: In (b), the controller is placed in the minor feedback path, and the 

scheme is called feedback compensation. 

 

State-feedback compensation: (c) shows a system that generates the control signal by 

feeding back the state variables through constant real gains, and the scheme is known as 

state feedback.  

The problem with state-feedback control is that, for high-order systems, the large number of 

state variables involved would require a large number of transducers to sense the state 

variables for feedback.  
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Thus, the actual implementation of the state-feedback control scheme may be costly or 

impractical. Even for low-order systems, often not all the state variables are directly 

accessible, and an observer or estimator may be necessary to create the estimated state 

variables from measurements of the output variables. 

 

Series-feedback compensation: (d) shows the series-feedback compensation for which a 

series controller and a feedback controller are used. 

 

Feedforward compensation: (e) and (f) show the so-called feedforward compensation. In (e), 

the feedforward controller 𝐺𝑐𝑓(𝑠) is placed in series with the closed-loop system, which has 

a controller 𝐺𝑐(𝑠) in the forward path. In (f), the feedforward controller 𝐺𝑐𝑓(𝑠) is placed in 

parallel with the forward path. The key to the feedforward compensation is that the 

controller 𝐺𝑐𝑓(𝑠) is not in the loop of the system, so it does not affect the roots of the 

characteristic equation of the original system. The poles and zeros of 𝐺𝑐𝑓(𝑠) may be 

selected to add or cancel the poles and zeros of the closed-loop system transfer function. 

 

 

b. The compensation schemes shown in (a), (b), and (c) all have one degree of freedom in that 

there is only one controller in each system, even though the controller may have more than 

one parameter that can be varied. The compensation schemes shown in (d), (e), and (f) all 

have two degrees of freedom. 
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The disadvantage with a one-degree-of freedom controller is that the performance criteria 

that can be realized are limited. For example, if a system is to be designed to achieve a 

certain amount of relative stability, it may have poor sensitivity to parameter variations.  

Or if the roots of the characteristic equation are selected to provide a certain amount of 

relative damping, the maximum overshoot of the step response may still be excessive 

because of the zeros of the closed-loop transfer function.  

 

B. Controllers and Compensators (Application) 

 

6. Given several control systems with the following transfer functions and the transient responses 

of the systems after given a step input: 

 

System Transfer function of Plant (𝑮(𝒔))  Transient response of the closed loop system after 

given a step input 

(i) 
𝐺(𝑠) =

10

𝑠(𝑠 + 1000)
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(ii) 
𝐺(𝑠) =

1

𝑠(𝑠 + 1)
 

 

(iii) 
𝐺(𝑠) =

1

𝑠 + 100
 

 

(iv) 
𝐺(𝑠) =

7

𝑠(𝑠 + 0.1)(𝑠 + 0.2)
 

 

 

By referring to the table as shown above, we can conclude that the systems listed above are 

experiencing some problems. 

a. Describe the problem that each of the systems is experiencing.   [8 marks] 
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b. Suggest a controller or compensator that would fix each of the problems.  [8 marks] 

 

Solution 

a. The problems with all closed loop systems given above are: 

System (i) – Sluggish system. The time constant of the system is in the order of 100’s 

seconds that is considered to be relatively very slow. Moreover, the system takes almost 600 

seconds to settle down. 

System (ii) – Reactive or damped oscillation. The transient response of the closed loop 

system indicates a reactive system that has excessive damped oscillation. This damped 

oscillation makes the system to be difficult for its stabilisation and prevents it from settling 

down. 

System (iii) – Steady-state error. The system suffers from a steady-state error following its 

transient response. The system settles down at 0.01 that is only 1% of the intended 

reference point or final value at steady state after it is applied a step input. 

System (iv) – Unstable system. The transient response of the system shows an increase 

oscillation response which is a typical characteristic and behaviour of unstable system. The 

output of the system is excessively larger than the input. 

 

b. Suggested controller or compensator for solving those problems: 

System (i) – The application of proportional controller typically can increase the 

responsiveness of the system. If this is not working, we need to consider the application of 

the derivative controller or lead compensator, so the dynamic response of the system can be 

improved. 

System (ii) – In most cases, reducing the gain of the overall system can reduce the 

reactiveness of the system. With careful design of the gain of the system, the response of 

the system will be a balance between the response and performance of the system. 

System (iii) – Steady state error can be minimalised with application of lag compensator or it 

can be eliminated with proportional-integral controller. 

System (iv) – Unstable system can be made stable using the proportional-integral controller 

or a compensator that has a integration function in its core. Depending on the test input 

used and types of the system, the system can be made stable as required. 

 

7. A typical electric network of a lead compensator is as shown in the figure below.  
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a. Determine the transfer function equation of the lead compensator in terms of the values of 

the components in the electrical network.     [12 marks] 

b. When 𝛼 = 0.5 and 𝑇 = 5, determine the values of the resistors 𝑅1 and 𝑅2 and capacitor 𝐶 in 

the electrical network.         [4 marks] 

 

Solution 

a. The transfer function of the lead compensator is determined as given below.  

Let 𝑍1 be the equivalent impedance of the parallel combination of 𝑅1 and 𝐶. 

𝑍1 =
𝑅1

(1 + 𝑅1𝐶𝑠)
 

And 

𝑍2 = 𝑅2 

The transfer function of the lead compensator is: 

𝐺𝑐(𝑠) =
𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
=

𝑍2

𝑍2 + 𝑍1
 

 =
𝑅2

𝑅2 +
𝑅1

1 + (
𝑅1

1 + 𝑅1𝐶𝑠)

 

=
𝑅2(1 + 𝑅1𝐶𝑠)

(𝑅1 + 𝑅2) + 𝑅1𝑅2𝐶𝑠
 

= (
𝑅2

𝑅1 + 𝑅2
) (

1 + 𝑅1𝐶𝑠

1 +
𝑅2𝑅1𝐶𝑠
𝑅1 + 𝑅2

) 

Considering that the transfer function of the lead compensator is: 

𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
= 𝛼 (

1 + 𝑇𝑠

1 + 𝛼𝑇𝑠
) 

Thus: 
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𝛼 =
𝑅2

𝑅1 + 𝑅2
< 1 

And 

𝑇 = 𝑅1𝐶 

 

b. When 𝛼 = 0.5 and 𝑇 = 5, the values of the components in the electrical network are 

determined as follows. 

Choosing 𝐶 = 100 nF, the value of 𝑅1 is: 

𝑅1 =
𝑇

𝐶
=

5

100 × 10−9
= 50 MΩ  

Then, the value of 𝑅2 is: 

𝑅2 =
𝛼𝑅1

1 − 𝛼
=

(0.5)(50 × 106)

1 − 0.5
= 50 MΩ 

 

8. The electric network circuit of a lag compensator is as shown in the figure below. 

 

a. Derive the expression for the lag compensator in terms of the values of the components in 

the electrical network given above.       [12 marks] 

b. Like part (a), derive the expression for lag compensator in the pole-zero form. [6 marks] 

c. For the following transfer function equation of a lag compensator, determine the values of 

the components in the electrical network.     [6 marks] 

𝐺𝑐(𝑠) =
0.1𝑠 + 5

2𝑠 + 2
 

 

Solution 

a. For the given lag compensator circuit, its impedances are: 

𝑍1(𝑠) = 𝑅1 

And 

𝑍2(𝑠) = 𝑅2 +
1

𝐶𝑠
=

1 + 𝑅2𝐶𝑠

𝐶𝑠
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Thus, the transfer function of the electrical network of the lag compensator is: 

𝐺𝑐(𝑠) =
𝐸𝑜(𝑠)

𝐸𝑖(𝑠)
 

=
𝑍2(𝑠)

𝑍1(𝑠) + 𝑍2(𝑠)
 

=
(

1 + 𝑅2𝐶𝑠
𝐶𝑠 )

𝑅1 + (
1 + 𝑅2𝐶𝑠

𝐶𝑠
)

 

=
1 + 𝑅2𝐶𝑠

1 + (𝑅1 + 𝑅2)𝐶𝑠
 

Since the transfer function of the lag compensator is: 

𝐺𝑐(𝑠) =
1 + 𝛼𝑇𝑠

1 + 𝑇𝑠
 

Thus 

𝛼 =
𝑅2

𝑅1 + 𝑅2
< 1 

And 

𝑇 = (𝑅1 + 𝑅2)𝐶 

 

b. The transfer function equation of the lag compensator can be expressed in the pole-zero 

form as: 

𝐺𝑐(𝑠) =
𝛼(𝑠 + 𝑧)

𝑠 + 𝑝
 

Where: 

𝑧 =
1

𝑅2𝐶
 

And 

𝑝 = 𝛼𝑧 =
1

(𝑅1 + 𝑅2)𝐶
 

 

c. For the given transfer function equation of the lag compensator 

𝐺𝑐(𝑠) =
0.1𝑠 + 5

𝑠 + 2
 

Thus, the values of 𝛼 and 𝑇 are 𝑝 = 2, 𝑧 = 50 and 𝛼 = 0.1. 

Considering that 𝐶 = 100 µF, the values of the 𝑅2 is: 

𝑅2 =
1

𝑧𝐶
=

1

(50)(100 × 10−6)
= 200 Ω 
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Then, the value of 𝑅1 is: 

𝑅1 =
1

𝑝𝐶
− 𝑅2 =

1

(2)(100 × 10−6)
− 200 = 4.8 kΩ 

 

9. Describe how a proportional (P) controller with a proportional gain (𝐾𝑝) of 2.5 is implemented in 

practice. Consider E12 standards and the open loop gain of the op amp is 8 x 105. [12 marks] 

Solution 

P controller is implemented in practice as a non-inverting amplifier with open loop gain of the op 

amp 𝐴 and the feedback path component of 𝑅2/(𝑅1 + 𝑅2). 

 

The transfer function of the amplifier circuit which is its voltage gain is: 

𝐴𝑣 =
𝑉𝑜

𝑉𝑖
=

𝐴

1 − (−
𝐴𝑅2

𝑅1 + 𝑅2
)

=
𝐴(𝑅1 + 𝑅2)

𝑅1 + 𝑅2 + 𝐴𝑅2
 

If the loop gain 𝐴𝑅2/(𝑅1 + 𝑅2) is large, 𝐴𝑅2 ≫ 𝑅1 + 𝑅2: 

𝐴𝑣 =
𝑉𝑜

𝑉𝑖
=

𝐴(𝑅1 + 𝑅2)

𝐴𝑅2
=

𝑅1 + 𝑅2

𝑅2
 

In the above, 𝛽 = 𝑅2/(𝑅1 + 𝑅2), so if loop gain (𝐴) is large:  

𝐴𝑣 =
𝑉𝑜

𝑉𝑖
=

1

𝛽
=

𝑅1 + 𝑅2

𝑅2
 

For example, given an operational amplifier based non-inverting amplifier with op amp with gain 

𝐴 = 105 and feedback resistors: 𝑅1 = 6 k, 𝑅2 = 4 k.  

Then, since 𝐴𝑅2 = 32 × 108 ≫ 𝑅1 + 𝑅2 = 104, as a result the gain of the amplifier is: 

𝐴𝑣 =
𝑉𝑜

𝑉𝑖
=

𝑅1 + 𝑅2

𝑅2
=

6 k + 4 k

4 k
= 2.5 

In practice, using E12 component standard, we have for two options. These are option 1: 5.6  k 

and 3.9 k and option 2: 6.8 k and 4.7 k. 

Option 1: 

𝐴𝑣1 =
𝑉𝑜

𝑉𝑖
=

𝑅1 + 𝑅2

𝑅2
=

5.6 k + 3.9 k

3.9 k
= 2.436 

Option 2: 

𝐴𝑣2 =
𝑉𝑜

𝑉𝑖
=

𝑅1 + 𝑅2

𝑅2
=

6.8 k + 4.7 k

4.7 k
= 2.447 

R1

R2

VI VO

VI

R2

R1+R2

A VO

VOR2

R1+R2
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So, the second option is closer to gain value of 2.5 of the calculated amplifier circuit. 

 

10. For an implementation of a given PID controller using operational amplifier in practice: 

 

a. Outline the process for designing the PID controller using an op-amp based circuit. 

          [12 marks] 

b. How do you modify the op amp-based circuit for PID controller as in part (a) to be a circuit 

for PI controller?        [6 marks] 

 

Solution 

a. For outlining the design process of the PID controller, we will use the approximate relation 

between the input voltage 𝑉𝑖𝑛 and the output voltage 𝑉𝑜𝑢𝑡 of an op-amp based amplifier 

circuit. 

 

For the above amplifier circuit, the relationship between output voltage with the input 

voltage is given as follows: 

𝑉𝑜𝑢𝑡 = − (
𝑍1(𝑠)

𝑍0(𝑠)
) 𝑉𝑖𝑛 

Where: 𝑍0 is the impedance between the negative input of the amplifier and the input 

voltage 𝑉𝑖𝑛, and 𝑍1 is the impedance between the zero input of the amplifier and the output 

voltage 𝑉𝑜𝑢𝑡.  
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The impedances of the amplifier circuit are given by: 

𝑍0(𝑠) =
𝑅0

1 + 𝑅0𝐶0𝑠
 

𝑍1(𝑠) = 𝑅1 +
1

𝐶1𝑠
 

We find the following relation between the input voltage 𝑉𝑖𝑛 and the output voltage 𝑉𝑜𝑢𝑡: 

𝑉𝑜𝑢𝑡 = − (
𝑍1

𝑍0
) 𝑉𝑖𝑛 = −

𝑅1 +
1

𝐶1𝑠
𝑅0

1 + 𝑅0𝐶0𝑠

 

Knowing that the transfer function of PID controller is: 

𝐶𝑃𝐼𝐷(𝑠) = 𝐾 [
(𝑠 + 𝑧𝑙𝑎𝑔)(𝑠 + 𝑧𝑙𝑒𝑎𝑑)

𝑠
]        and      𝐶𝑃𝐼𝐷(𝑠) = 𝐾𝑝 +

𝐾𝑖

𝑠
+ 𝐾𝑑𝑠 

Rearranging and expanding the equation given above into transfer function. 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= − (

𝑅1

𝑅0
) [

(1 + 𝑅0𝐶0𝑠)(1 + 𝑅1𝐶1𝑠)

𝑅1𝐶1𝑠
] 

Then, if we normalise the transfer function equation above, the input-output relation for a 

PID controller on the form as given above with parameters: 

𝐾𝑝 =
𝑅1

𝑅0
;              𝑇𝑖 = 𝑅1𝐶1;             𝑇𝑑 = 𝑅0𝐶0 

 

b. The corresponding results for a PI controller are obtained by setting 𝐶0 = 0 on the circuit as 

shown in the part (a) as reproduced below.  

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= − (

𝑅1

𝑅0
) [

(1 + 𝑅0𝐶0𝑠)(1 + 𝑅1𝐶1𝑠)

𝑅1𝐶1𝑠
] 

The equation above becomes as follows: 

𝑉𝑜𝑢𝑡 = − (
𝑍1

𝑍0
) 𝑉𝑖𝑛 = − (

𝑅1

𝑅0
) [

(1 + 𝑅1𝐶1)

𝑅1𝐶1
] 𝑉𝑖𝑛 

Knowing the PI transfer function equation of: 

𝐶(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
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Then 

𝐾𝑝 =
𝑅1

𝑅0
;        𝑇𝑖 = 𝑅1𝐶1 

The circuit for the PI controller is as shown in the figure given below. 

 

11. Tuning a controller or compensator is required for optimal operation of a controller or 

compensator in control systems. 

a. Describe what is tuning for a controller or compensator.    [2 marks] 

b. For a given controller or compensator, list three types of tuning method. [6 marks] 

c. Describe how you tune in a PID controller using Ziegler-Nichols rule.  [6 marks] 

 

Solution 

a. For tuning of a controller or compensator, the main objective is to adjust the reactions 

of the controllers or compensator to set point changes and unmeasured disturbances such 

that variability of control error is minimized. The controllers or compensators are 

implemented primarily for the purpose of holding measured process value at a set point, or 

desired value. 

 

b. Three types of tuning methods are: 

Manual tuning of controller - With enough information about the process being controlled, it 

may be possible to calculate optimal values of gain, reset and rate for the controller. Often 

the process is too complex, but with some knowledge, particularly about the speed with 

which it responds to error corrections, it is possible to achieve a rudimentary level of tuning. 

Manual tuning is done by setting the reset time to its maximum value and the rate to zero 

and increasing the gain until the loop oscillates at a constant amplitude. (When the response 

to an error correction occurs quickly a larger gain can be used. If response is slow a relatively 

small gain is desirable). Then set the gain of the controller to half of that value and adjust 

the reset time so it corrects for any offset within an acceptable period. Finally, increase the 

rate of the control system loop until overshoot is minimized. 

Tuning Heuristics - Many rules have evolved over the years to address the question of how 

to tune a control system loop. Probably the first, and certainly the best known are the 

Zeigler-Nichols (ZN) rules.  

First published in 1942, Zeigler and Nichols described two methods of tuning a controller. 

These work by applying a step change to the system and observing the resulting response. 
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The first method entails measuring the lag or delay in response and then the time is taken to 

reach the new output value. The second depends on establishing the period of a steady-

state oscillation. In both methods, these values are then entered into a table to derive the 

values for gain, reset time and rate for the control system. 

ZN is not without issues.  

In some applications, it produces a response considered too aggressive in terms of 

overshoot and oscillation. Another drawback is that it can be time-consuming in processes 

that react only slowly. For these reasons, some control practitioners prefer other rules such 

as Tyreus-Luyben or Rivera, Morari and Skogestad. 

Auto Tune - Most process controllers sold today incorporate auto-tuning functions. 

Operating details vary between manufacturers, but all follow rules like those described 

above. Essentially, the controller “learns” how the process responds to a disturbance or 

change in set point and calculates appropriate controller settings. By observing both the 

delay and rate with which the change is made it calculates optimal P, I and D settings, which 

can then be fine-tuned manually if needed.  

 

c. For tuning a PID controller using Ziegler-Nichols rule, first of all, we obtain experimentally 

the response of the plant to a unit-step input, as shown in the figure below.  

 

If the plant involves neither integrator (s) nor dominant complex-conjugate poles, then such 

a unit-step response curve may look S-shaped, as shown in the figure below.  

 

This method applies if the response to a step input exhibits an S-shaped curve. Such step-

response curves may be generated experimentally or from a dynamic simulation of the 

plant. 
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The S-shaped curve may be characterized by two constants, delay time (𝐿) and time 

constant (𝑇). The delay time and time constant are determined by drawing a tangent line at 

the inflection point of the S-shaped curve and determining the intersections of the tangent 

line with the time axis and line 𝑐(𝑡) = 𝐾, as shown in the figure above. 

Type of Controller 𝑲𝒑 𝑻𝒊 𝑻𝒅 

P 𝑇/𝐿 ∞ 0 

PI 0.9𝑇/𝐿 𝐿/0.3 0 

PID 1.2𝑇/𝐿 2𝐿 0.5𝐿 

 

The transfer function 𝐶(𝑠)/𝑈(𝑠) may then be approximated by a first-order system with a 

transport lag as follows: 

𝐶(𝑠)

𝑈(𝑠)
=

𝐾𝑒−𝐿𝑠

𝑇𝑠 + 1
 

Ziegler and Nichols suggested to set the values of 𝐾𝑝, 𝑇𝑖, and 𝑇𝑑 according to the formula 

shown in the table. Notice that the PID controller tuned by the Ziegler–Nichols rules give: 

𝐺𝑐(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠) 

Entering the suggested values into the equation: 

𝐺𝑐(𝑠) = 1.2
𝑇

𝐿
(1 +

1

2𝐿𝑠
+ 0.5𝐿𝑠) = 0.6𝑇

(𝑠 +
1
𝐿

)
2

𝑠
 

Thus, the PID controller has a pole at the origin and double zeros at 𝑠 = −1/𝐿. 

 

C. Controllers and Compensator (Analysis) 

 

12. This case illustrates the application of gain controller in a given control system. Consider a servo 

control system as given in the block diagram below. Perform the following tasks: 

 

a. For the steady-state error analysis, determine the steady-state error of the system to unit 

ramp input.         [8 marks] 

b. For the transient response analysis, derive equation for damping ratio of the system.  

          [6 marks] 

c. Evaluate whether proportional controller would meet the desirable steady-state and 

transient response behaviours.       [4 marks] 
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Solution 

a. For the steady-state error analysis, evaluate the loop transfer function of the system: 

𝐺(𝑠) =
𝐾

𝑠(𝐽𝑠 + 𝐵)
 

So, the system above is Type 1, as a result, its steady-state error 𝑒(∞) is 0 for a step input 

𝑟(𝑡) = 𝑢(𝑡). 

But, for a unit ramp input, the steady-state error of the system is: 

𝑒(∞) =
1

𝐾𝑣
 

The value of the velocity error constant is:  

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) = lim
𝑠→0

𝑠 [
𝐾

𝑠(𝐽𝑠 + 𝐵)
] =

𝐾

𝐵
 

Thus, the steady-state error (𝑒(∞)) when system is given a unit ramp is: 

𝑒𝑟𝑎𝑚𝑝(∞) =
1

𝐾𝑣
=

𝐵

𝐾
 

This implies small steady-state error requires large gain 𝐾. 

 

b. For transient response analysis, the closed-loop transfer function of the system: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)
=

𝐾
𝑠(𝑠𝐽 + 𝐵)

1 +
𝐾

𝑠(𝐽𝑠 + 𝐵)

=
𝐾/𝐽

𝑠2 + 𝐵/𝐽𝑠 + 𝐾/𝐽
 

Comparing with standard second-order system’s case: 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2 

So 

𝜔𝑛 = √𝐾/𝐽          and          2𝜔𝑛𝜁 = 𝐵/𝐽 

Thus, the damping ratio is: 

𝜁 =
𝐵

2√𝐾𝐽
 

c. Since 𝐵 and 𝐽 cannot be tweaked (motor parameters), large 𝐾 leads to reduced damping 

ratio (𝜁). So, this results in large overshoot. As a result, the system is less stable. 

Thus, a simple proportional (gain) controller (𝐾) would not produce desirable steady-state 

and transient response behaviour as a compromise between small steady-state error and 

good relative stability and fast response cannot be achieved. 
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13. For a proportional-derivative (PD) controller implemented in a given control system shown 

below. 

 

Controller transfer function 𝐺(𝑠) = 𝐾𝑃 + 𝐾𝐷𝑠, where 𝐾𝑃 is the proportional constant, and 𝐾𝐷 is 

the derivative constant. It is expected that the inserted PD controller could improve the steady-

state error to unit ramp and the transient response will have damping ratio 0.5 < 𝜁 < 0.8. 

Perform the following tasks: 

a. For steady-state error analysis, would it be possible to mitigate steady-state error to a unit 

ramp using the proportional controller of the given controller?   [6 marks] 

b. For transient response analysis, derive the equation for the damping ratio of the system. 

          [6 marks] 

c. Suggest the setup of the PD controller for the given system that will meet the stated design 

specifications.          [4 marks] 

d. Discuss feasibility of PD controller for the improving the control system.  [2 marks] 

 

Solution 

a. For the steady-state error analysis, the loop transfer function of the system is: 

𝐺(𝑠) = 𝐺𝑐(𝑠)𝐺𝑝(𝑠) =
𝐾𝑃 + 𝐾𝐷𝑠

𝑠(𝐽𝑠 + 𝐵)
 

Thus, the system is Type 1, so its steady-state error is 0 for a step input,  𝑟(𝑡) = 𝑢(𝑡). 

But, for a unit ramp input 𝑒(∞) = 1/𝐾𝑣  and velocity error constant is: 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) = lim
𝑠→0

𝑠 [
𝐾𝑃 + 𝐾𝐷𝑠

𝑠(𝐽𝑠 + 𝐵)
] =

𝐾𝑃

𝐵
 

So, the steady-state error when the system is given a unit ramp is: 

𝑒(∞) =
𝐵

𝐾𝑃
 

In this case, it is possible to make steady-state error 𝑒(∞) to a unit ramp as small as possible 

by increasing proportional gain 𝐾𝑃. 

 

b. For the transient-response analysis, the closed-loop transfer function of the system is: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺𝑐(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑐(𝑠)𝐺𝑝(𝑠)
=

𝐾𝑃 + 𝐾𝐷𝑠
𝑠(𝐽𝑠 + 𝐵)

1 +
𝐾𝑃 + 𝐾𝐷𝑠
𝑠(𝐽𝑠 + 𝐵)

=

(𝐾𝑃 + 𝐾𝐷𝑠)
𝐽  

𝑠2 +
(𝐵 + 𝐾𝐷)

𝐽 𝑠 +
𝐾𝑃
𝐽
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Again, comparing with standard second-order system’s case, 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2 

The natural frequency is: 

𝜔𝑛 = √
𝐾𝑃

𝐽
 

And 

2𝜔𝑛𝜁 =
𝐵 + 𝐾𝐷

𝐽
 

As a result, the damping ratio is: 

𝜁 =
𝐵 + 𝐾𝐷

2√𝐾𝑃𝐽
 

 

c. Thus, we can choose to do the following: 

• Large 𝐾𝑃 for small steady-state error 𝑒(∞) to unit ramp, and 

• Appropriate 𝐾𝐷 to have the value of the damping ratio of 0.5 < 𝜁 < 0.8. 

 

d. PD controller adds a zero at 𝑠 = −𝐾𝑃/𝐾𝐷 which could have an impact in changing the shape 

of the response to unit step. Additionally, PD controller is susceptible to noise and difficult to 

realize. 

 

14. For a given implementation of tachometer as a controller, we design a rate feedback 

(tachometer) control as shown below.  

 

Alternatively, the above block diagram can be reduced as shown below to the typically used 

tachometer control system. 

 

For the given system, perform the following tasks: 
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a. For the steady-state error analysis, determine whether the given control system can reduce 

the steady-state error to unit ramp.       [6 marks] 

b. For the transient response analysis, suggest the setup of the control system, so its steady-

state error to unit ramp is improved and damping ratio between 0.5 < 𝜁 < 0.8. [8 marks] 

 

Solution 

a. The block diagram given above can be reduced as shown below to the typically used 

tachometer control system. 

 

It is a non-unity feedback control system, and the equivalent transfer function of its unity 

feedback control system is: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠) − 𝐺(𝑠)
 

Thus 

𝐶(𝑠)

𝑅(𝑠)
=

𝐾
𝑠(𝐽𝑠 + 𝐵)

1 +
𝐾

𝑠(𝐽𝑠 + 𝐵)
(1 + 𝐾𝑡𝑠) −

𝐾
𝑠(𝐽𝑠 + 𝐵)

=
𝐾

𝑠[(𝐽𝑠 + 𝐵) + 𝐾𝐾𝑡]
 

For steady-state error analysis, the unity feedback transfer function of the system: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝑠[(𝐽𝑠 + 𝐵) + 𝐾𝐾𝑡]
 

The closed-loop system is Type 1, so its steady-state error, 𝑒(∞) is 0 for step input 𝑟(𝑡) =

𝑢(𝑡). 

But, for a unit ramp input 𝑒(∞) = 1/𝐾𝑣 and velocity error constant is: 

𝐾𝑣 = lim
𝑠→0

𝑠𝐺(𝑠) = lim
𝑠→0

𝑠 [
𝐾

𝑠[(𝐽𝑠 + 𝐵) + 𝐾𝐾𝑡]
] =

𝐾

𝐵 + 𝐾𝐾𝑡
 

So, the steady-state error to unit ramp is: 

𝑒(∞) =
1

𝐾𝑣
=

𝐵 + 𝐾𝐾𝑡

𝐾
 

In this case, it is possible to make steady-state error 𝑒(∞) to a unit ramp as small as possible 

by increasing open-loop gain 𝐾 and decreasing feedback gain 𝐾𝑡. 

 

b. For the transient response analysis, the closed-loop transfer function: 
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𝐶(𝑠)

𝑅(𝑠)
=

𝐾/𝐽

𝑠2 + (
𝐵 + 𝐾𝐾𝑡

𝑗
) 𝑠 +

𝐾
𝐽

 

Comparing with standard second-order system’s case, 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2 

Then, the natural frequency is: 

𝜔𝑛 = √
𝐾

𝐽
 

And 

2𝜔𝑛𝜁 =
𝐵 + 𝐾𝐾𝑡

𝐽
 

So, the damping ratio is: 

𝜁 =
𝐵 + 𝐾𝐾𝑡

2√𝐾𝐽
 

Thus, we can choose: 

• Large gain 𝐾 for small steady-state error 𝑒(∞) to unit ramp, and 

• Appropriate 𝐾𝑡 have 0.5 < 𝜁 < 0.8. 

Note: Tachometer control does not have the same issues of the PD controller. Hence, used 

widely for servo control. 

 

15. For the tacho control system given below, attempt the following tasks:  

 

a. Find 𝐾 and 𝐾𝑡 such that maximum overshoot, 𝑀𝑝, to unit step is 0.2 and time-to-peak is 1 

second.          [10 marks] 

b. Then, using these values of 𝐾 and 𝐾𝑡 obtained in part (a), determine the values of rise time 

(𝑇𝑟) and settling time (𝑇𝑠).       [4 marks] 

 

Solution 

a. The transfer equation of the closed-loop system is: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
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         =

𝐾
𝑠(𝑠 + 1)

1 +
𝐾

𝑠(𝑠 + 1)
(1 + 𝐾𝑡𝑠)

 

=
𝐾

𝑠(𝑠 + 1) + 𝐾(1 + 𝐾𝑡𝑠)
 

=
𝐾

𝑠2 + (1 + 𝐾𝐾𝑡)𝑠 + 𝐾
 

The maximum overshoot of the transient response of the system is calculated from: 

𝑀𝑝 = 𝑒−𝜁𝜋√1−𝜁2
 

Rearrange the equation above, thus, when  𝑀𝑝 = 0.2 the damping ratio is: 

𝜁 =
−ln 0.2

√𝜋2 + [ln 0.2]2
= 0.456 

The time-to-peak is determined from: 

𝑇𝑝 =
𝜋

𝜔𝑛√1 − 𝜁2
 

Rearrange the equation given above. As a result, when 𝑇𝑝 = 1 second, the natural frequency 

is: 

𝜔𝑛 =
𝜋

√1 − (0.456)2
= 3.53 rad/s 

Comparing the transfer function of the closed-loop system with the standard equation for 

second-order system given below: 

𝑀(𝑠) =
𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2 

The gain of the system is calculated from:  

𝐾 = 𝜔𝑛
2          or           𝜔𝑛 = √𝐾 

So, when 𝜔𝑛 = 3.53 rad/s, the gain is: 

𝐾 = (3.53)2 = 12.5 

Also 

2𝜔𝑛𝜁 = 1 + 𝐾𝐾𝑡 

As a result, when 𝜁 = 0.456, the value of 𝐾𝑡: 

𝐾𝑡 =
(0.456)2𝜔𝑛 − 1

𝐾
=

(0.456)(2)(3.53) − 1

12.5
= 0.178 

 

b. The rise time (𝑇𝑟) and settling time (𝑇𝑠) of the transient response of the system are 

determined as follows: 
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𝑇𝑟 =
1 + 1.1𝜁 + 1.4𝜁2

𝜔𝑛
=

1 + 1.1(0.456) + 1.4(0.456)2

3.53
= 0.55 second 

And 

𝑇𝑠 =
4

𝜁𝜔𝑛
=

4

(0.456)(3.53)
= 2.48 seconds 


