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1. Getting Started 

1.1. The MATLAB Statistics Toolbox 

The MATLAB statistics toolbox will be used extensively in your computer lab 

sessions. Note that MATLAB is available on all PC’s within the School of 

Mathematics and Statistics computing labs, and the statistics toolbox is also loaded on 

to all of these machines. The discussion below should help you get started using 

MATLAB. It’s also a good idea to try some of the demos. When you start MATLAB 

you will get a window such as the one below: 

 

 
 

You type all commands at the “»” prompt. Some important commands to remember 

are: 

 help – will return help information on the function you specify. Suppose the 

function we want help on is the mean function.  Then the help information is 

obtained by typing help mean: 

 
MEAN   Average or mean value. 

    For vectors, MEAN(X) is the mean value of the elements in X. For 

    matrices, MEAN(X) is a row vector containing the mean value of 

    each column.  For N-D arrays, MEAN(X) is the mean value of the 

    elements along the first non-singleton dimension of X. 

  

    MEAN(X,DIM) takes the mean along the dimension DIM of X.  

  

    Example: If X = [0 1 2 

                     3 4 5] 

  

    then mean(X,1) is [1.5 2.5 3.5] and mean(X,2) is [1 

                                                      4] 
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    Class support for input X: 

       float: double, single 

  

    See also median, std, min, max, var, cov. 

 

 

    Reference page in Help browser 

       doc mean 

 

 quit – lets you quit MATLAB 

 

 who – gives you a listing of all objects in your workspace. By objects we mean 

MATLAB vectors or matrices that store data or the results of calculations. This 

list can easily grow quite quickly in a MATLAB session, so make sure you delete 

any variables you don’t need. To delete a variable from your workspace you use 

the clear command (type help clear for further details).  

 

 save – lets you save MATLAB variables in a file – you can restore these 

variables in your MATLAB session using the load command. Use the on-line 

help to learn more about the syntax of these commands. The load command can 

also be used to read in files in various formats – its use is not restricted to 

retrieving variables you have previously saved in MATLAB with the save 

command.  

 

MATLAB has hundreds of functions, and when you are beginning to learn MATLAB 

you will need to use the on-line help extensively. MATLAB may be a bit frustrating 

in the beginning, but you’ll soon realise the advantages of using MATLAB for doing 

statistical analysis. 

1.2. Data in MATLAB 

Data are stored in the form of matrices in MATLAB. Suppose you have a matrix 

named exampledata. You can find its size or dimensions: 

 
» size(exampledata) 

 

ans = 

 

     2     9 

 

The output tells us that exampledata is a 2x9 matrix. Suppose that the first row of 

exampledata contains the numbers 1,2,3,…8,9 and that the second row contains 

10,11,12,…18.  To look at the third column of exampledata we type the following: 

 
» exampledata(:,3) 

 

ans = 

 

     3 

    12 

 

Suppose we wish to look at the 2
nd

 to 6
th

 numbers in the first row in exampledata. 

We can type the following: 
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» exampledata(1,2:6) 

 

ans = 

 

     2     3     4     5     6 

 

If you type exampledata at the prompt, it will display the entire matrix in one go. 

To create the matrix exampledata (with the numbers 1,2,3,…8,9 in the first row, 

and 10,11,12,…18 in the second) we could type either of the two commands below: 

 
» exampledata = [1 2 3 4 5 6 7 8 9;10 11 12 13 14 15 16 17 18] 

» exampledata = [1:9;10:18] 

 

If we write a:b in MATLAB where a and b are integers, then this denotes the vector 

containing the consecutive integers from a to b (for instance 1:4 is the vector [1 2 

3 4]). The semicolon ‘;’ in the above statements indicates the end of a row. 

 

A useful demo in MATLAB is the one on basic matrix operations – you can get it 

from Help/Demos/MATLAB/Basic Matrix Operations. Experiment with 

methods for manipulating matrices – you’ll need to be comfortable with these 

methods for using MATLAB in this and some of your other courses.  

1.3. Simple descriptive methods 

We now discuss methods for graphically and numerically summarizing different types 

of data. 

 

The example data set used to illustrate the statistical concepts that follow comes from 

a rainfall measuring station in Italy. The values shown are the yearly maximum hourly 

storm depths in mm at Genoa University, Italy, from 1931 to 1988. Data sets like this 

one are of great importance in any hydrologic design, since they can help us to 

determine the maximum rainfall that a structure or utility should be designed to 

sustain. The consequences of getting this maximum wrong could be disastrous. The 

data are given in Table 1.1. 

 

Table 1.1. Yearly maximum hourly storm depths in mm at Genoa University, Italy 
Year Rain Year Rain Year Rain Year Rain Year Rain Year Rain 

1931 38.6 1941 40.2 1951 76.2 1961 66.5 1971 50.4 1981 89.4 

1932 33.7 1942 53.8 1952 27.4 1962 24.5 1972 43.2 1982 27.2 

1933 33.8 1943 26.9 1953 69.4 1963 64.1 1973 39.6 1983 32.7 

1934 79.2 1944 34.7 1954 22.8 1964 53.9 1974 38.7 1984 105.7 

1935 58.6 1945 72.6 1955 34.8 1965 66.5 1975 40.2 1985 25.3 

1936 39.3 1946 30.2 1956 38.8 1966 32.9 1976 55.7 1986 27.6 

1937 33.2 1947 54.5 1957 39.8 1967 52.4 1977 118.9 1987 128.5 

1938 29.2 1948 30.0 1958 58.1 1968 27.8 1978 25.0 1988 24.7 

1939 46.7 1949 30.0 1959 58.1 1969 23.3 1979 55.6   

1940 80.0 1950 30.0 1960 48.5 1970 80.0 1980 40.1   

 

The rainfall values have been saved in a MATLAB object called rain, which is 

stored in MATLAB as a vector of length 58. 

1.4. Numerical summaries of quantitative data 

First we discuss methods for summarizing and graphing quantitative data. 
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Mean 

The mean of a sample is what many people would think of as the “average value”. It 

gives a measure of where the data are centred. The sample mean of values x1,…,xn is 

written as x  and is calculated as 
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You should all be familiar with the Greek sigma notation here: 

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 denotes the sum 

of the sample values xi over the range of values for i specified (here we sum all 

sample values). The MATLAB function mean will return you the sample mean of a 

data set: 

 
» mean(rain) 

 

ans = 

 

   48.4397 

 

Median 

The median is another useful measure of location (that is, of where the data are 

centred). The median is the middle value in the data set. The first step in calculating 

the median is to order the sample values. Then if the sample size is odd, there will be 

a unique middle value with an equal number of values positioned higher and lower 

than this middle value. This value is the median. For instance, if our ordered sample 

consisted of the numbers 1,2,3,4,5, then the middle value or median is 3. If your 

sample size is even, there is no unique middle value, but rather there are two middle 

values: in this case, the median is the mean of the middle values. For instance, if our 

ordered sample consisted of the numbers 1,2,3,4,5,6, then the two centre values are 3 

and 4 and the median is 3.5. The median is obtained for our example data set in 

MATLAB as follows: 

 
» median(rain) 

 

ans = 

 

   39.9500 

 

Note that this is a lot lower than the mean – can you suggest why this might be so? 

Variance 

The sample variance is a measure of the variability of the data about its sample mean. 

It is defined to be: 
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You may wonder why we use (n-1) instead of (n) in the above expression. In large 

samples (that is, for large n) it does not matter very much whether we divide by n or 

n-1. The reason for using n-1 is explained later.   

 

The sample variance of our rainfall sample is: 
» var(rain) 

 

ans = 

 

  565.0098 

Standard Deviation 

The sample standard deviation is the square root of the variance. The sample standard 

deviation has the same units as the original data values, and for our rainfall sample is 

computed in MATLAB as follows: 

 
» sqrt(var(rain)) 

 

ans = 

 

   23.7699 

or 
» std(rain) 

 

ans = 

 

   23.7699 

Inter-quartile range 

While the standard deviation is the most common measure of variability you will 

encounter, the inter-quartile range (IQR) is another useful way to quantify variability. 

Roughly speaking, the quartiles of a sample split the ordered sample values into four 

equal parts. What this means is that if you rank the sample data points from the lowest 

to the highest, the first quartile will have nearly a quarter of the observations below it, 

and the third quartile will have nearly a quarter of the observations above it. The 

second quartile has approximately half the sample values above it and half the sample 

values below it.  

 

To be precise, the second quartile is the median, the first quartile is the median of the 

ordered sample values with positions strictly less than the position of the median, and 

the third quartile is the median of the ordered sample values with positions strictly 

greater than the position of the median. The inter-quartile range is the difference 

between the third and the first quartiles. The IQR for our rainfall sample is: 
 

» iqr(rain) 

 

ans = 

 

   28.1000 

Coefficient of Skewness 

The coefficient of skewness is a measure of asymmetry of the data. It is defined to be: 
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where s is the sample standard deviation. The coefficient of skewness is not always 

easy to interpret. In general, it will give an indication of departures from symmetry. A 

positive value of g may indicate a long “right tail” in the data with values above the 

median tending to be further away from the median than values below the median. 

Negative skewness may indicate a long “left tail” with values below the median 

tending to be more extreme.  We will see what skewness means graphically when we 

talk about graphical summaries of quantitative data. We compute the skewness for our 

rainfall data set as follows: 

 
» skewness(rain) 

 

ans = 

 

    1.4267 

 

1.5. Graphical summaries of quantitative data 

MATLAB has an extensive range of functions that allow you to visually examine 

data. Suppose we wish to plot the rainfall values in our data set as a time-series:  this 

can be done here by typing 
» plot(1931:1988,rain) 

The first argument represents the x-values (years) and the second is the vector of 

corresponding rainfall values. The plot generated by this command is given below. 

Look in the help information for the plot function for options on adding labels, titles 

and so on. 
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As another example, consider the Challenger data set. For this data set we have 

temperature at take off for the 23 US space shuttle missions prior to the Challenger 

disaster, as well as the pressure at a pre-launch test and the number of O-Rings that 

failed (out of six). Below I have plotted the proportion of O-Rings failing for each 

mission (the number of O-Rings which fail divided by six) against the temperature at 
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take off. A graph of two quantitative variables against each other like this is called a 

scatter plot. We can see here that it seems as though the risk of failure increases as the 

temperature decreases. The temperature at take off on the day of the Challenger 

disaster was 31 degrees Farenheit (well beyond the observed range of take off 

temperatures). This example shows that just graphically displaying carefully collected 

relevant data can sometimes be extremely helpful for making a decision (would you 

have had second thoughts about launching the Challenger if you had seen this graph?) 
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In MATLAB, with the proportions of failures in the vector propfail and the 

temperatures in the vector temp, we can generate the graph with the following 

commands: 

 
» plot(temp,propfail,'o') 

» xlabel('Temperature (degrees Farenheit)') 

» ylabel('Proportion of O-Ring failures') 

» title('Challenger data') 

 

In this example, I have also illustrated how you can add labels to the x and y axes 

using the xlabel and ylabel commands, and a title using the title command. 

The 'o' in the plot command tells MATLAB to use a circle as the plotting symbol in 

the graph (without this MATLAB will ‘join the dots’ with a line as in our previous 

example with the rainfall data). 

Histogram 

A histogram is a very convenient way of examining the variability of any data set. 

The sample data range is divided into a number of bins, and we count the number of 

observations falling in each bin. This gives the frequency of the data within the range 

specified by each bin. In a histogram we can also plot relative frequencies which are 

obtained by dividing the frequencies by the number of observations in the sample. 

The best way to understand histograms is to show an example.  For our rainfall data, 

we obtain the histogram in MATLAB as follows:  

 
» histogram(rain) 

 

which results in the plot below. 
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The x-axis of the above plot represents the data values, and the y-axis the frequency 

corresponding to each bin. The width of each bin is chosen by the software using an 

appropriate default rule, but you can specify a different bin-width if you so desire.  

 

The histogram gives more information than you would get from looking at just a few 

summary statistics. We can get a fair idea of where the data are centred (and perhaps 

we can infer approximate values for the mean and median). We also get some 

impression of the scale of the data (a feature which is measured by summary statistics 

like the sample standard deviation and interquartile range) as well as whether or not 

the distribution exhibits skewness, multiple modes or peaks, and contains outliers. 

The histogram shows that the rainfall data are right skewed or right tailed with the 

large values in the sample further above the median than the small values are below. 

For a left skewed or left tailed distribution the small values in the sample are further 

below the median than the large values are above. The histogram suggests that the 

rainfall remains low most of the time (between 20-50mm each year) but does take 

some rather high values every now and then (maximum of nearly 130 mm).  

 

An engineering question that might arise from this is to find a cutoff value for rainfall 

that would not be exceeded too frequently. This value could be used to estimate the 

resulting flood level in a stream that runs through that region, and zones where 

residences are safe to be built could be inferred. Finding this kind of cutoff value 

could have several other uses – for instance, it could be useful in trying to estimate the 

erosion that may occur on the hills the rainfall is falling on so as to apply appropriate 

slope-stability measures. If you were asked to decide this design rainfall cutoff value, 

what value would you use? Should it be the mean? That value will be exceeded quite 

frequently, so it will not be all that useful. Should it be the maximum value in the 

sample? Is that going to be safe enough for the years to come? 

Boxplot 

A boxplot is another useful way to graphically represent the location and variability of 

a sample. The boxplot for our rainfall data set is as follows: 

 
» boxplot(rain) 
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The box in the boxplot extends to the first and third quartiles of the data (also called 

the lower and upper quartiles), the horizontal line in the middle representing the 

median. Two whiskers extend above and below the boxes to represent the variability 

of the data beyond the quartiles. The criteria for deciding the length of the whiskers 

may vary from one software package to another. All observations lying outside the 

whiskers are individually shown. They are sometimes called outliers indicating that 

they are unusually high or low values. 

 

As another example, consider data on hair colour and pain threshold. In an experiment 

conducted at the University of Melbourne, a number of subjects were divided into 

groups based on hair colour, and a pain threshold score was recorded for each subject. 

Below are boxplots showing the pain threshold scores for the light blond and dark 

brunette subjects. Boxplots are very useful when we plot several at once on the same 

scale like this in order to compare different samples. There were five light blond and 

five dark brunette subjects, and I entered their pain threshold scores in MATLAB into 

a 2 by 5 matrix X, where the first column held the light blond scores and the second 

column held the dark brunette scores. If we then type simply boxplot(X) in 

MATLAB, this will produce the plot below with separate boxplots for each column of 

X (the matrix X can have more than two columns). We can add labels on the axes and 

a title as for scatter plots using the xlabel, ylabel and title commands.  
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2. M files 
In Section 1 we have shown how to use MATLAB interactively, by typing commands 

into the command window. Usually it is more convenient to store sequences of 

commands in a file that you can save and open again when needed. These are known 

as M files. To get a new M file, click the first icon on the toolbar, or use File/New/M-

File from the menus. You can type MATLAB commands into this file and save them 

to a directory of your choice. To run the commands in an M file, first change the 

directory to the one where your M file is stored, either using the cd command, for 

example: 
cd p:\math2089 

or using the Current Directory: box on the toolbar. 

Then simply type the name of the M file (without the .m extension) in the command 

window to execute the commands. 

 

You can add comments to an M file using %: MATLAB ignores the remainder of a 

line after a % symbol. 

3. Reading from and writing to files 
Useful functions for reading text files include load and textread. 

For example, suppose the file rain.txt in the directory p:\math2089 contains 

annual observations of rainfall and runoff at Pontelagoscuro on the Po river in 

northeast Italy from 1918 to 1948 (we will use these data later when we look at 

regression in MATLAB). The file has no header record and the first four lines are: 

 
1133 904 

999 648 

1501 1080 

807 549 

: 

 

To read this file into a matrix called rain, use: 
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load p:\math2089\rain.txt 

 

To read the file into variables called rainfall and runoff use: 
 
[rainfall,runoff] = textread('p:\math2089\rain.txt') 

 

To deal with a header record, suppose that the file rainfall.txt in the directory 

p:\math2089 contains the same data as rain.txt, but there is a header record, as 

follows: 

 
rainfall runoff 

1133 904 

999 648 

1501 1080 

807 549 

: 

 

To read this file into variables called rainfall and runoff use: 

 
[rainfall,runoff] = 

textread('p:\math2089\rainfall.txt','%n%n','headerlines',1) 

 

The function xlsread can be used to read Excel files, for example: 

  
rainx = xlsread('p:\math2089\rainfallx.xls') 

 

As an alternative to using these functions, you can use the menus: File/Import 

data and follow the instructions. 

 

Useful functions for writing data to a file include: 

 save: e.g. save('filename') stores all workspace variables in the current 

directory in filename.mat,  whereas save('filename', 

'var1','var2',...) saves only the specified workspace variables in 
filename.mat 

 csvwrite: e.g. csvwrite(‘filename’,M) writes matrix M to comma-

separated value file filename 

 dlmwrite: e.g. dlmwrite(‘filename’,M,‘D’) writes matrix M to file 

filename using delimiter D to separate values 

 csvwrite: e.g. csvwrite(‘filename’,M) writes matrix M to the Excel file 
filename. 

 

See the help files for further details. 

4. Statistical distributions in MATLAB 

4.1. Available distributions and calculations 

There is a wide variety of statistical distributions (such as normal and binomial) 

available in MATLAB, and a number of different quantities (such as probabilities and 

random samples) that can be calculated for each distribution. MATLAB uses a 

standard syntax for these functions: with a prefix identifying the distribution and a 
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suffix identifying the quantity or quantities to be calculated. For example, binocdf 

calculates cumulative probabilities for the binomial distribution. 

 

Table 4.1 shows the distributions available in MATLAB (although we will not cover 

all of these distributions in your course). 

 

Table 4.1. Statistical distributions available in MATLAB 

Distribution MATLAB prefix 

Beta beta 

Binomial bino 

Exponential exp 

Extreme value ev 

Gamma gam 

Log normal logn 

Normal norm 

Negative binomial nbin 

Poisson poiss 

Rayleigh rayl 

Uniform unif 

Weibull wbl 

 

Table 4.2 shows the quantities that can be calculated for each distribution. 

 

Table 4.2. Computations for statistical distributions in MATLAB 

MATLAB prefix Computes Example 
pdf probability or probability 

density function 

binopdf 

cdf cumulative probability or 

cumulative distribution function 

binocdf 

inv inverse distribution function binoinv 

rnd random sample binornd 

fit* parameter estimates and 

confidence intervals 

binofit 

stat Mean and variance binostat 

* unifit rather than uniffit for the uniform distribution 

 

The arguments to be supplied to the functions depend on the distribution: if you are 

unsure, check the help files. 

 

Some examples of the use of these functions are given in the remainder of this 

section. 

4.2. Computation of binomial probabilities 

We now illustrate how to compute binomial probabilities from the binomial 

distribution function or probability function in an example.  

 

Often in doing calculations with discrete distributions you will have to compute the 

probability that a discrete random variable X lies in some interval. A common mistake 
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that students make in this situation involves not paying sufficient attention to what 

happens at the end points of the interval.  This is illustrated in the example below. 

 

 
Example: bacteria in water samples 

 

Water samples are taken from 20 different streams and for each sample the presence 

or absence of a particular bacterium in the sample is recorded. Let X be the number of 

samples which contain the bacterium. If X~Bin(20,0.5), compute the following 

probabilities:  

1. P(X10)  

2. P(X10)  

3. P(X<10)  

4. P(X>10)  

5. P(5X10)  

 

Figure 4.1: (Left) P(X<=10) is the sum of the heights of the solid bars. (Right) P(X>=10)=1-

P(X<=9) (since the sum of heights of all bars is one). P(X>=10) is the sum of the heights of the 

solid bars, P(X<=9) is the sum of the heights of the unfilled bars. 

 

Solution: 

 

1. To compute P(X10), we note that this is the value of the distribution function at 

10, FX(10). If pX(x) denotes the probability function of X, then  

 
 


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0
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x x

XX
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In Figure 4.1 on the left I have plotted the probability function for X, so that the 

distribution function value at 10, P(X10) is just the sum of the heights of the solid 

bars. We compute a binomial cumulative distribution function value in MATLAB 

using the command binocdf. Typing binocdf(10,20,0.5) gives the value of the 

distribution function at x=10, with n=20 and p=0.5. Here the probability is 0.5881. 

 

2. Computation of P(X10) is illustrated on the right of Figure 4.1. Since the sum of 

the heights of all the bars in the figure is one, we have P(X10)=1- P(X9)=1-

0.4119=0.5881 where in MATLAB we have obtained P(X9)=0.4119 by typing 
binocdf(9,20,0.5). 
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Figure 4.2: (Left) P(X<10)=P(X<=9) is the sum of the heights of the solid bars.  (Right) 

P(X>10)=1-P(X<=10) (since the sum of the heights of all bars is one). P(X>10) is the sum of the 

solid bars, P(X<=10) is the sum of the heights of the unfilled bars. 

3. Computation of P(X<10) is done in a similar way to the computation in 1. We note 

that P(X<10)=P(X9) (since the largest possible value for X less than 10 is 9). Hence 

the required probability of less than ten samples containing the bacterium is the value 

of the distribution function at 9, which we have already computed as 0.4119. The left 

of Figure 4.2 illustrates the situation graphically.  

 

4. To get P(X>10) we note that this probability is 1-P(X10) (one minus the value of 

the distribution function at 10) which is 1-0.5881=0.4119. The situation is illustrated 

graphically on the right of Figure 4.2.  

 

5. Finally we are asked to compute P(5X10). Figure 4.3 shows what needs to be 

computed (the sum of the heights of the solid bars, which is the sum of the probability 

function values pX(x) for x=5,6,7,8,9,10). We note that this can be computed by 

getting the sum of the probability function values for x less than or equal to 10, and 

then subtracting the sum of the probability function values for x less than or equal to 

4. So P(5X10)=P(X10)-P(X4). Using the binocdf command in MATLAB, we 

obtain FX(10)=0.5881 and FX(4)=0.0059, so that P(5X10)=0.5881-0.0059=0.5822.  

 

 

 

Figure 4.3: P(5<=X<=10) is the sum of the heights of the solid bars. We can compute this sum by 

getting the distribution function at 10 (sum of heights of bars for values less than or equal to 10) 

and subtracting the distribution function at 4 (sum of heights of bars for values less than or equal 

to 4). 
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4.3. Computation of Poisson probabilities 

We illustrate computation of Poisson probabilities with an example.  

 

 
Example: cars arriving at an intersection  

 

Cars arrive at an intersection according to a Poisson process at a rate of 2 cars per 

minute. Let Y be the number of cars which arrive in a certain two minute period (so 

that Y~Po(4)). Compute the following probabilities: 

1. P(Y5)  

2. P(Y5)  

3. P(Y<5)  

4. P(Y>5)  

5. P(5Y10)  

 

 

Figure 4.4: (Left) P(Y<=5) is the sum of the heights of the solid bars.  (Right) P(Y>=5)=1-

P(Y<=4) (since the sum of the heights of all bars is one). P(Y>=5) is the sum of the heights of the 

solid bars, P(Y<=4) is the sum of the heights of the unfilled bars. 

 

Solution:  

 

1. To compute P(Y5), we note that if pY(y) denotes the probability function of Y, then  

 
 



5

0

5

0

).()()5()5(

y y

yY
ypyYPYPF  

In Figure 4.4 on the left I have plotted the probability function for Y, so that the 

distribution function value at 5, P(Y5) is just the sum of the heights of the solid bars. 

Note that the plot is only over the range y=0,1,…,20, but a Poisson random variable 

can take on any non-negative integer value.  

 

We compute a Poisson cumulative distribution function value in MATLAB using the 

command poisscdf. Typing poisscdf(5,4) gives the value of the distribution 

function at y=5 for =4. Here the probability of five or fewer arrivals is 0.7851. 

 

2. Computation of P(Y5) is illustrated on the right of Figure 4.4. Since the sum of the 

heights of all bars is one, and the required probability is the sum of the heights of the 

solid bars, the required probability is one minus the sum of the heights of the unfilled 

bars. But the sum of the heights of the unfilled bars is P(Y4), which can be computed 
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in a similar way to before by typing poisscdf(4,4). We get P(Y4)=0.6288, so 

that the required probability is P(Y5)=1- P(Y4)=1-0.6288=0.3712.  

 

Figure 4.5: (Left) P(Y<5) =P(Y<=4) is the sum of the heights of the solid bars. (Right) P(Y>5)=1-

P(Y<=5) (since the sum of the heights of all bars is one). P(Y>5) is the sum of the heights of the 

solid bars, P(Y<=5) is the sum of the heights of the unfilled bars. 

 

3. Computation of P(Y<5) is done in a similar way to the computation in 1. We note 

that P(Y<5)=P(Y4) and hence the required probability of fewer than five cars 

arriving is the value of the distribution function at 4, which we have already computed 

as 0.6288. The left of Figure 4.5 illustrates the situation graphically. 

 

4. To get P(Y>5) we note that this probability is 1-P(Y5) which is 1-0.7851=0.2149. 

The situation is illustrated graphically on the right of Figure 4.5.  

 

5. Figure 4.6 illustrates computation of P(5Y10). The sum of the heights of the 

solid bars (the sum of the probability function values for y=5,6,7,8,9,10) can be 

obtained as the difference of the cumulative distribution function at 10 and the 

cumulative distribution function at 4. We obtain P(5Y10)=0.9972-0.6288=0.3683.  

 

Figure 4.6: P(5<=Y<=10) is the sum of the heights of the solid bars. We can compute this sum by 

getting the distribution function at 10 (sum of heights of the bars for values less than or equal to 

10) and subtracting the distribution function at 4 (sum of the heights of the bars for values less 

than or equal to 4). 

 

4.4. Computation of normal probabilities 

The best way to illustrate computation of normal probabilities in MATLAB is through 

an example.  
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Example: concrete density 

 

The following example is based on Example 4.29 of Kottegoda and Rosso, “Statistics, 

Probability and Reliability for Civil and Environmental Engineers,” McGraw-Hill, 

1997. The mean and standard deviation of the densities of concrete samples from a 

particular mix are 2445 and 16 N/mm
2
. Assuming that a concrete sample X taken 

from this mix is normally distributed, compute the following: 

 

1. P(X2460)  

2. P(X2460)  

3. P(X<2460)  

4. P(X>2460)  

5. P(2430X2460) 

 

Solution:  

 

1. To find P(X2460) we simply need to compute the value of the cumulative 

distribution function at 2460 for a normal distribution with mean 2445 and standard 

deviation 16. This can be done in MATLAB by typing normcdf(2460,2445,16) to 

obtain 0.8257. The cumulative distribution function value is obtained as the integral 

of the density function over values less than or equal to 2460 (see Figure 4.7). 

 

2. To find P(X2460), simply observe that the complement of the event {X2460} is 

{X<2460}, so that P(X2460)=1-P(X<2460). How do we calculate P(X<2460)? The 

cumulative distribution function at 2460 is P(X2460), which does not seem quite the 

same as P(X<2460). However, for a continuous random variable like X, 

P(X2460)=P(X<2460). Hence our required probability is 1-P(X2460), or 1-

0.8257=0.1743 (see Figure 4.7). 

 

 

Figure 4.7: (Left) The shaded area is the value of the cumulative distribution function at 2460 

(integral of the density function). (Right) The shaded area is P(X>=2460). P(X=2460)=0 since the 

line on the boundary of the shaded region has zero area. From this P(X>=2460)=1-P(X<2460)=1-

P(X<=2460) and we can compute P(X>=2460) from the distribution function.  

 

3. Computation of 3 is trivial, since P(X<2460)=P(X2460) for a continuous random 

variable, and we have already computed this probability.  
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4. For a continuous random variable P(X>2460)=P(X2460) and we have already 

computed this probability.  

 

5. We have that P(2430X2460)=P(X2460)-P(X<2430)=P(X2460)-P(X2430). 

The computation is illustrated in Figure 4.8: the value of the distribution function at 

2460 is the area under the density to the left of 2460, and the value of the distribution 

function at 2430 is the area under the density to the left of 2430, so that the shaded 

area is the difference of the two. We obtain P(2430X2460)=0.8257-0.1743=0.6514. 

 

 

Figure 4.8: The shaded area is P(2430<=X<=2460). It can be obtained as the difference of the 

area under the curve to the left of 2460 and the area under the curve to the left of 2430 (that is, as 

a difference of distribution function values at 2460 and 2430). 

 

4.5. Computing percentage points for the normal distribution 

In computing confidence intervals for the mean, for example, it is necessary to be able 

to compute percentage points of a standard normal distribution. We can obtain 

percentage points of a standard normal distribution either from MATLAB or from a 

table.  

 

Here we describe how to obtain percentage points of a standard normal distribution in 

MATLAB using the command norminv. Typing the command norminv(p) in 

MATLAB will return the value where the normal cumulative distribution function is 

equal to p (0<p<1). So if we want to obtain the upper 2.5 percentage point of the 

standard normal distribution, for instance, we type norminv(0.975), since this will 

return the value which bounds an area of 0.025 in the upper tail of the standard 

normal density (we use 0.975 since 0.975=1-0.025). The upper 2.5 percentage point is 

1.96. 

4.6. Computing percentage points for the t distribution 

As for the standard normal distribution, MATLAB can compute percentage points of 

the t distribution, enabling computation of confidence intervals, for example. The 

appropriate command to use in MATLAB is tinv. Typing the command tinv(p,v) 

in MATLAB will return the value where the distribution function of a t random 

variable with v degrees of freedom is equal to p (0<p<1). So if we want to obtain the 

upper 2.5 percentage point of a t distribution with 20 degrees of freedom, say, we type 
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tinv(0.975,20), since this will return the value which bounds an area of 0.025 in 

the upper tail of the t-density with 20  degrees of freedom. 

5. Simulation in MATLAB 

5.1. Introduction 

We now study the important topic of simulation. Most statistical software packages 

have methods for generating samples from standard distribution functions like the 

binomial, Poisson and normal, and MATLAB is no exception.  

 

Simulation is an extremely useful tool in engineering applications. It often happens in 

engineering applications that we can model the inputs to some system by a simple 

statistical model, but that the outputs of the system are a complicated function of the 

inputs. Working out the distribution of the outputs mathematically from the 

distribution of the inputs may be very difficult. However, if we can generate samples 

from the distributions for the inputs, we can work out the outputs of the system for 

these simulated inputs and by doing this repeatedly we gain some idea of what the 

distribution of the system outputs is like.   

 

For instance, we might be interested in studying traffic flow at a busy intersection 

where the distribution of the number of cars queued at the lights is a function of the 

arrival times of cars at the intersection. We may be able to specify a simple stochastic 

model for car arrivals, but working out mathematically the distribution of queue 

length from this may not be simple. To consider another example, a geomatic 

engineer may be interested in what a model for uncertainty in a measurement implies 

about the uncertainty in a complicated function of the measurement. 

 

As mentioned, statistical software packages like MATLAB have methods for 

simulating from standard distributions. Since you may sometimes need to simulate 

from distributions that are not from a standard parametric family, we give some 

discussion of basic methods for constructing simulation algorithms.  

5.2. The uniform distribution 

Given a certain distribution (for instance our model for arrival times of cars in the 

traffic flow example) how do we simulate from it? A simulation from any distribution 

can in fact be obtained from a simulation of a uniform random variable on the interval 

[0,1]. A random variable X is said to be uniformly distributed on the interval [a,b] if it 

has the density function 





 


 otherwise   0

],[ if   )(
)(

-1
baxab
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X

 

If X is uniformly distributed on [a,b] we write this as X~U[a,b]. A plot of the uniform 

density on [0,1] is shown in Figure 5.1. 
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Figure 5.1: Probability density function of a uniform random variable on [0,1]. 

 

Statistical software packages like MATLAB contain algorithms for generating 

sequences of variables that behave like independent uniform random variables on 

[0,1]. The MATLAB command used for simulating from a uniform distribution is 

called rand (you could also use unifrnd, see Tables 4.1 and 4.2 and the help files). 

Typing the command u=rand(m,n) generates an m by n matrix u of simulated 

independent uniform random variables on [0,1].  

 

 
Example: the central limit theorem in action 

 

As an example of simulation of uniform random variables we illustrate the central 

limit theorem in action. Suppose we generate 1000 samples of size 50 from a uniform 

distribution on [0,1] by typing u=rand(50,1000). Here u is a matrix with 50 rows 

and 1000 columns, and we can regard each column as being a random sample of size 

50. We can compute the means of the 1000 samples (column means of u) and put the 

result in the vector umeans by typing umeans=mean(u,1). The histogram of the 

sample means is shown in Figure 5.2. From the central limit theorem, we expect the 

distribution of the sample means to be approximately normal, and the shape of the 

histogram confirms that normality is a good approximation here.  
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Figure 5.2: Histogram of 1000 sample means for samples of size 50 from a uniform distribution 

on [0,1]. 

 

5.3. Other distributions 

I claimed above that we can simulate a random variable with any given distribution 

from a simulation of a uniform random variable. For simple discrete distributions, it is 

easy to see that this is the case.  

 

 
Example: simulation of a Bernoulli random variable 

 

Let X be a Bernoulli random variable with parameter p. Recall that such a random 

variable has a probability function defined on the values 0 and 1 with pX(0)=1-p and 

pX(1)=p. A Bernoulli random variable is a binomial random variable with n=1. Now, 

suppose we have a random variable U~U[0,1]. Given U, is it possible to simulate 

from the Bernoulli distribution?  

 

Consider the following algorithm. If U is less than or equal to p, set X=1, otherwise 

set X=0. The probability that U is less than or equal to p is the integral of the uniform 

density on [0,1] from 0 to p, which is p. Similarly, the probability that U is greater 

than p is 1-p. So our algorithm generates a random variable with the desired 

distribution. 

 

 

From the above example, it is easy to see how we might simulate from more general 

discrete distributions using simulated uniform random variables on [0,1] (as an 

exercise, think about how you might do this).  

 

As discussed in Section 4, MATLAB also has commands for simulating from 

common parametric families of discrete distributions. For instance, to simulate a 

matrix of independent binomial random variables with parameters n and p having r 

rows and c columns we type binornd(n,p,r,c). Similarly, to simulate a matrix of 
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independent Poisson random variables with mean  and having r rows and c columns 

we type poissrnd(,r,c).  

 

What about simulation for continuous random variables? The following result is a 

special case of a more general result, and allows us to simulate from many continuous 

distributions.  

 

Let U~U[0,1] and suppose that F(x) is a distribution function. Then if the inverse F
-1

 

of F exists, F
-1

(U) is a random variable with the distribution F(x).  

 

 
Example: Simulation from general continuous distributions 

 

Suppose we wish to simulate from the distribution function shown in Figure 5.3. Over 

the interval [0,1] this distribution function is given by F(x)=x
2
. For negative x it is 

zero, and for x bigger than one it is one.  

 

 

Figure 5.3: Distribution function for simulation example. F(x)=x
2
 on the interval [0,1]. F(x)=0 for 

negative x, F(x)=1 for x>1. 

 

To use the result we have stated above for simulation, we need to find the inverse of 

the distribution function over the range (0,1). Now, F(x)=x
2
 on this interval. If we 

write y=F(x)=x
2
, we obtain the inverse function here by solving for y. We get x=y

1/2
. 

So we can simulate from the distribution function in Figure 11 simply by taking the 

square root of a uniform random variable on [0,1].  

 

5.4. Simulation of normal and lognormal random variables 

The MATLAB command used to simulate normal random variables is normrnd. 

Typing r=normrnd(a,s,m,n) where a and s are scalars will simulate an m by n 

matrix r of independent normal random variables with mean a and standard 

deviation s. There are various other ways to use the normrnd command (see help 

for details). 

 

A distribution related to the normal is the lognormal distribution. A lognormal 

random variable Y can be represented as Y=exp(X) where X is normally distributed. In 

other words, log(Y) has a normal distribution. If Y=exp(X) where X~N(,
2
) we write 
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this as Y~lognormal(,
2
). The lognormal distribution is often used for modelling 

positive measurements such as rainfall amounts or event interarrival times.  

 

The MATLAB command used for simulating from a lognormal distribution is 

lognrnd. This command works in much the same way as the command normrnd. We 

can type r=lognrnd(a,s,m,n) to simulate an m by n matrix r of independent 

lognormal(a,s2) random variables.  

 

 
Example: storm rainfall  

 

The following example is based on Kottegoda and Rosso, “Statistics, Probability and 

Reliability for Civil and Environmental Engineers,” McGraw-Hill, 1998, Problem 8.5.  

 

The total amount of water Z delivered by a storm in a given location is modelled as 

Z=XY where X is the duration of the storm and Y is the rainfall rate (assumed constant 

for the duration of the storm). Assuming that X is lognormal(-1.447,1.805) and Y is 

lognormal(1.956,0.693) and that X and Y are independent, estimate the probability 

that the maximum amount of rainfall delivered in one hour by the storm (the hourly 

storm depth) is greater than 10mm based on 1000 simulations of the hourly storm 

depth. Also, plot histograms and boxplots showing the distribution of the hourly 

storm depth. 

 

Solution:  

 

Write W for the maximum amount of rainfall delivered in one hour by the storm. Then 

we have 










1 if 

1 if  

XXY

XY
W  

To see this, simply observe that if the duration of the storm is greater than or equal to 

one hour (X>1), then an amount of rainfall equal to the rate Y will be delivered in any 

hour of the storm. If the duration of the storm is less than one hour, then the 

maximum amount of rainfall that can be delivered in one hour is the total amount of 

rainfall, XY.  

 

The following MATLAB commands generate a vector w containing 1000 independent 

realizations of W (the semicolons suppress screen printing).  

 
>> x=lognrnd(-1.447,1.805,1000,1); 

>> y=lognrnd(1.956,0.6931,1000,1); 

>> b=(x>=1); 

>> w=y.*b+x.*y.*(1-b); 

 

The third command above b=(x>=1)creates a vector b of the same length as x with 

bi=1 if xi is greater than or equal to 1 and bi=0 otherwise. The fourth line 

w=y.*b+x.*y.*(1-b) creates a vector w of the same length as b and x with the ith 

element wi equal to yi*bi+xi*yi*(1-bi). Note that if bi=1, then this expression is equal 

to yi, whereas if bi=0 it is equal to xiyi. Note that in general the expression a.*b in 

MATLAB where a and b are vectors of the same length evaluates to a vector of the 
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same length as a and b with ith element given by aibi. So the above lines of code 

simulate a vector w of length 1000 containing independent realizations of the random 

variable W. A histogram and boxplot of the values obtained when I typed the above 

commands in MATLAB are shown in Figure 5.4. 

 

Figure 5.4: histogram and boxplot of 1000 simulated hourly storm depth values. 

To obtain an estimate of the probability of an hourly storm depth greater than 10 

millimetres, we can simply look at the proportion of the simulated values greater than 

10 millimetres: here there are 44 such values, giving an estimated probability of 

0.044.  

 

This example illustrates the power of simulation. While this problem is probably still 

simple enough to enable a mathematical study of the distribution of interest (hourly 

rainfall depth in this case), a simulation based approach can easily handle additional 

complications.  

 

For instance, suppose we are interested in the maximum rainfall delivered in one hour 

by all storms in a given year assuming that the number of storms is a Poisson random 

variable with mean 25 (assume that characteristics of storms are independent). To 

simulate a value for this maximum annual hourly storm depth, we simulate a 

realization of a Poisson random variable with mean 25, (N say) simulate hourly storm 

depth values for N different storms in the same way as we did above, and find the 

maximum of these. In MATLAB: 

 
>> n=poissrnd(25) 

>> x=lognrnd(-1.447,1.805,n,1); 

>> y=lognrnd(1.956,0.6931,n,1); 

>> b=(x>=1); 

>> w=y.*b+x.*y.*(1-b); 

>> m=max(w) 

 

Here m will contain just one simulation of the annual maximum hourly depth. If we 

are interested in the distribution of annual maximum hourly depth we can iterate the 

above lines of code to obtain a sample from this distribution. I have simulated 1000 

realizations of the annual maximum hourly depth in MATLAB: a histogram and 

boxplot of the resulting simulated values is shown in Figure 5.5.  
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Figure 5.5: Histogram and boxplot of 1000 simulated annual maximum hourly rainfall depth 

values 

Of course we can add still further complications to our model and to the questions we 

ask about it, and still study properties of the model using a simulation based approach.  

5.5. Further applications of simulation 

We give some further examples to illustrate the power of simulation as a tool for 

studying complex systems in engineering.  

 

 
Example: wastewater treatment plant 

 

The following example is from Kottegoda and Rosso, “Statistics, Probability and 

Reliability for Civil and Environmental Engineers,” McGraw-Hill, 1998, Problem 8.8. 

An activated-sludge plant includes five serial processes: (1) coarse screening (2) grit 

removal (3) plain sedimentation (4) contact treatment, and (5) final settling. Let Xi 

denote the efficiency of the ith treatment, that is, the fraction of remaining pollutant 

removed by the ith serial treatment. For example, X1 is the fraction of the pollutant 

removed by treatment process 1, X2 is the fraction of the remaining pollutant removed 

by treatment process 2, and so on. The amount Qout of pollutant in the effluent is 

given by  

.)1)(1)(1)(1)(1(
54321 inout

QXXXXXQ   

where Qin denotes the amount of pollutant in the untreated inflow. A quality indicator 

of the performance of the plant is then defined as 

).1)(1)(1)(1)(1(
54321

XXXXXY   

Consider a plant with the following single-process mean efficiencies in the removal of 

the 5-day 20C biological oxygen demand (BOD): 

10.0 ,70.0 ,20.0 ,05.0 ,05.0
54321
   

where i=E(Xi). Suppose that X1, X2, X3 and X5 are normal variates with standard 

deviations 0.01, 0.01, 0.04, and 0.02 respectively and that X4~U[0.6,0.8]. Simulate 

100000 realizations from the distribution of Y, and plot a histogram of the simulated 

values. Also, give an estimate of the mean of Y based on your simulations.  

 

Solution: 

 

The following MATLAB code generates the required simulated values: 
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>> x1=normrnd(0.05,0.01,100000,1); 

>> x2=normrnd(0.05,0.01,100000,1); 

>> x3=normrnd(0.20,0.04,100000,1); 

>> x4=unifrnd(0.6,0.8,100000,1); 

>> x5=normrnd(0.10,0.02,100000,1); 

>> y=(1-x1).*(1-x2).*(1-x3).*(1-x4).*(1-x5) 

 

The command unifrnd in the fourth line above generates a sequence of uniform 

random variables on a given interval. Recall that we use the command rand to 

simulate uniform random variables from [0,1]. Typing u=unifrnd(a,b,m,n) 

generates an m by n matrix of independent uniform random variables on [a,b]. After 

typing the commands above, the 100000 required simulated values are in the vector y. 

A histogram of these values is shown in Figure 5.6.  

 

Figure 5.6: histogram of 100000 simulated quality indicator values for waste water treatment 

example. 

An estimate of the mean of the distribution of the quality indicator is obtained by 

finding the sample mean of the simulated values: we have an estimated mean of 0.195 

based on the simulation shown in the histogram.  

 
 

 
Example: seismic hazard 

 

The following example is based on Kottegoda and Rosso, “Statistics, Probability and 

Reliability for Civil and Environmental Engineers,” McGraw-Hill, 1998, Problem 

8.14. In a period of 600 years, about 330 earthquakes occurred in central Italy having 

an epicentral MCS intenstiy X exceeding 6. We assume for a given earthquake with 

epicentral MCS intensity greater than 6 that X is generated as X=6+Z where Z is a so-

called exponential random variable with density function 
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Generally, the form of the density of an exponential random variable is 

  0.       ,exp)(  xxxf
X

  

where the parameter  is positive. The mean of an exponential random variable with 

parameter  is 1/.  



  27 

 

Exponential random variables can be simulated in MATLAB using the command 

exprnd. The command r=exprnd(,m,n) simulates an m by n matrix r with entries 

which are independent exponential random variables with mean . For the density of 

Z given above, =1/0.91.  

 

Seismic hazard at a specific site is represented by an MCS intensity Y related to the 

epicentral MCS intensity X by the following attenuation law:  
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where Z denotes the distance from the epicenter, and z0=9.5, x0=10, 0=1,  =1.5 and 

=1.3 are constants which are assumed to be known. (For further details see Grandori, 

G., Drei, A., Perotti, F. and Tagliani, A. (1991), “Macroseismic intensity versus 

epicentral distance: The case of central Italy,” in: Stucchi, M., Postpischl, D., and D. 

Sleijko, eds., “Investigations of historical earthquakes in Europe,” Technophysics, 

Vol. 193, pp. 165—181). Suppose that Z~U[3km,25km]. Approximate the 

distribution of Y by simulating 1000 values from its distribution and plotting a 

histogram.  

 

Solution: 

 

The following code in MATLAB produces the required simulation. 

 
>> x=6+exprnd(1/0.91,1000,1); 

>> z=unifrnd(3,25,1000,1); 

>> z0=9.5; 

>> x0=10; 

>> psi0=1; 

>> psi=1.5; 

>> phi=1.3; 

>> y=x-1/log(psi)*log(1+(psi-1)/psi0*(z.*phi.^(x0-x)/z0-1)) 

 

Note that in MATLAB a.^x where a is a scalar and x is a vector evaluates to a 

vector of the same length as x where the ith element of the vector is given by a^xi. 

The histogram of the 1000 simulated values is shown in Figure 5.7. 

 

Figure 5.7: Histogram of 1000 simulated MCS intensity values. 



  28 

6. Statistical tests in MATLAB 
In your course you will be introduced to the rationale behind hypothesis testing, and 

you will be expected to perform the calculations required by hand. MATLAB does 

have some inbuilt functions for performing hypothesis tests, however, and we briefly 

summarise those functions in this section.  

6.1. One-sample t-test 

The MATLAB function ttest can be used to perform hypothesis tests regarding the 

mean of a normally distributed data vector with unknown variance. For example, 

entering the following command to MATLAB: 
>> [h,p,ci,stats]=ttest(normrnd(.2,1,20,1)) 

performs a two-sided test of the null hypothesis that the data vector (here, a random 

sample of size 20 from a normal distribution with mean 0.2 and standard deviation 1) 

comes from a population with mean zero, using a 5% significance level. The 

following output is produced: 

 
h = 

     0 

 

p = 

    0.1268 

 

ci = 

   -0.0888 

    0.6597 

 

stats =  

    tstat: 1.5966 

       df: 19 

       sd: 0.7997 

 

A value of 0 for h indicates that the null hypothesis cannot be rejected. The p-value is 

0.1268, and a 95% confidence interval for the mean is (-0.0888,0.6597). The t-

statistic, which has a t distribution with 19 degrees of freedom under the null 

hypothesis, has an observed value of 1.5966. The estimated standard deviation is 

0.7997. 

 

If the population standard deviation is known, then the function ztest can be used. 

See the help file for further details. 

6.2. Paired t-test 

The function ttest can be also be used to perform paired t-tests. For example, 

entering the following command to MATLAB: 

 
>> [h,p,ci,stats]=ttest(x,y) 

 

performs a test of the hypothesis that the paired data vectors x and y, come from 

distributions with equal means, using a 5% significance level. The difference x-y is 

assumed to come from a normal distribution with unknown variance.  x and y must 

have the same length. 
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6.3. Two-sample t-test 

The function ttest2 can be used to perform hypothesis tests of equality of means 

for two data vectors independently sampled from normal distributions with unknown 

variances. The syntax is: 

 
>> ttest2(X,Y,ALPHA,TAIL,VARTYPE) 

 

where X and Y are the data vectors, ALPHA specifies the desired significance level, 

TAIL is either ‘both’, ‘right’ or ‘left’ depending on whether we want a two-

sided or upper or lower one-sided test, and VARTYPE is ‘equal’ or ‘unequal’ 

depending on whether or not we assume equal variances in the two populations. 

6.4. The sign test 

The sample median is an estimator of the population median, which is defined for a 

random variable X sampled from a continuous population to be the value ~  satisfying 

.5.0)
~

Pr()
~

Pr(   XX  

The sign test is a method for testing the null hypothesis that the median of a 

continuous population is equal to some nominal value against a one or two sided 

alternative. In the case of a population with a finite mean and where the population 

distribution is symmetric (    xfxf
XX

 
~~  for every x>0 where  xf

X
 is the 

density function defining the population distribution), the mean is equal to the median 

and so the sign test also provides a way of testing for the mean (for instance, for a 

normal population the mean and median are equal). We stress that the sign test 

provides a valid way of testing for the median for any continuous population, and that 

no assumption of normality is required. Tests like the sign test that do not assume that 

the population distribution is a member of some parametric family are sometimes 

called nonparametric tests or distribution free tests.  

 

We wish to test H0: 0

~
   against one of the alternatives 

0

~
  ,

0

~
   or 

0

~
   

based on a sample Y1,…,Yn from the population. The test statisic used in the sign test 

is the number of sample values bigger than 0 (U say). If the null hypothesis is true, 

then 5.0)Pr(
0

 
i

Y , i=1,…,n, and hence U~Bin(n,0.5). For the alternative 

H1: 0

~
  , we reject the null hypothesis if Uc or Un-c where c is a constant chosen 

to achieve as nearly as possible a desired significance level. The form of the critical 

region here is intuitively sensible, since we reject the null hypothesis if either most of 

the sample values are bigger than 0 or most of the sample values are less than 0. 

 

For the one-sided alternative H1: 0

~
   the critical region is Uc, and for H1: 0

~
   

the form of the critical region is Uc (where again c is chosen so that a desired 

significance level is achieved as nearly as possible). The constant c defining the 

critical region can be found for a given significance level from a table of cumulative 

binomial probabilities. However, we do not discuss finding these critical values from 

tables, since MATLAB has a command signtest that conducts the sign test and 

reports a p-value that can be compared with the significance level.  

 

The MATLAB command signtest deals only with a two-sided alternative. If our 

sample values are contained in a vector y, then typing the command signtest(y,m) 
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in MATLAB will report the P-value for testing the null hypothesis that the median is 

m against a two sided alternative.  

6.5. The Wilcoxon signed-rank test 

A better nonparametric test for the value of the population mean that applies when the 

population distribution is continuous and symmetric is the Wilcoxon signed-rank test. 

Note that the mean and median are equal when the mean exists and the population 

distribution is continuous and symmetric. In the Wilcoxon signed-rank test we test H0: 

=0 against a one or two sided alternative. If we have a sample Y1,…,Yn from the 

population, then the test statistic for the Wilcoxon signed-rank test is constructed by 

ranking the absolute differences |Yi-0| and then finding the sum R+ of the ranks of 

the positive differences, and the sum R- of the ranks of the negative differences. 

Under the assumption of a continuous and symmetric population distribution, we can 

work out the distribution of R+ and R- under the null hypothesis, and these 

distributions depend only on the sample size n. For the two-sided alternative H1:0 

the Wilcoxon signed-rank test statistic is R=min(R+,R-) and the critical region takes 

the form Rc where c is a constant chosen to achieve as nearly as possible a given 

significance level. The form of the critical region is quite intuitive. If most of the 

sample is below the hypothesized value for the mean then R+ will be small and R will 

be small. On the other hand, if most of the sample is above the mean, then R- will be 

small and hence R will be small.  

 

For the one-sided alternative H1: <0 the test statistic used is R+ and the form of the 

critical region is R+c. For H1: >0 the test statistic used is R- and the form of the 

critical region is R-c. The critical values that define the critical region can be found 

from tables, although we do not discuss this. Instead, we discuss how to carry out the 

Wilcoxon rank-sum test using the MATLAB command signrank.  

 

The MATLAB command signrank deals only with a two-sided alternative. If our 

sample values are contained in a vector y, and if the vector x is the same length as y 

and has entries which are all equal to 0, then typing signrank(x,y) in MATLAB will 

give the p-value for testing the null hypothesis that the mean is 0 against a two sided 

alternative. 

As for the sign test, we can apply the Wilcoxon signed-rank test to paired data. 

Suppose we have pairs (X1,Y1), …, (Xn,Yn) and that the distribution of pair differences 

is continuous and symmetric. We can apply the Wilcoxon signed-rank test to the pair 

differences to test if the mean difference is zero.  

 

In MATLAB, if vectors x and y (of the same length) contain the pairs, we type 

signrank(x,y) to obtain the P-value of the test for a two-sided alternative.  

7. Simple linear regression in MATLAB 

7.1. Simple linear regression:  fitting lines to data 

In engineering applications we are often interested in statistical models that allow the 

distribution of a variable of interest to be described in terms of additional measured 

variables. The simple linear regression model allows us to fit lines to scatter plots in 

order to describe the relationship between two variables. The objective in doing this is 

usually to predict one variable (the response) in terms of the other (the predictor).  
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Example: predicting a rainfall-runoff relationship 

 

(From Kottegoda and Rosso, 1997). The following table shows rainfall and runoff 

measurements at Pontelagoscuro on the Po river in northeast Italy, for the 31 years 

1918 to 1948.  

Year Rainfall Runoff Year Rainfall Runoff Year Rainfall Runoff 

1918 1133 904 1928 1171 810 1938 940 517 

1919 999 648 1929 876 490 1939 1196 801 

1920 1501 1080 1930 1159 747 1940 1046 607 

1921 807 549 1931 993 531 1941 1218 837 

1922 1051 481 1932 1112 639 1942 948 522 

1923 969 576 1933 1128 589 1943 896 444 

1924 997 630 1934 1345 922 1944 950 407 

1925 1090 688 1935 1290 787 1945 846 412 

1926 1356 918 1936 1259 1039 1946 1011 679 

1927 1133 733 1937 1529 958 1947 1096 585 

      1948 1100 724 

 

Figure 7.1 shows a scatter plot of rainfall against runoff. It is of interest to predict 

runoff in terms of rainfall in future years. If a method for predicting future annual 

rainfall is available, then a predictive relationship between rainfall and runoff may be 

useful for prediction of future runoff. These predictions of runoff are important to 

hydrologists involved in water resources management. In a simple linear regression 

model for these data, the response (variable to be predicted or explained) is runoff, 

and the predictor (thought to be useful for explaining variation in the response) is 

rainfall. We see from the plot that runoff seems to increase linearly as rainfall 

increases, and it appears that rainfall is a useful predictor of runoff. Of course, there 

are other predictors apart from rainfall that could be used to predict runoff, and 

statistical rainfall-runoff models used in practice incorporate many predictors, not just 

one predictor such as rainfall.  

 

Figure 7.1: Scatter plot of runoff against rainfall for Pontelagoscuro on the Po river in northeast 

Italy for the period 1918-1948. 
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7.2. Fitting the simple linear regression model in MATLAB 

Suppose we have n measurements y=(y1,…,yn) of a response variable and 

corresponding measurements x=(x1,…,xn) of a predictor. The simple linear regression 

model can be written as 

iii
xy  

10
 

where 1,…,n are independent normal random errors with zero mean and variance 
2
. 

The term 
i

x
10

  is the systematic part of the model, or the component of the 

response that can be explained in terms of the predictor, whereas i is a random error 

term representing variation in the response that cannot be explained by the predictor. 

We can think of the errors as being the “scatter” about the linear trend in a scatter plot 

like the one shown in Figure 7.2. 

 

The method commonly used for estimation of 0 and 1 in the simple linear regression 

model is called least squares. Suppose we wanted to use a simple linear regression 

model for prediction of the response variable. If we are given xi and some guesses 0 

and 1 for 0 and 1 we would predict Yi by 
i

x
10

  . The error of prediction is 

ii
xy

10
  . The idea of least squares estimation for the parameters 0 and 1 is to 

find values b0 and b1 which minimize with respect to 0 and 1 the sum of squared 

prediction errors  

 
2

1010
.),(  

i

ii
xyR   

 

In a sense this will give the best fitting line to the data. To find the least squares 

estimates b0 and b1 of 0 and 1 we minimize R(0,1) by finding partial derivatives 

with respect to 0 and 1 and setting these to zero. Solving for 0 and 1 gives the 

least squares estimates b0 and b1. As shown in lectures, the solutions can be written: 
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Example: rainfall-runoff model 

 

We return to the example of the rainfall-runoff data for Pontelagoscuro on the Po river 

in northeast Italy. We have 31 measurements corresponding to the years 1918-1948. 

The response y is runoff and the predictor x is rainfall.  

 

Figure 7.2 shows a scatter plot of runoff against rainfall with the fitted least squares 

regression line xbb
10

  superimposed.  
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Figure 7.2: Scatter plot of runoff against rainfall for Pontelagoscuro, northeast Italy, 1918-1948 

with least squares regression line superimposed. 

 

Although we could find the least squares estimates for 0 and 1 using the formulae 

above, it is much easier to use the MATLAB command fitlm. 

 

If the rainfall measurements are held in a row vector rainfall and the runoff 

measurements in a row vector runoff (the same length as rainfall) then we can run 

a linear regression using the fitlm command in MATLAB.  

 
RainMod=fitlm(rainfall,runoff) 

RainMod =  

Linear regression model: 

    y ~ 1 + x1 

 

Estimated Coefficients: 

                   Estimate       SE        tStat       pValue   

                   ________    ________    _______    __________ 

 

    (Intercept)    -327.12       99.568    -3.2854     0.0026651 

    x1             0.91946     0.089285     10.298    3.3758e-11 

 

 

Number of observations: 31, Error degrees of freedom: 29 

Root Mean Squared Error: 86.7 

R-squared: 0.785,  Adjusted R-Squared 0.778 

F-statistic vs. constant model: 106, p-value = 3.38e-11 

 

We get some useful output by default, but the object RainMod stores just about 

anything you might want to know about your model. In the output, the first value 

under Estimate is the estimated intercept b0 and the second value is the estimated 

slope b1 (compare with the values obtained previously).  

 

You might wonder what’s actually happening inside the fitlm function. Firstly the 

function creates a design matrix X. This matrix has ones in the first column and the 

values of rainfall in the second column. To see why it does this, just observe that if 
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 is the vector (0, 1)
T
 and if y=(y1,…,yn)

T
 and if =(1,…,n)

T
 then we can write the 

simple linear regression model in matrix language as 
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or 

 

.  Xy  

X is called the design matrix and expressing the model in terms of the design matrix 

will be worth the effort when we go on to consider more complex models than the 

simple linear regression model. The fitlm function then estimates the model 

parameters via least squares. 

7.3. Estimation of 2 

As discussed in lectures, an unbiased estimator of 
2
 is  
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An alternative expression for this estimator is 

2

2

12






n

SbS
S

xxyy

 

where 

.

2

2

n

y

yS
i

i

i

iyy
















  

 

 

 
Example: rainfall-runoff model 

 

We can read this directly from the default output, the mean square error is 86.7. 

 

7.4. Decomposing variation 

We give a basic result expressing a decomposition of variation in the response. This 

result also leads to a measure of the amount of variation explained in a simple linear 

regression model by the predictor.  

 

Write 
ii

xbby
10

ˆ   for the fitted value corresponding to yi and let 
iii

yye ˆ  (the 

residuals or raw residuals). Then the following identity can be proven. 
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We call  

  

i

i
yySST

2

 

the total sum of squares,  

  

i

i
yySSR

2
ˆ  

the regression sum of squares and 
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i

ii
yySSE

2
ˆ  

the residual or error sum of squares. With this notation we can write the above 

identity as SST=SSR+SSE. SST is the sum of squared deviations of the responses 

about their mean (the total variation of the responses), SSR is the sum of squared 

deviations of the fitted values about the mean of the responses (the amount of 

variation explained by the regression) and SSE is the sum of the squared residuals 

(amount of variation left unexplained by the regression). The proportion of total 

variation explained by the regression is called the coefficient of determination: 

.
2

SST

SSR
R   

 

Since SSR=SST-SSE from the above identity, we can also write 

.1
2

SST

SSE
R   

The value of R
2
 always lies between zero and one, with a value close to one indicating 

that the simple linear regression on the predictor explains most of the variation in the 

response.  

 

 
Example: rainfall-runoff model 

 

We can read this directly from the default output, the R
2=

 0.785. 

 
 

7.5. Different kinds of residuals 

The residuals we have defined above are often called the raw residuals (or simply 

residuals). However, there are other kinds of residuals which may be more useful than 

the raw residuals for some purposes. One problem with the raw residuals is that they 

will not have constant variance, even if the assumptions of the model hold and the 

errors 
i

  do have constant variance. In particular, the variance of the ith raw residual 

ei will depend on where xi is in relation to the other predictor values.  

 

It can be shown for the simple linear regression model that the variance of the ith 

residual is 
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As the sample size n increases the variance of the residual will tend to 
2
. However, 

for small samples, the variance may be much less than 
2
, and the variance of the ith 

residual will depend on how far xi is from the mean of the predictor values.  Roughly 

speaking, an observation for an xi a long way from the mean of the predictors is very 

influential and can pull the fitted least squares regression line towards itself, reducing 

the variance of the corresponding residual.  

 

The above considerations lead to the idea of a standardized residual, where we divide 

the raw residual by an estimate of its standard deviation in order to adjust for the fact 

that the raw residual has a variance depending on the predictor value. We define the 

ith standardized residual as 
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where s is the estimated standard deviation of the errors. Plots of standardized 

residuals against the predictor values or the fitted values are better than the 

corresponding plots of the raw residuals for many purposes. For instance, it will be 

easier to assess the reasonableness of the constancy of variance assumption for the 

errors using the standardized residuals. It may also be easier to detect observations 

which do not fit the pattern of the rest of the data using the standardized residuals.  

 

It can be shown that 
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has a standard normal distribution if the assumptions of the model hold. The 

standardized residuals ri are obtained by replacing  in the above expression by s, and 

on the basis of our previous work we might expect that this results in the standardized 

residual having a t distribution. This is in fact not the case, but we can define another 

kind of residual, the studentized residual, which is t-distributed under the model 

assumptions. The ith studentized residual is  
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where 
i

s


 is the estimated standard deviation of the errors obtained when the 

regression model is fitted to the data with the ith observation excluded. The 

studentized residual has a t distribution with n-3 degrees of freedom for the simple 

linear regression model if the model assumptions hold.  

 

This distributional result about the studentized residual gives us a way of detecting 

outlying observations: we can compare the ith studentized residual to the percentage 

points of a t-distribution to determine if an observation might be thought of as an 

outlier.  

 

Suppose that the ith error 
i

  has mean   (not necessarily zero) and that the 

assumptions of the linear regression model hold for the remaining observations. One 
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formal way of detecting whether or not the ith observation is an outlier is to test the 

hypothesis 

H0: =0 

against the alternative  

H1: 0. 

 

We can use as the test statisic the ith studentized residual ti, which has a tn-3 

distribution under the null hypothesis. The critical region for a test at level  is 

3;2/ 


ni
tt


 or 
3;2/ 


ni

tt


, where 
3;2/ n

t


 is the upper 100/2 percentage point of the t 

distribution with n-3 degrees of freedom.  

We must be careful about applying the above outlier test to all observations in a large 

data set. In a large data set, it is very likely that there will be some large studentized 

residuals purely by chance. The test above should be used as an informal diagnostic 

for detecting potential outliers which can then be further investigated in the scientific 

or engineering context of the problem.  

 

 
Example: green liquor Na2S concentration and paper machine production 

 

(From Montogmery and Runger, 1999). An article in the Tappi Journal (March, 1986) 

presented data on green liquor Na2S concentration and paper machine production 

available in dataset paper. A scatter plot of the data is shown in Figure 7.3. 

 

Figure 7.3: Scatter plot of green liquor Na2S concentration (g/l) against production (tons/day). 

When we fit the model in MATLAB using the fitlm command, the studentized 

residuals are stored inside the paperMod object. We can then plot the residuals using 

the plotResiduals command with the paperMod object. 

 
PaperMod=fitlm(production,concentration); 
plotResiduals(PaperMod,'fitted','ResidualType','Studentized') 
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Figure 7.4: Plot of studentized residuals against fitted values for data on green liquor Na2S 

concentration and paper machine production. 

 

There is one studentized residual here that is much larger in magnitude than the others 

(a studentized residual of –4.58, corresponding to a production of 960 tons/day. 

Suppose we had a prior reason for thinking that this observation was not reliable. In 

this case it would be interesting to conduct the outlier test described above in order to 

decide whether this observation should be discarded when fitting the model.  

 

 

8. Multiple linear regression in MATLAB 

8.1. The multiple linear regression model 

The general multiple linear regression has observations yi, i=1,…,n, of a response 

variable which we wish to predict or explain in terms of corresponding measurements 

of k predictor variables xi1,…,xik, i=1,…,n. The observations are assumed to come 

from the model 

iikkii
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where 0,1,,k are unknown parameters and the i are zero mean independent 

random errors which are normally distributed with a common variance 
2
. 

 

The multiple linear regression model can be written in matrix form. Let y=(y1,…,yn)
T
 

be the vector of the responses, let  
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k
 ,,

0
  and let  

T

n
 ,

1
 . Also, let X 

be the matrix  

.

1

1

1

111



































nkn

k

xx

xx

X







 

Thus X is the matrix with entries in its first column equal to 1, and the remaining k 

columns given by the k vectors of predictor values. X is often called the design matrix. 

We can write the multiple linear regression model as 
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8.2. Estimation of model parameters 

As in the simple linear regression model, we can estimate the parameters  using least 

squares. Let  
T

k
 ,

0
  be some guess for the parameter vector . If we predict 

the responses by their means assuming =, the sum of squared prediction errors is 

        .
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The least squares estimate b of  is the value that minimizes R() with respect to . 

To obtain an expression for b, we can follow a similar argument to the one we gave 

for the simple linear regression model. The least squares estimate b can be written in 

matrix language as 

  yXXXb
TT

1

  

where X
T
 denotes the transpose of the matrix X and (X

T 
X)

-1
 is the inverse of X

T 
X.  

 

We also need to be able to estimate the variance of the errors 
2
. It can be shown that 

an unbiased estimator of the error variance is 
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Note that in the case of the simple linear regression model (one predictor) this reduces 

to the expression we used previously.  

 

 
Example: predicting 28-day concrete strength 

 

The following example is from Metcalfe, “Statistics in Civil Engineering,” Arnold 

Publishers, 1997.  

 

For fourteen concrete cubes from the same batch of cement the density, 7-day strength 

and 28-day strength are measured. We want to be able to predict 28-day strength from 

information available at seven days. The data are shown in the table below: here we 

have written y for the 28-day strength, x1 for the 7-day strength and x2 for the density.  

y=28-day strength x1=7-day strength x2=Density 

46.2 

43.2 

42.5 

47.8 

42.5 

42.5 

40.3 

38.1 

36.0 

40.5 

34.9 

33.2 

2058 

2074 

2045 

2085 

2073 

2087 
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42.0 

39.2 

44.3 

56.7 

56.8 

52.1 

55.3 

56.8 

34.2 

32.5 

38.8 

44.4 

45.2 

37.6 

42.7 

43.8 

2069 

2055 

2087 

2412 

2409 

2418 

2406 

2415 

 

We again use the fitlm command, this time to fit a multiple linear regression model 

to the concrete strength data using MATLAB (assuming this model is appropriate). 

First we create a matrix which contains both the predictors, Strenght7 and Density, 

then we use them to predict Strength28. 

 
>> X=[Strength7,Density]; 
>> concreteMod=fitlm(X,Strength28) 

Linear regression model: 

    y ~ 1 + x1 + x2 

 

Estimated Coefficients: 

                   Estimate       SE         tStat       pValue   

                   ________    _________    _______    __________ 

 

    (Intercept)     -29.698       2.9617    -10.027    7.1942e-07 

    x1              0.70751     0.079246      8.928    2.2673e-06 

    x2             0.022808    0.0019773     11.535    1.7442e-07 

 

 

Number of observations: 14, Error degrees of freedom: 11 

Root Mean Squared Error: 0.827 

R-squared: 0.986,  Adjusted R-Squared 0.984 

F-statistic vs. constant model: 392, p-value = 5.95e-11 

 

Most of the key information can be gained from the default output. In the output, the 

first value under Estimate is the estimated intercept b0 and the second value is the 

estimated slope b1. The mean square error is 0.827 and R
2=

 0.986. 

 

 

 

8.3. Inference for model coefficients  

In addition to obtaining point estimates of model parameters it is important to be able 

to derive interval estimates that give a range of plausible values for the parameters. In 

lectures we stated some distributional results that allow construction of confidence 

intervals: 

 

We can also test hypotheses on individual coefficients: 

A 100(1-)% confidence interval for i is given by  

 
ikni

bestb ˆ
1;2/ 




. 
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Example: concrete strength data 

 

To can obtain the confidence intervals for the concrete strength data using the coefCI 

function on the concreteMod object.  

 
>> X=[Strength7,Density]; 
>> concreteMod=fitlm(X,Strength28) 

>> coefCI(concreteMod) 

  -36.2162  -23.1790 

    0.5331    0.8819 

    0.0185    0.0272 

 

This output gives us a matrix with two columns, the lower and upper bounds of the 

95% confidence intervals for 0, 1, and 2 respectively. 

 

We can add a second argument to coefCI to control the level of confidence for the 

intervals. Typing coefCI(concreteMod,alpha) where alpha is some constant 

between zero and one produces 100(1-alpha)% confidence intervals. With alpha 

equal to 0.05 we obtain a 95% confidence interval.  

 
 

Example: Big Mac data 

 

Suppose we want to construct 99% confidence intervals for the regression coefficients 

for the Big Mac data. T vectors engsal and engtax are average salary of an electrical 

engineer and tax rate paid by engineers and the vector bigmacindex contains minutes 

of labour required by an average worker to buy a Big Mac and French fries. 

 

To test the hypothesis 

H0: i=
*
 

against a one or two sided alternative we use the test statistic 

)(ˆ

*

i

i

bes

b
T


  

which has a tn-k-1 distribution under the null hypothesis. For a test with significance 

level  and the two-sided alternative H1: i≠
*
, the critical region is  

.or  
1;2/1;2/ 


knkn

tTtT


 

For the one-sided alternatives H1: i<
*
 and H1: i>

*
 the critical region is 

modified to T<
1; 


kn

t


 or 
1; 


kn

tT


 respectively. These hypothesis tests are 

sometimes called partial t-tests.  



  42 

In MATLAB, we type: 

 

>> X=[engsal,engtax]; 

bigmacMod=fitlm(X,bigmacindex); 

coefCI(bigmacMod,0.01) 

 

ans = 

 

   65.8158  133.9485 

   -2.4638   -0.7387 

   -1.3310    1.5613 

 

This gives us the 99% confidence intervals (we set the second argument of coefCI 

equal to 0.01 here to get 99% confidence intervals).  

 

 

8.4. Confidence intervals for the mean and prediction intervals 

 

Confidence intervals for the mean response 
 

If we write x0 for a vector of new predictor values (1,x01,…,x0k)
T
 then the estimated 

mean response when the predictors take the values x01,…,x0k is  

 
kk

T
xbxbbbxxy

0011000
ˆ   . 

We have the following result: 

 

Prediction intervals 

 

In addition to giving a confidence interval for the mean at x0, we need to be able to 

quantify our uncertainty about a future observation Y0 observed at the predictor values 

in x0.  

 

 
Example: concrete strength data 

 

We illustrate the construction of confidence intervals and prediction intervals in 

MATLAB using the concrete strength data. Suppose we are interested in predicting 

28-day strength when 7-day strength is 36 and density is 2050. The following 

commands and output in MATLAB give a 95% confidence interval for the mean and 

a 95% prediction interval for these values of the predictors. 

A 100(1-)% prediction interval for Y0 is given by  

    .1,1
0

1

01;2/00
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01;2/0 



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A 100(1-)% confidence interval for the mean response at x0 is  

    




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
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>> X=[Strength7,Density]; 
>> concreteMod=fitlm(X,Strength28) 

>> [ypred,yci] = predict(concreteMod,[36,2050]) ; 

>> yci = 

 

   41.8856   43.1739 

 

>> [ypred,ypi]= 

predict(concreteMod,[36,2050],'Prediction','observation'); 

ypi 

 

ypi = 

 

   40.5994   44.4601 

 

Hence a 95% confidence interval for the mean when 7-day strength is 36 and density 

is 2050 is (41.8856,43.1739) and a 95% prediction interval is (40.5994,44.4601).  

 

8.5. Assessing overall model adequacy 

In our discussion of the simple linear regression model, we gave a decomposition of 

total variation into variation explained by the regression and residual variation. A 

similar decomposition holds for the multiple linear regression model. The coefficient 

of determination (which is a measure of the proportion of variation in the response 

explained by the regression) is defined as for the simple linear regression model: 

 

 

 

 

 

 

It follows from the identity SST=SSR+SSE that R
2
 always lies between zero and one, 

with a value close to one indicating that most of the variation in the response can be 

explained by the predictors, and a value close to zero indicating that a large 

proportion of variation is left unexplained by the predictors.  

 

One thing we would like to do in assessing the overall adequacy of a multiple linear 

regression model is to test the hypothesis that all the coefficients of the predictors in 

the model are zero against the alternative that at least one of the coefficients is 

nonzero. This is a test of whether the predictors can help to explain a significant 

amount of variation in the response.  

 

More precisely, we test 

H0: i=0, i=1,…,k 

against the alternative 

H1: Not all i=0, i=1,…,k. 

The test statisic for this hypothesis test is 

)1/(

/




knSSE

kSSR
F  

 

 

.1
2

SST

SSE

SST

SSR
R   
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The distribution of F under the null hypothesis can be calculated: it has a distribution 

belonging to the F family of distributions. A distribution in the F family has two 

parameters (called the degrees of freedom). The statistic given above has an F 

distribution with k and n-k-1 degrees of freedom under the null hypothesis, and we 

write F~Fk,n-k-1. If we write 
1,;  knk

F


 for the upper 100 percentage point of an F 

distribution with k and n-k-1 degrees of freedom (that is, the value that bounds an area 

of  in the upper tail of the Fk,n-k-1 density) then the critical region for the above 

hypothesis test is 

.
1,; 


knk

FF


 

 

We can summarize the testing procedure as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In most statistical packages the decomposition of variation SST=SSR+SSE and the 

above overall test of model significance is displayed in an analysis of variance 

(ANOVA) table. The form of the ANOVA table for the multiple linear regression 

model is shown below.  

 

Source DF SS MS F P 

Regression 

 

Error 

k 

 

n-k-1 

SSR 

 

SSE 

SSR/k 

 

SSE/(n-k-1) 
)1/(

/

 knSSE

kSSR
 

p-value 

Total n-1 SST    

 

The first column “Source” describes the nature of the variation considered in the 

remainder of each row (we are interested in the decomposition of total variation into 

variation explained by the regression and unexplained or error variation). The third 

column “SS” (which stands for sums of squares) gives SSR, SST and SSE. The second 

column “DF” (for degrees of freedom) gives the values we divide the sums of squares 

by in computing the test statistic F. The fourth column “MS” (which stands for mean 

squares) gives the numerator and denominator for the F statistic used in the global test 

of model significance. The fifth column, labelled “F” gives the test statistic for the test 

of model significance, and the final column gives the p-value of the test.  

 

To test 

H0: i=0, i=1,…,k 

against the alternative 

H1: Not all i=0, i=1,…,k. 

 

we use the test statistic 

)1/(

/




knSSE

kSSR
F  

 

which has an Fk,n-k-1 distribution under H0. We reject H0 at significance level 

 if  

 

.
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
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FF
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Example: concrete strength data 

 

The F statistic and associated p-value are given in the last line of the default output 

from the fitlm object.  

 
>> X=[Strength7,Density]; 
>> concreteMod=fitlm(X,Strength28) 

>> concreteMod 

 

concreteMod =  

 

 

Linear regression model: 

    y ~ 1 + x1 + x2 

 

Estimated Coefficients: 

                   Estimate       SE         tStat       pValue   

                   ________    _________    _______    __________ 

 

    (Intercept)     -29.698       2.9617    -10.027    7.1942e-07 

    x1              0.70751     0.079246      8.928    2.2673e-06 

    x2             0.022808    0.0019773     11.535    1.7442e-07 

 

 

Number of observations: 14, Error degrees of freedom: 11 

Root Mean Squared Error: 0.827 

R-squared: 0.986,  Adjusted R-Squared 0.984 

F-statistic vs. constant model: 392, p-value = 5.95e-11 

 

So from the p-value, at the 5% level (or the 1% level) we reject the null hypothesis 

that the coefficients of all the predictors are zero in favour of the alternative that at 

least one of these coefficients is nonzero (since the p-value for the test is zero to four 

decimal places). The coefficient of determination is 0.986.  

 
 

Example: Big Mac data 

 

As another example, consider the Big Mac data set available in bigmac.csv. Our 

responses are in the vector bigmacindex, and the predictors are engsal and elgtax. 

We type the following 
 

>> X=[engsal,engtax]; 

bigmacMod=fitlm(X,bigmacindex) 

 



  46 

bigmacMod =  

 

Linear regression model: 

    y ~ 1 + x1 + x2 

 

Estimated Coefficients: 

                   Estimate      SE        tStat       pValue   

                   ________    _______    _______    __________ 

 

    (Intercept)     99.882      12.626     7.9107    7.4597e-10 

    x1             -1.6012     0.31968    -5.0089    1.0341e-05 

    x2             0.11515     0.53598    0.21483       0.83094 

 

 

Number of observations: 45, Error degrees of freedom: 42 

Root Mean Squared Error: 33.7 

R-squared: 0.467,  Adjusted R-Squared 0.442 

F-statistic vs. constant model: 18.4, p-value = 1.79e-06 

 

So if we are testing at the 5% level, since the p-value is less than 0.05, we conclude 

that the predictors do contain useful information for explaining variation in the 

response. The coefficient of determination is 0.467. 

 

8.6. Stepwise approaches to model selection 

Sequential methods start with an initial model and then make a sequence of additions 

or deletions of predictors, attempting to improve the fit of the model at each step. We 

do a search through the model space, visiting only a small subset of possible models, 

ending our search when some stopping rule is satisfied.  

 

Sequential methods are often used in practice and you need to know about them. 

However, with modern computing power, they are not needed unless the number of 

predictors is very large. Furthermore, even if the number of predictors is very large, 

often the experience of the scientist or engineer in the context of the problem can 

reduce the set of potential predictors to a smaller set, and then some other model 

selection criterion can be applied. It should be emphasized that we do not always want 

to select just a single “best” model in any case, but may wish to identify a number of 

good models for further investigation.  

 

There are three basic sequential methods (and many variants of these): forward 

selection, backward selection and stepwise.  

 

Forward selection 

 

In forward selection, we start with some initial model (typically the model including 

no predictors) and then attempt to improve on the current model by adding the 

predictor which most improves the fit until some stopping rule is satisfied.  

 

Our measure of the improvement of fit upon addition of a predictor is the absolute 

value of the partial t-statistic for testing whether the predictor coefficient is zero. That 

is, we use 
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The predictor i not currently in the model for which |ti| is largest is considered the best 

to add.  

 

The algorithm is as follows: 

1. Fit the model involving just an intercept (no predictors)  

2. Repeat: 

a. Considering all possible one variable additions to the current model, 

find the predictor i for which |ti| is largest and add it to the model if 

|ti|>Tin, where Tin is some cutoff value. 

b. If no variable could be added in a., then stop.  

 

In order to implement the above algorithm, the cutoff value Tin must be specified. A 

common choice for Tin is 2.0. Unfortunately, differences in the final model selected 

depending on the cutoff value chosen do occur.  

 

 
Example: concrete strength data 

 

With 28-day strength as the response and 7-day strength and density as predictors, 

there are four possible models (include neither predictor, both predictors, just density 

or just 7-day strength).  

 

We start with the model with just an intercept, and consider models obtained by 

adding one variable. We can use the stepwiselm command to carry out model 

selection. To start with the model with no predictors we use the option ‘constant’.  

 
>> X=[Strength7,Density]; 

>> stepwiselm(X,Strength28,'constant') 

1. Adding x2, FStat = 93.219, pValue = 5.2265e-07 

2. Adding x1, FStat = 79.7099, pValue = 2.26728e-06 

 

ans =  

 

Linear regression model: 

    y ~ 1 + x1 + x2 

 

Estimated Coefficients: 

                   Estimate       SE         tStat       pValue   

                   ________    _________    _______    __________ 

 

    (Intercept)     -29.698       2.9617    -10.027    7.1942e-07 

    x1              0.70751     0.079246      8.928    2.2673e-06 

    x2             0.022808    0.0019773     11.535    1.7442e-07 

 

 

Number of observations: 14, Error degrees of freedom: 11 

Root Mean Squared Error: 0.827 

R-squared: 0.986,  Adjusted R-Squared 0.984 

F-statistic vs. constant model: 392, p-value = 5.95e-11 
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From the output we can see x2 (Density) was added in the first step followed by x1 

(Strenght7). The final model contains both the predictors.  

 
 

8.7. Residuals and influence in multiple linear regression 

As for simple linear regression, the basis for model criticism in multiple linear 

regression is usually some kind of residual analysis.  

 

Let yi be the value of the ith response, i=1,…,n, and xi1,…,xik values of k predictor 

variables. The responses yi are assumed to follow the model,  

iikii
xy   ...

110
 

where as usual the i are zero mean independent normally distributed errors with 

variance 
2
. In matrix notation we write 

  Xy  

where y is the vector of the responses, X is the design matrix,  
T

k
 ,,

0
  is the 

vector of unknown parameters in the mean response and  is the vector of random 

errors. We write b for the least squares estimate of , and 
i

ŷ  for the fitted value at the 

predictor values xi1,…,xik,  

ikkii
xbxbby  ...ˆ

110
 

If we let xi be the vector formed from the ith row of the design matrix, 

xi=(1,xi1,…,xik)
T
, then we can write the fitted value in matrix notation as 

.ˆ bxy
T

ii
  

and the ith raw residual ei is defined to be .ˆ
iii

yye   

 

We can use plots of residuals (against fitted values or the predictors) to check some of 

the multiple linear regression model assumptions. The interpretation of residual plots 

is much the same as for the simple linear regression case. In particular, a trend in the 

mean level of the residuals as the fitted values or predictors increase suggests that the 

mean of the responses is not correctly specified, whereas a trend in the variability of 

the residuals casts doubt on the constancy of variance assumptions for the errors. 

Residual plots can also be used to identify outliers that do not fit the trend of the rest 

of the data.  

 

While plots of the raw residuals can be very useful, as for the simple linear regression 

case there are other kinds of residuals that may be more informative for some 

purposes. A drawback with the raw residuals is that they do not have the same 

variance, even if the assumptions of the model hold. So we may wish to standardize 

the raw residuals by dividing by an estimate of their standard deviation to obtained a 

standardized residual. We write ri for the ith standardized residual.  

 

For assessing whether an observation fits the pattern of the rest of the data, it is 

helpful to know the distribution of the residuals so that it can be determined if an 

observation is unusually large or small. Again following the simple linear regression 

case, we can define studentized residuals (similar to standardized residuals but 

employing an estimator of the error variance which excludes the ith observation) that 

have a t-distribution if the model assumptions hold.  
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In particular, the ith studentized residual ti has a tn-k-2 distribution. We can test whether 

an observation is an outlier using the studentized residual as the test statistic: as in the 

simple linear regression case, this test should be considered an informal diagnostic to 

highlight observations that require further examination in the context of the problem. 

We should not apply such an outlier test blindly to all obseravtions in the data set and 

exclude observations which fail the test, since some large studentized residuals are 

likely to occur purely by chance in a large data set.  

 

 
Example: concrete strength data 

 

We can plot residuals using the  plotResiduals command.  

 
>> X=[Strength7,Density]; 
>> concreteMod=fitlm(X,Strength28) 

>> plotResiduals(concreteMod,'fitted','ResidualType','Studentized') 

 

 

Figure 8.1: Plot of the studentized residuals against fitted values 

From the graph of studentized residuals against fitted values it seems that the 

constancy of variance assumption might be violated: the studentized residuals for 

large fitted values tend to be smaller in absolute value than those for smaller values.  

 
 

Example: Big Mac data set 

 

We return to the Big Mac data set. The responses are in a vector bigmacindex, and 

the predictors are engsal (average salary of an electrical engineer in US dollars) and 

elgtax. (the tax rate for engineers).  

 
>> X=[engsal,engtax]; 

>> bigmacMod=fitlm(X,bigmacindex); 

>> plotResiduals(bigmacMod,'fitted','ResidualType','Studentized') 
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What do you conclude from this plot? Do you think this model is appropriate for these 

data? Why, or why not? 

 

 

 

 

9. ANOVA in MATLAB 

9.1. One way ANOVA 

The two sample t-test gives us a test for the equality of two population means. We 

now discuss briefly a method for comparing means for more than two populations, 

and describe the connection between this method and multiple linear regression.  

 

Suppose that we have k different populations, and that we take a random sample of ni 

observations from the ith population, i=1,…,k. Write yij for the jth observation from 

the ith population, i=1,..,k, j=1,…,ni. Also, write i for the population mean of the ith 

population, i=1,..,k, and suppose that the population variances are all equal. We wish 

to determine whether all population means are equal, or whether there are differences 

among the means of the populations.  

 

The above experimental situation where population means are to be compared based 

on random samples from the populations is referred to as a completely randomized 

single-factor experiment, and the analysis to determine differences among population 

means is referred to as a single factor or one-way analysis of variance (ANOVA). The 

following example gives one illustration of a situation where a one-way ANOVA 

might be of interest. 

 

 
Example: compressive strength of concrete 

 

(From Montgomery and Runger, 1999). The compressive strength of concrete is being 

studied, and four different mixing techniques are being investigated. The following 

data have been collected.  
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Mixing  

Technique 

    

1 

2 

3 

4 

3129 

3200 

2800 

2600 

3000 

3300 

2900 

2700 

2865 

2975 

2985 

2600 

2890 

3150 

3050 

2765 

In each row there are four observations of compressive strength for one of the mixing 

techniques. The question of interest here is: do mixing techniques have an effect on 

the compressive strength of the concrete? We will return to this example later.  

 
 

We can write our model for the data here in a form similar to the multiple linear 

regression model. We assume that the observations yij follow the model 

ijiij
y    

where the ij are zero mean independent normally distributed errors with variance 
2
. 

Now define variables xijm=1 if m=i and zero otherwise. Think of xij1,…,xijk as being k 

predictor values associated with the response yij: of these k predictor values, xiji is one, 

and the remaining predictors are zero. Hence we can write 

ijijkkij

ijiij

xx

y









...
11

 

which is in the form of a multiple linear regression model with no intercept, 

parameters 1,…,k in the mean response, and predictors xij1,…,xijk for the observation 

yij. As a matter of fact, the mathematical framework for estimating parameters in the 

model here and conducting tests of hypotheses is the same as that used in the study of 

the multiple linear regression model. We can estimate parameters, estimate our 

uncertainty about parameters, obtain predictions and so forth as before.  

 

One result that carries over from multiple linear regression is that there is a 

decomposition of total variation into variation explained by the predictors (variation 

which can be explained in terms of membership of the different population groups) 

and variation unexplained. It can be shown that the usual decomposition of variation 

in multiple linear regression SST=SSR+SSE can be written here as  

        

i j

iij

i

ii
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2
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2

..
 

where we have written 
..

y  for the mean of all the observations, and 
.i

y  for the mean 

of the observations from the ith population.  

 

We can test the hypothesis 

H0: 1=…=k 

against the alternative 

H1: Not all i are equal, i=1,…,k. 

Using the test statistic 

)/(

)1/(

knSSE

kSSR
F




  

which has an Fk-1,n-k degrees of freedom under the null hypothesis (where n is the total 

number of observations). The critical region for the test when the significance level is 

 is 
knk

FF



,1;

.  
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Example: compressive strength of concrete 

 

We illustrate testing for the equality of means in a completely randomized experiment 

with a single factor using the compressive strength of concrete data and MATLAB’s 

anova1 command. We have the same number of observations in each population 

(mixing method) in this example, and suppose we have stored the observations in a 

matrix X in MATLAB, with different columns corresponding to different mixing 

types: 

 
» X 

X = 

 

        3129        3200        2800        2600 

        3000        3300        2900        2700 

        2865        2975        2985        2600 

        2890        3150        3050        2765 

 

We can obtain the p-value for the test that the four population means are equal 

(mixing type has no effect) by typing anova1(X) in MATLAB. The number which 

appears in the command window is the p-value. The anova1 command also produces 

an analysis of variance table which gives the decomposition SST=SSR+SSE and the 

calculations leading to the F statistic used in the test for equality of means, as well as 

a side by side boxplot of the observations for the four mixing types (not very helpful 

here with only four observations in each group). This will be demonstrated in lectures.  

 

Our p-value here is approximately 4.810
-4

 so that we reject the null hypothesis of 

equality of population means for the mixing types at the 5% level (or the 1% level). 

There is a form of the anova1 command that can be used when there are differing 

numbers of observations from the populations to be compared (see the next example).  

 
 

Example: blondes are tougher 

 

Studies conducted at the University of Melbourne indicate that there may be a 

difference between the pain thresholds of blonds and brunettes. Men and women of 

various ages were divided into four categories, according to hair colour (recorded as 

Light Blond, Dark Blond, Light Brunette or Dark Brunette). For each person a pain 

threshold score (Pain) was measured. 

 

The data are shown in the table below. 

 

Hair Colour Pain Score 

Light Blond 

Light Blond 

Light Blond 

Light Blond 

Light Blond 

Dark Blond 

62 

60 

71 

55 

48 

63 
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Dark Blond 

Dark Blond 

Dark Blond 

Dark Blond 

Light Brunette 

Light Brunette 

Light Brunette 

Light Brunette 

Dark Brunette 

Dark Brunette 

Dark Brunette 

Dark Brunette 

Dark Brunette 

57 

52 

41 

43 

42 

50 

41 

37 

32 

39 

51 

30 

35 

 

There are 19 rows in the table above (19 subjects) and suppose we enter the data in 

MATLAB in the form of two vectors:  a vector group taking values of 1, 2, 3 or 4 

(where 1 indicates a light blond subject, 2 a dark blond, 3 a light brunette and 4 a dark 

brunette) and a vector pain containing the pain threshold measurements for the 19 

subjects (the values in the second column of the table).  

 

Then we can do the one way analysis of variance by typing anova1(pain,group). 

MATLAB gives the p-value for testing equality of means for the hair colour groups as 

0.0041. Since this is less than 0.05, at the 5% level we reject the null hypothesis of 

equality of means for the hair colour groups.  

 

 

9.2. One way ANOVA as a regression model 

We discussed above how to write a general completely randomized single factor 

experiment as a multiple linear regression with a suitable design matrix X. The X 

matrix will contain indicator variables, which for each observation have a 1 in the 

column corresponding to the group that observation is in, and 0’s everywhere else. 

We can then write the model in matrix form: 
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or 

.  Xy  

 

MATLAB’s fitlm  function does this internally, and we don’t need to worry about it. 

All we have to do is tell fitlm which of the predictors are categorical. We can use the 

output object from fitlm command to estimate parameters, compute confidence 

intervals for parameters, find residuals and so on. We can carry out an anova using 

the fitlm function just as we did for linear models, and indicating which variable(s) 

are categorical. You can have multiple categorical variables to do two-way or three-

way ANOVAs. 

 
>> painMod=fitlm(group,pain,'CategoricalVars',[1]); 

>> anova(painMod) 

 

ans =  

 

             SumSq     DF    MeanSq      F        pValue   

             ______    __    ______    ______    _________ 

 

    x1       1360.7     3    453.58    6.7914    0.0041142 

    Error    1001.8    15    66.787 

 

The main advantage of using linear models to do an ANOVA allows us to check 

model assumptions using the same methods we used for linear models.  

 
 

Residual analysis 

 

Plotting of the raw residuals against an index of the population groups or the fitted 

values can help to detect violations of assumptions. In particular, we might look for 
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violations of the constancy of variance assumption, outliers, or obvious departures 

from normality. 

 

 
Example: compressive strength of concrete 

 

We illustrate residual analysis for the completely randomized one factor experiment 

with the compressive strength of concrete data.  

 
 
>> strengthMod=fitlm(technique,strength,'CategoricalVars',[1]); 
>> plotResiduals(strengthMod,'fitted','ResidualType','raw') 

 

Figure 9.1 shows plots of the raw residuals against the fitted values. 

 

 
 

 

Figure 9.1:  Plot of raw residuals against mixing technique (left) and against fitted values (right). 

There doesn’t seem to be any reason to question model assumptions here. With only 

four observations from each population it is difficult to say too much from the plots.  

 
 

Example: blonds are tougher 

 

Consider the pain and hair colour dataset, where a number of subjects were divided 

into groups based on hair colour (light blond, dark blond, light brunette or dark 

brunette). Then a pain threshold score was measured for each subject. We did a one 

way analysis of variance for these data and concluded that there were significant 

differences between means for some of the groups (pain threshold and hair colour 

seem to be related). 

 

The plots below show the residuals against group (1=light blond, 2=dark blond, 

3=light brunette and 4=dark brunette) and residuals against fitted values for this 

example. What are your conclusions? Are the assumptions we made in conducting the 

one way analysis of variance reasonable? 
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>> painMod=fitlm(group,pain,'CategoricalVars',[1]); 
>> plotResiduals(painMod,'fitted','ResidualType','Studentized') 

 

 

 

 

Figure 4: Plot of raw residuals against hair colour (left) and fitted values (right) for pain and hair 

colour example. 

 

 


