

STATISTICS USING MATLAB

A General Guide

 i

Contents

1. Getting Started 1

1.1. The MATLAB Statistics Toolbox 1
1.2. Data in MATLAB 2
1.3. Simple descriptive methods 3
1.4. Numerical summaries of quantitative data 4
1.5. Graphical summaries of quantitative data 6

2. M files 10

3. Reading from and writing to files 11

4. Statistical distributions in MATLAB 12

4.1. Available distributions and calculations 12
4.2. Computation of binomial probabilities 13
4.3. Computation of Poisson probabilities 15
4.4. Computation of normal probabilities 17
4.5. Computing percentage points for the normal distribution 19
4.6. Computing percentage points for the t distribution 19

5. Simulation in MATLAB 19

5.1. Introduction 19
5.2. The uniform distribution 20
5.3. Other distributions 21
5.4. Simulation of normal and lognormal random variables 23
5.5. Further applications of simulation 25

6. Statistical tests in MATLAB 28

6.1. One-sample t-test 28
6.2. Paired t-test 29
6.3. Two-sample t-test 29
6.4. The sign test 29
6.5. The Wilcoxon signed rank test 30

7. Simple linear regression in MATLAB 30

7.1. Simple linear regression: fitting lines to data 30
7.2. Fitting the simple linear regression model in MATLAB 32

7.3. Estimation of 2 34
7.4. Decomposing variation 35
7.5. Different kinds of residuals 36

8. Multiple linear regression in MATLAB 39

8.1. The multiple linear regression model 39
8.2. Estimation of model parameters 39
8.3. Inference for model coefficients 42
8.4. Confidence intervals for the mean and prediction intervals 44
8.5. Assessing overall model adequacy 45
8.6. Stepwise approaches to model selection 48

 ii

8.7. Residuals and influence in multiple linear regression 51

9. ANOVA in MATLAB 53

9.1. One way ANOVA 53
9.2. One way ANOVA as a regression model 56

 1

1. Getting Started

1.1. The MATLAB Statistics Toolbox

The MATLAB statistics toolbox will be used extensively in your computer lab

sessions. Note that MATLAB is available on all PC’s within the School of

Mathematics and Statistics computing labs, and the statistics toolbox is also loaded on

to all of these machines. The discussion below should help you get started using

MATLAB. It’s also a good idea to try some of the demos. When you start MATLAB

you will get a window such as the one below:

You type all commands at the “»” prompt. Some important commands to remember

are:

 help – will return help information on the function you specify. Suppose the

function we want help on is the mean function. Then the help information is

obtained by typing help mean:

MEAN Average or mean value.

 For vectors, MEAN(X) is the mean value of the elements in X. For

 matrices, MEAN(X) is a row vector containing the mean value of

 each column. For N-D arrays, MEAN(X) is the mean value of the

 elements along the first non-singleton dimension of X.

 MEAN(X,DIM) takes the mean along the dimension DIM of X.

 Example: If X = [0 1 2

 3 4 5]

 then mean(X,1) is [1.5 2.5 3.5] and mean(X,2) is [1

 4]

 2

 Class support for input X:

 float: double, single

 See also median, std, min, max, var, cov.

 Reference page in Help browser

 doc mean

 quit – lets you quit MATLAB

 who – gives you a listing of all objects in your workspace. By objects we mean

MATLAB vectors or matrices that store data or the results of calculations. This

list can easily grow quite quickly in a MATLAB session, so make sure you delete

any variables you don’t need. To delete a variable from your workspace you use

the clear command (type help clear for further details).

 save – lets you save MATLAB variables in a file – you can restore these

variables in your MATLAB session using the load command. Use the on-line

help to learn more about the syntax of these commands. The load command can

also be used to read in files in various formats – its use is not restricted to

retrieving variables you have previously saved in MATLAB with the save

command.

MATLAB has hundreds of functions, and when you are beginning to learn MATLAB

you will need to use the on-line help extensively. MATLAB may be a bit frustrating

in the beginning, but you’ll soon realise the advantages of using MATLAB for doing

statistical analysis.

1.2. Data in MATLAB

Data are stored in the form of matrices in MATLAB. Suppose you have a matrix

named exampledata. You can find its size or dimensions:

» size(exampledata)

ans =

 2 9

The output tells us that exampledata is a 2x9 matrix. Suppose that the first row of

exampledata contains the numbers 1,2,3,…8,9 and that the second row contains

10,11,12,…18. To look at the third column of exampledata we type the following:

» exampledata(:,3)

ans =

 3

 12

Suppose we wish to look at the 2
nd

 to 6
th

 numbers in the first row in exampledata.

We can type the following:

 3

» exampledata(1,2:6)

ans =

 2 3 4 5 6

If you type exampledata at the prompt, it will display the entire matrix in one go.

To create the matrix exampledata (with the numbers 1,2,3,…8,9 in the first row,

and 10,11,12,…18 in the second) we could type either of the two commands below:

» exampledata = [1 2 3 4 5 6 7 8 9;10 11 12 13 14 15 16 17 18]

» exampledata = [1:9;10:18]

If we write a:b in MATLAB where a and b are integers, then this denotes the vector

containing the consecutive integers from a to b (for instance 1:4 is the vector [1 2

3 4]). The semicolon ‘;’ in the above statements indicates the end of a row.

A useful demo in MATLAB is the one on basic matrix operations – you can get it

from Help/Demos/MATLAB/Basic Matrix Operations. Experiment with

methods for manipulating matrices – you’ll need to be comfortable with these

methods for using MATLAB in this and some of your other courses.

1.3. Simple descriptive methods

We now discuss methods for graphically and numerically summarizing different types

of data.

The example data set used to illustrate the statistical concepts that follow comes from

a rainfall measuring station in Italy. The values shown are the yearly maximum hourly

storm depths in mm at Genoa University, Italy, from 1931 to 1988. Data sets like this

one are of great importance in any hydrologic design, since they can help us to

determine the maximum rainfall that a structure or utility should be designed to

sustain. The consequences of getting this maximum wrong could be disastrous. The

data are given in Table 1.1.

Table 1.1. Yearly maximum hourly storm depths in mm at Genoa University, Italy
Year Rain Year Rain Year Rain Year Rain Year Rain Year Rain

1931 38.6 1941 40.2 1951 76.2 1961 66.5 1971 50.4 1981 89.4

1932 33.7 1942 53.8 1952 27.4 1962 24.5 1972 43.2 1982 27.2

1933 33.8 1943 26.9 1953 69.4 1963 64.1 1973 39.6 1983 32.7

1934 79.2 1944 34.7 1954 22.8 1964 53.9 1974 38.7 1984 105.7

1935 58.6 1945 72.6 1955 34.8 1965 66.5 1975 40.2 1985 25.3

1936 39.3 1946 30.2 1956 38.8 1966 32.9 1976 55.7 1986 27.6

1937 33.2 1947 54.5 1957 39.8 1967 52.4 1977 118.9 1987 128.5

1938 29.2 1948 30.0 1958 58.1 1968 27.8 1978 25.0 1988 24.7

1939 46.7 1949 30.0 1959 58.1 1969 23.3 1979 55.6

1940 80.0 1950 30.0 1960 48.5 1970 80.0 1980 40.1

The rainfall values have been saved in a MATLAB object called rain, which is

stored in MATLAB as a vector of length 58.

1.4. Numerical summaries of quantitative data

First we discuss methods for summarizing and graphing quantitative data.

 4

Mean

The mean of a sample is what many people would think of as the “average value”. It

gives a measure of where the data are centred. The sample mean of values x1,…,xn is

written as x and is calculated as

 




n

i

ix
n

x

1

1

You should all be familiar with the Greek sigma notation here: 


n

i

i
x

1

 denotes the sum

of the sample values xi over the range of values for i specified (here we sum all

sample values). The MATLAB function mean will return you the sample mean of a

data set:

» mean(rain)

ans =

 48.4397

Median

The median is another useful measure of location (that is, of where the data are

centred). The median is the middle value in the data set. The first step in calculating

the median is to order the sample values. Then if the sample size is odd, there will be

a unique middle value with an equal number of values positioned higher and lower

than this middle value. This value is the median. For instance, if our ordered sample

consisted of the numbers 1,2,3,4,5, then the middle value or median is 3. If your

sample size is even, there is no unique middle value, but rather there are two middle

values: in this case, the median is the mean of the middle values. For instance, if our

ordered sample consisted of the numbers 1,2,3,4,5,6, then the two centre values are 3

and 4 and the median is 3.5. The median is obtained for our example data set in

MATLAB as follows:

» median(rain)

ans =

 39.9500

Note that this is a lot lower than the mean – can you suggest why this might be so?

Variance

The sample variance is a measure of the variability of the data about its sample mean.

It is defined to be:

 







n

i

i xx
n

s

1

22
)(

1

1

 5

You may wonder why we use (n-1) instead of (n) in the above expression. In large

samples (that is, for large n) it does not matter very much whether we divide by n or

n-1. The reason for using n-1 is explained later.

The sample variance of our rainfall sample is:
» var(rain)

ans =

 565.0098

Standard Deviation

The sample standard deviation is the square root of the variance. The sample standard

deviation has the same units as the original data values, and for our rainfall sample is

computed in MATLAB as follows:

» sqrt(var(rain))

ans =

 23.7699

or
» std(rain)

ans =

 23.7699

Inter-quartile range

While the standard deviation is the most common measure of variability you will

encounter, the inter-quartile range (IQR) is another useful way to quantify variability.

Roughly speaking, the quartiles of a sample split the ordered sample values into four

equal parts. What this means is that if you rank the sample data points from the lowest

to the highest, the first quartile will have nearly a quarter of the observations below it,

and the third quartile will have nearly a quarter of the observations above it. The

second quartile has approximately half the sample values above it and half the sample

values below it.

To be precise, the second quartile is the median, the first quartile is the median of the

ordered sample values with positions strictly less than the position of the median, and

the third quartile is the median of the ordered sample values with positions strictly

greater than the position of the median. The inter-quartile range is the difference

between the third and the first quartiles. The IQR for our rainfall sample is:

» iqr(rain)

ans =

 28.1000

Coefficient of Skewness

The coefficient of skewness is a measure of asymmetry of the data. It is defined to be:

 6

3

1

3
)(

ns

xx

g

n

i

i






where s is the sample standard deviation. The coefficient of skewness is not always

easy to interpret. In general, it will give an indication of departures from symmetry. A

positive value of g may indicate a long “right tail” in the data with values above the

median tending to be further away from the median than values below the median.

Negative skewness may indicate a long “left tail” with values below the median

tending to be more extreme. We will see what skewness means graphically when we

talk about graphical summaries of quantitative data. We compute the skewness for our

rainfall data set as follows:

» skewness(rain)

ans =

 1.4267

1.5. Graphical summaries of quantitative data

MATLAB has an extensive range of functions that allow you to visually examine

data. Suppose we wish to plot the rainfall values in our data set as a time-series: this

can be done here by typing
» plot(1931:1988,rain)

The first argument represents the x-values (years) and the second is the vector of

corresponding rainfall values. The plot generated by this command is given below.

Look in the help information for the plot function for options on adding labels, titles

and so on.

1930 1940 1950 1960 1970 1980 1990
20

40

60

80

100

120

140

As another example, consider the Challenger data set. For this data set we have

temperature at take off for the 23 US space shuttle missions prior to the Challenger

disaster, as well as the pressure at a pre-launch test and the number of O-Rings that

failed (out of six). Below I have plotted the proportion of O-Rings failing for each

mission (the number of O-Rings which fail divided by six) against the temperature at

 7

take off. A graph of two quantitative variables against each other like this is called a

scatter plot. We can see here that it seems as though the risk of failure increases as the

temperature decreases. The temperature at take off on the day of the Challenger

disaster was 31 degrees Farenheit (well beyond the observed range of take off

temperatures). This example shows that just graphically displaying carefully collected

relevant data can sometimes be extremely helpful for making a decision (would you

have had second thoughts about launching the Challenger if you had seen this graph?)

50 55 60 65 70 75 80 85
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Temperature (degrees Farenheit)

P
ro

p
o
rt

io
n
 o

f
O

-R
in

g
 f
a
ilu

re
s

Challenger data

In MATLAB, with the proportions of failures in the vector propfail and the

temperatures in the vector temp, we can generate the graph with the following

commands:

» plot(temp,propfail,'o')

» xlabel('Temperature (degrees Farenheit)')

» ylabel('Proportion of O-Ring failures')

» title('Challenger data')

In this example, I have also illustrated how you can add labels to the x and y axes

using the xlabel and ylabel commands, and a title using the title command.

The 'o' in the plot command tells MATLAB to use a circle as the plotting symbol in

the graph (without this MATLAB will ‘join the dots’ with a line as in our previous

example with the rainfall data).

Histogram

A histogram is a very convenient way of examining the variability of any data set.

The sample data range is divided into a number of bins, and we count the number of

observations falling in each bin. This gives the frequency of the data within the range

specified by each bin. In a histogram we can also plot relative frequencies which are

obtained by dividing the frequencies by the number of observations in the sample.

The best way to understand histograms is to show an example. For our rainfall data,

we obtain the histogram in MATLAB as follows:

» histogram(rain)

which results in the plot below.

 8

The x-axis of the above plot represents the data values, and the y-axis the frequency

corresponding to each bin. The width of each bin is chosen by the software using an

appropriate default rule, but you can specify a different bin-width if you so desire.

The histogram gives more information than you would get from looking at just a few

summary statistics. We can get a fair idea of where the data are centred (and perhaps

we can infer approximate values for the mean and median). We also get some

impression of the scale of the data (a feature which is measured by summary statistics

like the sample standard deviation and interquartile range) as well as whether or not

the distribution exhibits skewness, multiple modes or peaks, and contains outliers.

The histogram shows that the rainfall data are right skewed or right tailed with the

large values in the sample further above the median than the small values are below.

For a left skewed or left tailed distribution the small values in the sample are further

below the median than the large values are above. The histogram suggests that the

rainfall remains low most of the time (between 20-50mm each year) but does take

some rather high values every now and then (maximum of nearly 130 mm).

An engineering question that might arise from this is to find a cutoff value for rainfall

that would not be exceeded too frequently. This value could be used to estimate the

resulting flood level in a stream that runs through that region, and zones where

residences are safe to be built could be inferred. Finding this kind of cutoff value

could have several other uses – for instance, it could be useful in trying to estimate the

erosion that may occur on the hills the rainfall is falling on so as to apply appropriate

slope-stability measures. If you were asked to decide this design rainfall cutoff value,

what value would you use? Should it be the mean? That value will be exceeded quite

frequently, so it will not be all that useful. Should it be the maximum value in the

sample? Is that going to be safe enough for the years to come?

Boxplot

A boxplot is another useful way to graphically represent the location and variability of

a sample. The boxplot for our rainfall data set is as follows:

» boxplot(rain)

 9

1

20

40

60

80

100

120
V

a
lu

e
s

Column Number

Median

1st Quartile

3rd Quartile

Whiskers

Observations falling

outside the whiskers

(sometimes called outliers)

The box in the boxplot extends to the first and third quartiles of the data (also called

the lower and upper quartiles), the horizontal line in the middle representing the

median. Two whiskers extend above and below the boxes to represent the variability

of the data beyond the quartiles. The criteria for deciding the length of the whiskers

may vary from one software package to another. All observations lying outside the

whiskers are individually shown. They are sometimes called outliers indicating that

they are unusually high or low values.

As another example, consider data on hair colour and pain threshold. In an experiment

conducted at the University of Melbourne, a number of subjects were divided into

groups based on hair colour, and a pain threshold score was recorded for each subject.

Below are boxplots showing the pain threshold scores for the light blond and dark

brunette subjects. Boxplots are very useful when we plot several at once on the same

scale like this in order to compare different samples. There were five light blond and

five dark brunette subjects, and I entered their pain threshold scores in MATLAB into

a 2 by 5 matrix X, where the first column held the light blond scores and the second

column held the dark brunette scores. If we then type simply boxplot(X) in

MATLAB, this will produce the plot below with separate boxplots for each column of

X (the matrix X can have more than two columns). We can add labels on the axes and

a title as for scatter plots using the xlabel, ylabel and title commands.

 10

1 2

30

35

40

45

50

55

60

65

70

Pain and hair colour experiment

P
a
in

 t
h
re

s
h
o
ld

Hair colour (1=Light Blond, 2=Dark Brunette)

2. M files
In Section 1 we have shown how to use MATLAB interactively, by typing commands

into the command window. Usually it is more convenient to store sequences of

commands in a file that you can save and open again when needed. These are known

as M files. To get a new M file, click the first icon on the toolbar, or use File/New/M-

File from the menus. You can type MATLAB commands into this file and save them

to a directory of your choice. To run the commands in an M file, first change the

directory to the one where your M file is stored, either using the cd command, for

example:
cd p:\math2089

or using the Current Directory: box on the toolbar.

Then simply type the name of the M file (without the .m extension) in the command

window to execute the commands.

You can add comments to an M file using %: MATLAB ignores the remainder of a

line after a % symbol.

3. Reading from and writing to files
Useful functions for reading text files include load and textread.

For example, suppose the file rain.txt in the directory p:\math2089 contains

annual observations of rainfall and runoff at Pontelagoscuro on the Po river in

northeast Italy from 1918 to 1948 (we will use these data later when we look at

regression in MATLAB). The file has no header record and the first four lines are:

1133 904

999 648

1501 1080

807 549

:

To read this file into a matrix called rain, use:

 11

load p:\math2089\rain.txt

To read the file into variables called rainfall and runoff use:

[rainfall,runoff] = textread('p:\math2089\rain.txt')

To deal with a header record, suppose that the file rainfall.txt in the directory

p:\math2089 contains the same data as rain.txt, but there is a header record, as

follows:

rainfall runoff

1133 904

999 648

1501 1080

807 549

:

To read this file into variables called rainfall and runoff use:

[rainfall,runoff] =

textread('p:\math2089\rainfall.txt','%n%n','headerlines',1)

The function xlsread can be used to read Excel files, for example:

rainx = xlsread('p:\math2089\rainfallx.xls')

As an alternative to using these functions, you can use the menus: File/Import

data and follow the instructions.

Useful functions for writing data to a file include:

 save: e.g. save('filename') stores all workspace variables in the current

directory in filename.mat, whereas save('filename',

'var1','var2',...) saves only the specified workspace variables in
filename.mat

 csvwrite: e.g. csvwrite(‘filename’,M) writes matrix M to comma-

separated value file filename

 dlmwrite: e.g. dlmwrite(‘filename’,M,‘D’) writes matrix M to file

filename using delimiter D to separate values

 csvwrite: e.g. csvwrite(‘filename’,M) writes matrix M to the Excel file
filename.

See the help files for further details.

4. Statistical distributions in MATLAB

4.1. Available distributions and calculations

There is a wide variety of statistical distributions (such as normal and binomial)

available in MATLAB, and a number of different quantities (such as probabilities and

random samples) that can be calculated for each distribution. MATLAB uses a

standard syntax for these functions: with a prefix identifying the distribution and a

 12

suffix identifying the quantity or quantities to be calculated. For example, binocdf

calculates cumulative probabilities for the binomial distribution.

Table 4.1 shows the distributions available in MATLAB (although we will not cover

all of these distributions in your course).

Table 4.1. Statistical distributions available in MATLAB

Distribution MATLAB prefix

Beta beta

Binomial bino

Exponential exp

Extreme value ev

Gamma gam

Log normal logn

Normal norm

Negative binomial nbin

Poisson poiss

Rayleigh rayl

Uniform unif

Weibull wbl

Table 4.2 shows the quantities that can be calculated for each distribution.

Table 4.2. Computations for statistical distributions in MATLAB

MATLAB prefix Computes Example
pdf probability or probability

density function

binopdf

cdf cumulative probability or

cumulative distribution function

binocdf

inv inverse distribution function binoinv

rnd random sample binornd

fit* parameter estimates and

confidence intervals

binofit

stat Mean and variance binostat

* unifit rather than uniffit for the uniform distribution

The arguments to be supplied to the functions depend on the distribution: if you are

unsure, check the help files.

Some examples of the use of these functions are given in the remainder of this

section.

4.2. Computation of binomial probabilities

We now illustrate how to compute binomial probabilities from the binomial

distribution function or probability function in an example.

Often in doing calculations with discrete distributions you will have to compute the

probability that a discrete random variable X lies in some interval. A common mistake

 13

that students make in this situation involves not paying sufficient attention to what

happens at the end points of the interval. This is illustrated in the example below.

Example: bacteria in water samples

Water samples are taken from 20 different streams and for each sample the presence

or absence of a particular bacterium in the sample is recorded. Let X be the number of

samples which contain the bacterium. If X~Bin(20,0.5), compute the following

probabilities:

1. P(X10)

2. P(X10)

3. P(X<10)

4. P(X>10)

5. P(5X10)

Figure 4.1: (Left) P(X<=10) is the sum of the heights of the solid bars. (Right) P(X>=10)=1-

P(X<=9) (since the sum of heights of all bars is one). P(X>=10) is the sum of the heights of the

solid bars, P(X<=9) is the sum of the heights of the unfilled bars.

Solution:

1. To compute P(X10), we note that this is the value of the distribution function at

10, FX(10). If pX(x) denotes the probability function of X, then

 
 



10

0

10

0

).()()10()10(

x x

XX
xpxXPXPF

In Figure 4.1 on the left I have plotted the probability function for X, so that the

distribution function value at 10, P(X10) is just the sum of the heights of the solid

bars. We compute a binomial cumulative distribution function value in MATLAB

using the command binocdf. Typing binocdf(10,20,0.5) gives the value of the

distribution function at x=10, with n=20 and p=0.5. Here the probability is 0.5881.

2. Computation of P(X10) is illustrated on the right of Figure 4.1. Since the sum of

the heights of all the bars in the figure is one, we have P(X10)=1- P(X9)=1-

0.4119=0.5881 where in MATLAB we have obtained P(X9)=0.4119 by typing
binocdf(9,20,0.5).

 14

Figure 4.2: (Left) P(X<10)=P(X<=9) is the sum of the heights of the solid bars. (Right)

P(X>10)=1-P(X<=10) (since the sum of the heights of all bars is one). P(X>10) is the sum of the

solid bars, P(X<=10) is the sum of the heights of the unfilled bars.

3. Computation of P(X<10) is done in a similar way to the computation in 1. We note

that P(X<10)=P(X9) (since the largest possible value for X less than 10 is 9). Hence

the required probability of less than ten samples containing the bacterium is the value

of the distribution function at 9, which we have already computed as 0.4119. The left

of Figure 4.2 illustrates the situation graphically.

4. To get P(X>10) we note that this probability is 1-P(X10) (one minus the value of

the distribution function at 10) which is 1-0.5881=0.4119. The situation is illustrated

graphically on the right of Figure 4.2.

5. Finally we are asked to compute P(5X10). Figure 4.3 shows what needs to be

computed (the sum of the heights of the solid bars, which is the sum of the probability

function values pX(x) for x=5,6,7,8,9,10). We note that this can be computed by

getting the sum of the probability function values for x less than or equal to 10, and

then subtracting the sum of the probability function values for x less than or equal to

4. So P(5X10)=P(X10)-P(X4). Using the binocdf command in MATLAB, we

obtain FX(10)=0.5881 and FX(4)=0.0059, so that P(5X10)=0.5881-0.0059=0.5822.

Figure 4.3: P(5<=X<=10) is the sum of the heights of the solid bars. We can compute this sum by

getting the distribution function at 10 (sum of heights of bars for values less than or equal to 10)

and subtracting the distribution function at 4 (sum of heights of bars for values less than or equal

to 4).

 15

4.3. Computation of Poisson probabilities

We illustrate computation of Poisson probabilities with an example.

Example: cars arriving at an intersection

Cars arrive at an intersection according to a Poisson process at a rate of 2 cars per

minute. Let Y be the number of cars which arrive in a certain two minute period (so

that Y~Po(4)). Compute the following probabilities:

1. P(Y5)

2. P(Y5)

3. P(Y<5)

4. P(Y>5)

5. P(5Y10)

Figure 4.4: (Left) P(Y<=5) is the sum of the heights of the solid bars. (Right) P(Y>=5)=1-

P(Y<=4) (since the sum of the heights of all bars is one). P(Y>=5) is the sum of the heights of the

solid bars, P(Y<=4) is the sum of the heights of the unfilled bars.

Solution:

1. To compute P(Y5), we note that if pY(y) denotes the probability function of Y, then

 
 



5

0

5

0

).()()5()5(

y y

yY
ypyYPYPF

In Figure 4.4 on the left I have plotted the probability function for Y, so that the

distribution function value at 5, P(Y5) is just the sum of the heights of the solid bars.

Note that the plot is only over the range y=0,1,…,20, but a Poisson random variable

can take on any non-negative integer value.

We compute a Poisson cumulative distribution function value in MATLAB using the

command poisscdf. Typing poisscdf(5,4) gives the value of the distribution

function at y=5 for =4. Here the probability of five or fewer arrivals is 0.7851.

2. Computation of P(Y5) is illustrated on the right of Figure 4.4. Since the sum of the

heights of all bars is one, and the required probability is the sum of the heights of the

solid bars, the required probability is one minus the sum of the heights of the unfilled

bars. But the sum of the heights of the unfilled bars is P(Y4), which can be computed

 16

in a similar way to before by typing poisscdf(4,4). We get P(Y4)=0.6288, so

that the required probability is P(Y5)=1- P(Y4)=1-0.6288=0.3712.

Figure 4.5: (Left) P(Y<5) =P(Y<=4) is the sum of the heights of the solid bars. (Right) P(Y>5)=1-

P(Y<=5) (since the sum of the heights of all bars is one). P(Y>5) is the sum of the heights of the

solid bars, P(Y<=5) is the sum of the heights of the unfilled bars.

3. Computation of P(Y<5) is done in a similar way to the computation in 1. We note

that P(Y<5)=P(Y4) and hence the required probability of fewer than five cars

arriving is the value of the distribution function at 4, which we have already computed

as 0.6288. The left of Figure 4.5 illustrates the situation graphically.

4. To get P(Y>5) we note that this probability is 1-P(Y5) which is 1-0.7851=0.2149.

The situation is illustrated graphically on the right of Figure 4.5.

5. Figure 4.6 illustrates computation of P(5Y10). The sum of the heights of the

solid bars (the sum of the probability function values for y=5,6,7,8,9,10) can be

obtained as the difference of the cumulative distribution function at 10 and the

cumulative distribution function at 4. We obtain P(5Y10)=0.9972-0.6288=0.3683.

Figure 4.6: P(5<=Y<=10) is the sum of the heights of the solid bars. We can compute this sum by

getting the distribution function at 10 (sum of heights of the bars for values less than or equal to

10) and subtracting the distribution function at 4 (sum of the heights of the bars for values less

than or equal to 4).

4.4. Computation of normal probabilities

The best way to illustrate computation of normal probabilities in MATLAB is through

an example.

 17

Example: concrete density

The following example is based on Example 4.29 of Kottegoda and Rosso, “Statistics,

Probability and Reliability for Civil and Environmental Engineers,” McGraw-Hill,

1997. The mean and standard deviation of the densities of concrete samples from a

particular mix are 2445 and 16 N/mm
2
. Assuming that a concrete sample X taken

from this mix is normally distributed, compute the following:

1. P(X2460)

2. P(X2460)

3. P(X<2460)

4. P(X>2460)

5. P(2430X2460)

Solution:

1. To find P(X2460) we simply need to compute the value of the cumulative

distribution function at 2460 for a normal distribution with mean 2445 and standard

deviation 16. This can be done in MATLAB by typing normcdf(2460,2445,16) to

obtain 0.8257. The cumulative distribution function value is obtained as the integral

of the density function over values less than or equal to 2460 (see Figure 4.7).

2. To find P(X2460), simply observe that the complement of the event {X2460} is

{X<2460}, so that P(X2460)=1-P(X<2460). How do we calculate P(X<2460)? The

cumulative distribution function at 2460 is P(X2460), which does not seem quite the

same as P(X<2460). However, for a continuous random variable like X,

P(X2460)=P(X<2460). Hence our required probability is 1-P(X2460), or 1-

0.8257=0.1743 (see Figure 4.7).

Figure 4.7: (Left) The shaded area is the value of the cumulative distribution function at 2460

(integral of the density function). (Right) The shaded area is P(X>=2460). P(X=2460)=0 since the

line on the boundary of the shaded region has zero area. From this P(X>=2460)=1-P(X<2460)=1-

P(X<=2460) and we can compute P(X>=2460) from the distribution function.

3. Computation of 3 is trivial, since P(X<2460)=P(X2460) for a continuous random

variable, and we have already computed this probability.

 18

4. For a continuous random variable P(X>2460)=P(X2460) and we have already

computed this probability.

5. We have that P(2430X2460)=P(X2460)-P(X<2430)=P(X2460)-P(X2430).

The computation is illustrated in Figure 4.8: the value of the distribution function at

2460 is the area under the density to the left of 2460, and the value of the distribution

function at 2430 is the area under the density to the left of 2430, so that the shaded

area is the difference of the two. We obtain P(2430X2460)=0.8257-0.1743=0.6514.

Figure 4.8: The shaded area is P(2430<=X<=2460). It can be obtained as the difference of the

area under the curve to the left of 2460 and the area under the curve to the left of 2430 (that is, as

a difference of distribution function values at 2460 and 2430).

4.5. Computing percentage points for the normal distribution

In computing confidence intervals for the mean, for example, it is necessary to be able

to compute percentage points of a standard normal distribution. We can obtain

percentage points of a standard normal distribution either from MATLAB or from a

table.

Here we describe how to obtain percentage points of a standard normal distribution in

MATLAB using the command norminv. Typing the command norminv(p) in

MATLAB will return the value where the normal cumulative distribution function is

equal to p (0<p<1). So if we want to obtain the upper 2.5 percentage point of the

standard normal distribution, for instance, we type norminv(0.975), since this will

return the value which bounds an area of 0.025 in the upper tail of the standard

normal density (we use 0.975 since 0.975=1-0.025). The upper 2.5 percentage point is

1.96.

4.6. Computing percentage points for the t distribution

As for the standard normal distribution, MATLAB can compute percentage points of

the t distribution, enabling computation of confidence intervals, for example. The

appropriate command to use in MATLAB is tinv. Typing the command tinv(p,v)

in MATLAB will return the value where the distribution function of a t random

variable with v degrees of freedom is equal to p (0<p<1). So if we want to obtain the

upper 2.5 percentage point of a t distribution with 20 degrees of freedom, say, we type

 19

tinv(0.975,20), since this will return the value which bounds an area of 0.025 in

the upper tail of the t-density with 20 degrees of freedom.

5. Simulation in MATLAB

5.1. Introduction

We now study the important topic of simulation. Most statistical software packages

have methods for generating samples from standard distribution functions like the

binomial, Poisson and normal, and MATLAB is no exception.

Simulation is an extremely useful tool in engineering applications. It often happens in

engineering applications that we can model the inputs to some system by a simple

statistical model, but that the outputs of the system are a complicated function of the

inputs. Working out the distribution of the outputs mathematically from the

distribution of the inputs may be very difficult. However, if we can generate samples

from the distributions for the inputs, we can work out the outputs of the system for

these simulated inputs and by doing this repeatedly we gain some idea of what the

distribution of the system outputs is like.

For instance, we might be interested in studying traffic flow at a busy intersection

where the distribution of the number of cars queued at the lights is a function of the

arrival times of cars at the intersection. We may be able to specify a simple stochastic

model for car arrivals, but working out mathematically the distribution of queue

length from this may not be simple. To consider another example, a geomatic

engineer may be interested in what a model for uncertainty in a measurement implies

about the uncertainty in a complicated function of the measurement.

As mentioned, statistical software packages like MATLAB have methods for

simulating from standard distributions. Since you may sometimes need to simulate

from distributions that are not from a standard parametric family, we give some

discussion of basic methods for constructing simulation algorithms.

5.2. The uniform distribution

Given a certain distribution (for instance our model for arrival times of cars in the

traffic flow example) how do we simulate from it? A simulation from any distribution

can in fact be obtained from a simulation of a uniform random variable on the interval

[0,1]. A random variable X is said to be uniformly distributed on the interval [a,b] if it

has the density function





 


 otherwise 0

],[if)(
)(

-1
baxab

xf
X

If X is uniformly distributed on [a,b] we write this as X~U[a,b]. A plot of the uniform

density on [0,1] is shown in Figure 5.1.

 20

Figure 5.1: Probability density function of a uniform random variable on [0,1].

Statistical software packages like MATLAB contain algorithms for generating

sequences of variables that behave like independent uniform random variables on

[0,1]. The MATLAB command used for simulating from a uniform distribution is

called rand (you could also use unifrnd, see Tables 4.1 and 4.2 and the help files).

Typing the command u=rand(m,n) generates an m by n matrix u of simulated

independent uniform random variables on [0,1].

Example: the central limit theorem in action

As an example of simulation of uniform random variables we illustrate the central

limit theorem in action. Suppose we generate 1000 samples of size 50 from a uniform

distribution on [0,1] by typing u=rand(50,1000). Here u is a matrix with 50 rows

and 1000 columns, and we can regard each column as being a random sample of size

50. We can compute the means of the 1000 samples (column means of u) and put the

result in the vector umeans by typing umeans=mean(u,1). The histogram of the

sample means is shown in Figure 5.2. From the central limit theorem, we expect the

distribution of the sample means to be approximately normal, and the shape of the

histogram confirms that normality is a good approximation here.

 21

Figure 5.2: Histogram of 1000 sample means for samples of size 50 from a uniform distribution

on [0,1].

5.3. Other distributions

I claimed above that we can simulate a random variable with any given distribution

from a simulation of a uniform random variable. For simple discrete distributions, it is

easy to see that this is the case.

Example: simulation of a Bernoulli random variable

Let X be a Bernoulli random variable with parameter p. Recall that such a random

variable has a probability function defined on the values 0 and 1 with pX(0)=1-p and

pX(1)=p. A Bernoulli random variable is a binomial random variable with n=1. Now,

suppose we have a random variable U~U[0,1]. Given U, is it possible to simulate

from the Bernoulli distribution?

Consider the following algorithm. If U is less than or equal to p, set X=1, otherwise

set X=0. The probability that U is less than or equal to p is the integral of the uniform

density on [0,1] from 0 to p, which is p. Similarly, the probability that U is greater

than p is 1-p. So our algorithm generates a random variable with the desired

distribution.

From the above example, it is easy to see how we might simulate from more general

discrete distributions using simulated uniform random variables on [0,1] (as an

exercise, think about how you might do this).

As discussed in Section 4, MATLAB also has commands for simulating from

common parametric families of discrete distributions. For instance, to simulate a

matrix of independent binomial random variables with parameters n and p having r

rows and c columns we type binornd(n,p,r,c). Similarly, to simulate a matrix of

 22

independent Poisson random variables with mean  and having r rows and c columns

we type poissrnd(,r,c).

What about simulation for continuous random variables? The following result is a

special case of a more general result, and allows us to simulate from many continuous

distributions.

Let U~U[0,1] and suppose that F(x) is a distribution function. Then if the inverse F
-1

of F exists, F
-1

(U) is a random variable with the distribution F(x).

Example: Simulation from general continuous distributions

Suppose we wish to simulate from the distribution function shown in Figure 5.3. Over

the interval [0,1] this distribution function is given by F(x)=x
2
. For negative x it is

zero, and for x bigger than one it is one.

Figure 5.3: Distribution function for simulation example. F(x)=x
2
 on the interval [0,1]. F(x)=0 for

negative x, F(x)=1 for x>1.

To use the result we have stated above for simulation, we need to find the inverse of

the distribution function over the range (0,1). Now, F(x)=x
2
 on this interval. If we

write y=F(x)=x
2
, we obtain the inverse function here by solving for y. We get x=y

1/2
.

So we can simulate from the distribution function in Figure 11 simply by taking the

square root of a uniform random variable on [0,1].

5.4. Simulation of normal and lognormal random variables

The MATLAB command used to simulate normal random variables is normrnd.

Typing r=normrnd(a,s,m,n) where a and s are scalars will simulate an m by n

matrix r of independent normal random variables with mean a and standard

deviation s. There are various other ways to use the normrnd command (see help

for details).

A distribution related to the normal is the lognormal distribution. A lognormal

random variable Y can be represented as Y=exp(X) where X is normally distributed. In

other words, log(Y) has a normal distribution. If Y=exp(X) where X~N(,
2
) we write

 23

this as Y~lognormal(,
2
). The lognormal distribution is often used for modelling

positive measurements such as rainfall amounts or event interarrival times.

The MATLAB command used for simulating from a lognormal distribution is

lognrnd. This command works in much the same way as the command normrnd. We

can type r=lognrnd(a,s,m,n) to simulate an m by n matrix r of independent

lognormal(a,s2) random variables.

Example: storm rainfall

The following example is based on Kottegoda and Rosso, “Statistics, Probability and

Reliability for Civil and Environmental Engineers,” McGraw-Hill, 1998, Problem 8.5.

The total amount of water Z delivered by a storm in a given location is modelled as

Z=XY where X is the duration of the storm and Y is the rainfall rate (assumed constant

for the duration of the storm). Assuming that X is lognormal(-1.447,1.805) and Y is

lognormal(1.956,0.693) and that X and Y are independent, estimate the probability

that the maximum amount of rainfall delivered in one hour by the storm (the hourly

storm depth) is greater than 10mm based on 1000 simulations of the hourly storm

depth. Also, plot histograms and boxplots showing the distribution of the hourly

storm depth.

Solution:

Write W for the maximum amount of rainfall delivered in one hour by the storm. Then

we have










1 if

1 if

XXY

XY
W

To see this, simply observe that if the duration of the storm is greater than or equal to

one hour (X>1), then an amount of rainfall equal to the rate Y will be delivered in any

hour of the storm. If the duration of the storm is less than one hour, then the

maximum amount of rainfall that can be delivered in one hour is the total amount of

rainfall, XY.

The following MATLAB commands generate a vector w containing 1000 independent

realizations of W (the semicolons suppress screen printing).

>> x=lognrnd(-1.447,1.805,1000,1);

>> y=lognrnd(1.956,0.6931,1000,1);

>> b=(x>=1);

>> w=y.*b+x.*y.*(1-b);

The third command above b=(x>=1)creates a vector b of the same length as x with

bi=1 if xi is greater than or equal to 1 and bi=0 otherwise. The fourth line

w=y.*b+x.*y.*(1-b) creates a vector w of the same length as b and x with the ith

element wi equal to yi*bi+xi*yi*(1-bi). Note that if bi=1, then this expression is equal

to yi, whereas if bi=0 it is equal to xiyi. Note that in general the expression a.*b in

MATLAB where a and b are vectors of the same length evaluates to a vector of the

 24

same length as a and b with ith element given by aibi. So the above lines of code

simulate a vector w of length 1000 containing independent realizations of the random

variable W. A histogram and boxplot of the values obtained when I typed the above

commands in MATLAB are shown in Figure 5.4.

Figure 5.4: histogram and boxplot of 1000 simulated hourly storm depth values.

To obtain an estimate of the probability of an hourly storm depth greater than 10

millimetres, we can simply look at the proportion of the simulated values greater than

10 millimetres: here there are 44 such values, giving an estimated probability of

0.044.

This example illustrates the power of simulation. While this problem is probably still

simple enough to enable a mathematical study of the distribution of interest (hourly

rainfall depth in this case), a simulation based approach can easily handle additional

complications.

For instance, suppose we are interested in the maximum rainfall delivered in one hour

by all storms in a given year assuming that the number of storms is a Poisson random

variable with mean 25 (assume that characteristics of storms are independent). To

simulate a value for this maximum annual hourly storm depth, we simulate a

realization of a Poisson random variable with mean 25, (N say) simulate hourly storm

depth values for N different storms in the same way as we did above, and find the

maximum of these. In MATLAB:

>> n=poissrnd(25)

>> x=lognrnd(-1.447,1.805,n,1);

>> y=lognrnd(1.956,0.6931,n,1);

>> b=(x>=1);

>> w=y.*b+x.*y.*(1-b);

>> m=max(w)

Here m will contain just one simulation of the annual maximum hourly depth. If we

are interested in the distribution of annual maximum hourly depth we can iterate the

above lines of code to obtain a sample from this distribution. I have simulated 1000

realizations of the annual maximum hourly depth in MATLAB: a histogram and

boxplot of the resulting simulated values is shown in Figure 5.5.

 25

Figure 5.5: Histogram and boxplot of 1000 simulated annual maximum hourly rainfall depth

values

Of course we can add still further complications to our model and to the questions we

ask about it, and still study properties of the model using a simulation based approach.

5.5. Further applications of simulation

We give some further examples to illustrate the power of simulation as a tool for

studying complex systems in engineering.

Example: wastewater treatment plant

The following example is from Kottegoda and Rosso, “Statistics, Probability and

Reliability for Civil and Environmental Engineers,” McGraw-Hill, 1998, Problem 8.8.

An activated-sludge plant includes five serial processes: (1) coarse screening (2) grit

removal (3) plain sedimentation (4) contact treatment, and (5) final settling. Let Xi

denote the efficiency of the ith treatment, that is, the fraction of remaining pollutant

removed by the ith serial treatment. For example, X1 is the fraction of the pollutant

removed by treatment process 1, X2 is the fraction of the remaining pollutant removed

by treatment process 2, and so on. The amount Qout of pollutant in the effluent is

given by

.)1)(1)(1)(1)(1(
54321 inout

QXXXXXQ 

where Qin denotes the amount of pollutant in the untreated inflow. A quality indicator

of the performance of the plant is then defined as

).1)(1)(1)(1)(1(
54321

XXXXXY 

Consider a plant with the following single-process mean efficiencies in the removal of

the 5-day 20C biological oxygen demand (BOD):

10.0 ,70.0 ,20.0 ,05.0 ,05.0
54321
 

where i=E(Xi). Suppose that X1, X2, X3 and X5 are normal variates with standard

deviations 0.01, 0.01, 0.04, and 0.02 respectively and that X4~U[0.6,0.8]. Simulate

100000 realizations from the distribution of Y, and plot a histogram of the simulated

values. Also, give an estimate of the mean of Y based on your simulations.

Solution:

The following MATLAB code generates the required simulated values:

 26

>> x1=normrnd(0.05,0.01,100000,1);

>> x2=normrnd(0.05,0.01,100000,1);

>> x3=normrnd(0.20,0.04,100000,1);

>> x4=unifrnd(0.6,0.8,100000,1);

>> x5=normrnd(0.10,0.02,100000,1);

>> y=(1-x1).*(1-x2).*(1-x3).*(1-x4).*(1-x5)

The command unifrnd in the fourth line above generates a sequence of uniform

random variables on a given interval. Recall that we use the command rand to

simulate uniform random variables from [0,1]. Typing u=unifrnd(a,b,m,n)

generates an m by n matrix of independent uniform random variables on [a,b]. After

typing the commands above, the 100000 required simulated values are in the vector y.

A histogram of these values is shown in Figure 5.6.

Figure 5.6: histogram of 100000 simulated quality indicator values for waste water treatment

example.

An estimate of the mean of the distribution of the quality indicator is obtained by

finding the sample mean of the simulated values: we have an estimated mean of 0.195

based on the simulation shown in the histogram.

Example: seismic hazard

The following example is based on Kottegoda and Rosso, “Statistics, Probability and

Reliability for Civil and Environmental Engineers,” McGraw-Hill, 1998, Problem

8.14. In a period of 600 years, about 330 earthquakes occurred in central Italy having

an epicentral MCS intenstiy X exceeding 6. We assume for a given earthquake with

epicentral MCS intensity greater than 6 that X is generated as X=6+Z where Z is a so-

called exponential random variable with density function



 

 .
otherwise 0

0for)91.0exp(91.0
)(

zz
zf

Z

Generally, the form of the density of an exponential random variable is

  0. ,exp)( xxxf
X



where the parameter  is positive. The mean of an exponential random variable with

parameter  is 1/.

 27

Exponential random variables can be simulated in MATLAB using the command

exprnd. The command r=exprnd(,m,n) simulates an m by n matrix r with entries

which are independent exponential random variables with mean . For the density of

Z given above, =1/0.91.

Seismic hazard at a specific site is represented by an MCS intensity Y related to the

epicentral MCS intensity X by the following attenuation law:

































1
1

1log
log

1

00

0

z

Z
XY

xx








where Z denotes the distance from the epicenter, and z0=9.5, x0=10, 0=1,  =1.5 and

=1.3 are constants which are assumed to be known. (For further details see Grandori,

G., Drei, A., Perotti, F. and Tagliani, A. (1991), “Macroseismic intensity versus

epicentral distance: The case of central Italy,” in: Stucchi, M., Postpischl, D., and D.

Sleijko, eds., “Investigations of historical earthquakes in Europe,” Technophysics,

Vol. 193, pp. 165—181). Suppose that Z~U[3km,25km]. Approximate the

distribution of Y by simulating 1000 values from its distribution and plotting a

histogram.

Solution:

The following code in MATLAB produces the required simulation.

>> x=6+exprnd(1/0.91,1000,1);

>> z=unifrnd(3,25,1000,1);

>> z0=9.5;

>> x0=10;

>> psi0=1;

>> psi=1.5;

>> phi=1.3;

>> y=x-1/log(psi)*log(1+(psi-1)/psi0*(z.*phi.^(x0-x)/z0-1))

Note that in MATLAB a.^x where a is a scalar and x is a vector evaluates to a

vector of the same length as x where the ith element of the vector is given by a^xi.

The histogram of the 1000 simulated values is shown in Figure 5.7.

Figure 5.7: Histogram of 1000 simulated MCS intensity values.

 28

6. Statistical tests in MATLAB
In your course you will be introduced to the rationale behind hypothesis testing, and

you will be expected to perform the calculations required by hand. MATLAB does

have some inbuilt functions for performing hypothesis tests, however, and we briefly

summarise those functions in this section.

6.1. One-sample t-test

The MATLAB function ttest can be used to perform hypothesis tests regarding the

mean of a normally distributed data vector with unknown variance. For example,

entering the following command to MATLAB:
>> [h,p,ci,stats]=ttest(normrnd(.2,1,20,1))

performs a two-sided test of the null hypothesis that the data vector (here, a random

sample of size 20 from a normal distribution with mean 0.2 and standard deviation 1)

comes from a population with mean zero, using a 5% significance level. The

following output is produced:

h =

 0

p =

 0.1268

ci =

 -0.0888

 0.6597

stats =

 tstat: 1.5966

 df: 19

 sd: 0.7997

A value of 0 for h indicates that the null hypothesis cannot be rejected. The p-value is

0.1268, and a 95% confidence interval for the mean is (-0.0888,0.6597). The t-

statistic, which has a t distribution with 19 degrees of freedom under the null

hypothesis, has an observed value of 1.5966. The estimated standard deviation is

0.7997.

If the population standard deviation is known, then the function ztest can be used.

See the help file for further details.

6.2. Paired t-test

The function ttest can be also be used to perform paired t-tests. For example,

entering the following command to MATLAB:

>> [h,p,ci,stats]=ttest(x,y)

performs a test of the hypothesis that the paired data vectors x and y, come from

distributions with equal means, using a 5% significance level. The difference x-y is

assumed to come from a normal distribution with unknown variance. x and y must

have the same length.

 29

6.3. Two-sample t-test

The function ttest2 can be used to perform hypothesis tests of equality of means

for two data vectors independently sampled from normal distributions with unknown

variances. The syntax is:

>> ttest2(X,Y,ALPHA,TAIL,VARTYPE)

where X and Y are the data vectors, ALPHA specifies the desired significance level,

TAIL is either ‘both’, ‘right’ or ‘left’ depending on whether we want a two-

sided or upper or lower one-sided test, and VARTYPE is ‘equal’ or ‘unequal’

depending on whether or not we assume equal variances in the two populations.

6.4. The sign test

The sample median is an estimator of the population median, which is defined for a

random variable X sampled from a continuous population to be the value ~ satisfying

.5.0)
~

Pr()
~

Pr(  XX

The sign test is a method for testing the null hypothesis that the median of a

continuous population is equal to some nominal value against a one or two sided

alternative. In the case of a population with a finite mean and where the population

distribution is symmetric (   xfxf
XX

 
~~ for every x>0 where  xf

X
 is the

density function defining the population distribution), the mean is equal to the median

and so the sign test also provides a way of testing for the mean (for instance, for a

normal population the mean and median are equal). We stress that the sign test

provides a valid way of testing for the median for any continuous population, and that

no assumption of normality is required. Tests like the sign test that do not assume that

the population distribution is a member of some parametric family are sometimes

called nonparametric tests or distribution free tests.

We wish to test H0: 0

~
  against one of the alternatives

0

~
  ,

0

~
  or

0

~
 

based on a sample Y1,…,Yn from the population. The test statisic used in the sign test

is the number of sample values bigger than 0 (U say). If the null hypothesis is true,

then 5.0)Pr(
0

 
i

Y , i=1,…,n, and hence U~Bin(n,0.5). For the alternative

H1: 0

~
  , we reject the null hypothesis if Uc or Un-c where c is a constant chosen

to achieve as nearly as possible a desired significance level. The form of the critical

region here is intuitively sensible, since we reject the null hypothesis if either most of

the sample values are bigger than 0 or most of the sample values are less than 0.

For the one-sided alternative H1: 0

~
  the critical region is Uc, and for H1: 0

~
 

the form of the critical region is Uc (where again c is chosen so that a desired

significance level is achieved as nearly as possible). The constant c defining the

critical region can be found for a given significance level from a table of cumulative

binomial probabilities. However, we do not discuss finding these critical values from

tables, since MATLAB has a command signtest that conducts the sign test and

reports a p-value that can be compared with the significance level.

The MATLAB command signtest deals only with a two-sided alternative. If our

sample values are contained in a vector y, then typing the command signtest(y,m)

 30

in MATLAB will report the P-value for testing the null hypothesis that the median is

m against a two sided alternative.

6.5. The Wilcoxon signed-rank test

A better nonparametric test for the value of the population mean that applies when the

population distribution is continuous and symmetric is the Wilcoxon signed-rank test.

Note that the mean and median are equal when the mean exists and the population

distribution is continuous and symmetric. In the Wilcoxon signed-rank test we test H0:

=0 against a one or two sided alternative. If we have a sample Y1,…,Yn from the

population, then the test statistic for the Wilcoxon signed-rank test is constructed by

ranking the absolute differences |Yi-0| and then finding the sum R+ of the ranks of

the positive differences, and the sum R- of the ranks of the negative differences.

Under the assumption of a continuous and symmetric population distribution, we can

work out the distribution of R+ and R- under the null hypothesis, and these

distributions depend only on the sample size n. For the two-sided alternative H1:0

the Wilcoxon signed-rank test statistic is R=min(R+,R-) and the critical region takes

the form Rc where c is a constant chosen to achieve as nearly as possible a given

significance level. The form of the critical region is quite intuitive. If most of the

sample is below the hypothesized value for the mean then R+ will be small and R will

be small. On the other hand, if most of the sample is above the mean, then R- will be

small and hence R will be small.

For the one-sided alternative H1: <0 the test statistic used is R+ and the form of the

critical region is R+c. For H1: >0 the test statistic used is R- and the form of the

critical region is R-c. The critical values that define the critical region can be found

from tables, although we do not discuss this. Instead, we discuss how to carry out the

Wilcoxon rank-sum test using the MATLAB command signrank.

The MATLAB command signrank deals only with a two-sided alternative. If our

sample values are contained in a vector y, and if the vector x is the same length as y

and has entries which are all equal to 0, then typing signrank(x,y) in MATLAB will

give the p-value for testing the null hypothesis that the mean is 0 against a two sided

alternative.

As for the sign test, we can apply the Wilcoxon signed-rank test to paired data.

Suppose we have pairs (X1,Y1), …, (Xn,Yn) and that the distribution of pair differences

is continuous and symmetric. We can apply the Wilcoxon signed-rank test to the pair

differences to test if the mean difference is zero.

In MATLAB, if vectors x and y (of the same length) contain the pairs, we type

signrank(x,y) to obtain the P-value of the test for a two-sided alternative.

7. Simple linear regression in MATLAB

7.1. Simple linear regression: fitting lines to data

In engineering applications we are often interested in statistical models that allow the

distribution of a variable of interest to be described in terms of additional measured

variables. The simple linear regression model allows us to fit lines to scatter plots in

order to describe the relationship between two variables. The objective in doing this is

usually to predict one variable (the response) in terms of the other (the predictor).

 31

Example: predicting a rainfall-runoff relationship

(From Kottegoda and Rosso, 1997). The following table shows rainfall and runoff

measurements at Pontelagoscuro on the Po river in northeast Italy, for the 31 years

1918 to 1948.

Year Rainfall Runoff Year Rainfall Runoff Year Rainfall Runoff

1918 1133 904 1928 1171 810 1938 940 517

1919 999 648 1929 876 490 1939 1196 801

1920 1501 1080 1930 1159 747 1940 1046 607

1921 807 549 1931 993 531 1941 1218 837

1922 1051 481 1932 1112 639 1942 948 522

1923 969 576 1933 1128 589 1943 896 444

1924 997 630 1934 1345 922 1944 950 407

1925 1090 688 1935 1290 787 1945 846 412

1926 1356 918 1936 1259 1039 1946 1011 679

1927 1133 733 1937 1529 958 1947 1096 585

 1948 1100 724

Figure 7.1 shows a scatter plot of rainfall against runoff. It is of interest to predict

runoff in terms of rainfall in future years. If a method for predicting future annual

rainfall is available, then a predictive relationship between rainfall and runoff may be

useful for prediction of future runoff. These predictions of runoff are important to

hydrologists involved in water resources management. In a simple linear regression

model for these data, the response (variable to be predicted or explained) is runoff,

and the predictor (thought to be useful for explaining variation in the response) is

rainfall. We see from the plot that runoff seems to increase linearly as rainfall

increases, and it appears that rainfall is a useful predictor of runoff. Of course, there

are other predictors apart from rainfall that could be used to predict runoff, and

statistical rainfall-runoff models used in practice incorporate many predictors, not just

one predictor such as rainfall.

Figure 7.1: Scatter plot of runoff against rainfall for Pontelagoscuro on the Po river in northeast

Italy for the period 1918-1948.

 32

7.2. Fitting the simple linear regression model in MATLAB

Suppose we have n measurements y=(y1,…,yn) of a response variable and

corresponding measurements x=(x1,…,xn) of a predictor. The simple linear regression

model can be written as

iii
xy  

10

where 1,…,n are independent normal random errors with zero mean and variance 
2
.

The term
i

x
10

  is the systematic part of the model, or the component of the

response that can be explained in terms of the predictor, whereas i is a random error

term representing variation in the response that cannot be explained by the predictor.

We can think of the errors as being the “scatter” about the linear trend in a scatter plot

like the one shown in Figure 7.2.

The method commonly used for estimation of 0 and 1 in the simple linear regression

model is called least squares. Suppose we wanted to use a simple linear regression

model for prediction of the response variable. If we are given xi and some guesses 0

and 1 for 0 and 1 we would predict Yi by
i

x
10

  . The error of prediction is

ii
xy

10
  . The idea of least squares estimation for the parameters 0 and 1 is to

find values b0 and b1 which minimize with respect to 0 and 1 the sum of squared

prediction errors

 
2

1010
.),( 

i

ii
xyR 

In a sense this will give the best fitting line to the data. To find the least squares

estimates b0 and b1 of 0 and 1 we minimize R(0,1) by finding partial derivatives

with respect to 0 and 1 and setting these to zero. Solving for 0 and 1 gives the

least squares estimates b0 and b1. As shown in lectures, the solutions can be written:

xx

xy

S

S
b 

1
 and xbyb

10
 where

n

y

y
i

i
 ,

n

x

x
i

i
 , and

n

yx

yxS
i

i

i

i

i

i

ixy




























n

x

xS
i

i

i

ixx

2

2


















Example: rainfall-runoff model

We return to the example of the rainfall-runoff data for Pontelagoscuro on the Po river

in northeast Italy. We have 31 measurements corresponding to the years 1918-1948.

The response y is runoff and the predictor x is rainfall.

Figure 7.2 shows a scatter plot of runoff against rainfall with the fitted least squares

regression line xbb
10

 superimposed.

 33

Figure 7.2: Scatter plot of runoff against rainfall for Pontelagoscuro, northeast Italy, 1918-1948

with least squares regression line superimposed.

Although we could find the least squares estimates for 0 and 1 using the formulae

above, it is much easier to use the MATLAB command fitlm.

If the rainfall measurements are held in a row vector rainfall and the runoff

measurements in a row vector runoff (the same length as rainfall) then we can run

a linear regression using the fitlm command in MATLAB.

RainMod=fitlm(rainfall,runoff)

RainMod =

Linear regression model:

 y ~ 1 + x1

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ ________ _______ __________

 (Intercept) -327.12 99.568 -3.2854 0.0026651

 x1 0.91946 0.089285 10.298 3.3758e-11

Number of observations: 31, Error degrees of freedom: 29

Root Mean Squared Error: 86.7

R-squared: 0.785, Adjusted R-Squared 0.778

F-statistic vs. constant model: 106, p-value = 3.38e-11

We get some useful output by default, but the object RainMod stores just about

anything you might want to know about your model. In the output, the first value

under Estimate is the estimated intercept b0 and the second value is the estimated

slope b1 (compare with the values obtained previously).

You might wonder what’s actually happening inside the fitlm function. Firstly the

function creates a design matrix X. This matrix has ones in the first column and the

values of rainfall in the second column. To see why it does this, just observe that if

 34

 is the vector (0, 1)
T
 and if y=(y1,…,yn)

T
 and if =(1,…,n)

T
 then we can write the

simple linear regression model in matrix language as


















































































































nnn
x

x

y

y










1

1

0

11

1

1

or

.  Xy

X is called the design matrix and expressing the model in terms of the design matrix

will be worth the effort when we go on to consider more complex models than the

simple linear regression model. The fitlm function then estimates the model

parameters via least squares.

7.3. Estimation of 2

As discussed in lectures, an unbiased estimator of 
2
 is

 

2

2

10

2









n

xbby

S
i

ii

An alternative expression for this estimator is

2

2

12






n

SbS
S

xxyy

where

.

2

2

n

y

yS
i

i

i

iyy


















Example: rainfall-runoff model

We can read this directly from the default output, the mean square error is 86.7.

7.4. Decomposing variation

We give a basic result expressing a decomposition of variation in the response. This

result also leads to a measure of the amount of variation explained in a simple linear

regression model by the predictor.

Write
ii

xbby
10

ˆ  for the fitted value corresponding to yi and let
iii

yye ˆ (the

residuals or raw residuals). Then the following identity can be proven.

 35

      .ˆˆ
222

  

i

ii

i

ii
yyyyyy

We call

  

i

i
yySST

2

the total sum of squares,

  

i

i
yySSR

2
ˆ

the regression sum of squares and

  

i

ii
yySSE

2
ˆ

the residual or error sum of squares. With this notation we can write the above

identity as SST=SSR+SSE. SST is the sum of squared deviations of the responses

about their mean (the total variation of the responses), SSR is the sum of squared

deviations of the fitted values about the mean of the responses (the amount of

variation explained by the regression) and SSE is the sum of the squared residuals

(amount of variation left unexplained by the regression). The proportion of total

variation explained by the regression is called the coefficient of determination:

.
2

SST

SSR
R 

Since SSR=SST-SSE from the above identity, we can also write

.1
2

SST

SSE
R 

The value of R
2
 always lies between zero and one, with a value close to one indicating

that the simple linear regression on the predictor explains most of the variation in the

response.

Example: rainfall-runoff model

We can read this directly from the default output, the R
2=

 0.785.

7.5. Different kinds of residuals

The residuals we have defined above are often called the raw residuals (or simply

residuals). However, there are other kinds of residuals which may be more useful than

the raw residuals for some purposes. One problem with the raw residuals is that they

will not have constant variance, even if the assumptions of the model hold and the

errors
i

 do have constant variance. In particular, the variance of the ith raw residual

ei will depend on where xi is in relation to the other predictor values.

It can be shown for the simple linear regression model that the variance of the ith

residual is

 
.

1
1)(

2

2



























 


xx

i

i

S

xx

n
eVar 

 36

As the sample size n increases the variance of the residual will tend to 
2
. However,

for small samples, the variance may be much less than 
2
, and the variance of the ith

residual will depend on how far xi is from the mean of the predictor values. Roughly

speaking, an observation for an xi a long way from the mean of the predictors is very

influential and can pull the fitted least squares regression line towards itself, reducing

the variance of the corresponding residual.

The above considerations lead to the idea of a standardized residual, where we divide

the raw residual by an estimate of its standard deviation in order to adjust for the fact

that the raw residual has a variance depending on the predictor value. We define the

ith standardized residual as

 













 




xx

i

i

i

S

xx

n
s

e
r

2

1
1

where s is the estimated standard deviation of the errors. Plots of standardized

residuals against the predictor values or the fitted values are better than the

corresponding plots of the raw residuals for many purposes. For instance, it will be

easier to assess the reasonableness of the constancy of variance assumption for the

errors using the standardized residuals. It may also be easier to detect observations

which do not fit the pattern of the rest of the data using the standardized residuals.

It can be shown that

 












 


xx

i

i

S

xx

n

e

2

1
1

has a standard normal distribution if the assumptions of the model hold. The

standardized residuals ri are obtained by replacing  in the above expression by s, and

on the basis of our previous work we might expect that this results in the standardized

residual having a t distribution. This is in fact not the case, but we can define another

kind of residual, the studentized residual, which is t-distributed under the model

assumptions. The ith studentized residual is

 












 






xx

i

i

i

i

S

xx

n
s

e
t

2

1
1

where
i

s


 is the estimated standard deviation of the errors obtained when the

regression model is fitted to the data with the ith observation excluded. The

studentized residual has a t distribution with n-3 degrees of freedom for the simple

linear regression model if the model assumptions hold.

This distributional result about the studentized residual gives us a way of detecting

outlying observations: we can compare the ith studentized residual to the percentage

points of a t-distribution to determine if an observation might be thought of as an

outlier.

Suppose that the ith error
i

 has mean  (not necessarily zero) and that the

assumptions of the linear regression model hold for the remaining observations. One

 37

formal way of detecting whether or not the ith observation is an outlier is to test the

hypothesis

H0: =0

against the alternative

H1: 0.

We can use as the test statisic the ith studentized residual ti, which has a tn-3

distribution under the null hypothesis. The critical region for a test at level  is

3;2/ 


ni
tt


 or
3;2/ 


ni

tt


, where
3;2/ n

t


 is the upper 100/2 percentage point of the t

distribution with n-3 degrees of freedom.

We must be careful about applying the above outlier test to all observations in a large

data set. In a large data set, it is very likely that there will be some large studentized

residuals purely by chance. The test above should be used as an informal diagnostic

for detecting potential outliers which can then be further investigated in the scientific

or engineering context of the problem.

Example: green liquor Na2S concentration and paper machine production

(From Montogmery and Runger, 1999). An article in the Tappi Journal (March, 1986)

presented data on green liquor Na2S concentration and paper machine production

available in dataset paper. A scatter plot of the data is shown in Figure 7.3.

Figure 7.3: Scatter plot of green liquor Na2S concentration (g/l) against production (tons/day).

When we fit the model in MATLAB using the fitlm command, the studentized

residuals are stored inside the paperMod object. We can then plot the residuals using

the plotResiduals command with the paperMod object.

PaperMod=fitlm(production,concentration);
plotResiduals(PaperMod,'fitted','ResidualType','Studentized')

 38

Figure 7.4: Plot of studentized residuals against fitted values for data on green liquor Na2S

concentration and paper machine production.

There is one studentized residual here that is much larger in magnitude than the others

(a studentized residual of –4.58, corresponding to a production of 960 tons/day.

Suppose we had a prior reason for thinking that this observation was not reliable. In

this case it would be interesting to conduct the outlier test described above in order to

decide whether this observation should be discarded when fitting the model.

8. Multiple linear regression in MATLAB

8.1. The multiple linear regression model

The general multiple linear regression has observations yi, i=1,…,n, of a response

variable which we wish to predict or explain in terms of corresponding measurements

of k predictor variables xi1,…,xik, i=1,…,n. The observations are assumed to come

from the model

iikkii
xxy   

110

where 0,1,,k are unknown parameters and the i are zero mean independent

random errors which are normally distributed with a common variance 
2
.

The multiple linear regression model can be written in matrix form. Let y=(y1,…,yn)
T

be the vector of the responses, let  
T

k
 ,,

0
 and let  

T

n
 ,

1
 . Also, let X

be the matrix

.

1

1

1

111



































nkn

k

xx

xx

X







Thus X is the matrix with entries in its first column equal to 1, and the remaining k

columns given by the k vectors of predictor values. X is often called the design matrix.

We can write the multiple linear regression model as

 39

.

1

1
1

1

0

1

1111





























































































































n

k

nkn

k

n
xx

xx

y

y






















or

.  Xy

8.2. Estimation of model parameters

As in the simple linear regression model, we can estimate the parameters  using least

squares. Let  
T

k
 ,

0
 be some guess for the parameter vector . If we predict

the responses by their means assuming =, the sum of squared prediction errors is

        .

2

1

110




n

i

ikkii

T

xxyXyXyR  

The least squares estimate b of  is the value that minimizes R() with respect to .

To obtain an expression for b, we can follow a similar argument to the one we gave

for the simple linear regression model. The least squares estimate b can be written in

matrix language as

  yXXXb
TT

1



where X
T
 denotes the transpose of the matrix X and (X

T
X)

-1
 is the inverse of X

T
X.

We also need to be able to estimate the variance of the errors 
2
. It can be shown that

an unbiased estimator of the error variance is

   
 

.
11

1

2

110

2














kn

xbxbby

kn

XbyXby
S

n

i

ikkiiT


Note that in the case of the simple linear regression model (one predictor) this reduces

to the expression we used previously.

Example: predicting 28-day concrete strength

The following example is from Metcalfe, “Statistics in Civil Engineering,” Arnold

Publishers, 1997.

For fourteen concrete cubes from the same batch of cement the density, 7-day strength

and 28-day strength are measured. We want to be able to predict 28-day strength from

information available at seven days. The data are shown in the table below: here we

have written y for the 28-day strength, x1 for the 7-day strength and x2 for the density.

y=28-day strength x1=7-day strength x2=Density

46.2

43.2

42.5

47.8

42.5

42.5

40.3

38.1

36.0

40.5

34.9

33.2

2058

2074

2045

2085

2073

2087

 40

42.0

39.2

44.3

56.7

56.8

52.1

55.3

56.8

34.2

32.5

38.8

44.4

45.2

37.6

42.7

43.8

2069

2055

2087

2412

2409

2418

2406

2415

We again use the fitlm command, this time to fit a multiple linear regression model

to the concrete strength data using MATLAB (assuming this model is appropriate).

First we create a matrix which contains both the predictors, Strenght7 and Density,

then we use them to predict Strength28.

>> X=[Strength7,Density];
>> concreteMod=fitlm(X,Strength28)

Linear regression model:

 y ~ 1 + x1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _________ _______ __________

 (Intercept) -29.698 2.9617 -10.027 7.1942e-07

 x1 0.70751 0.079246 8.928 2.2673e-06

 x2 0.022808 0.0019773 11.535 1.7442e-07

Number of observations: 14, Error degrees of freedom: 11

Root Mean Squared Error: 0.827

R-squared: 0.986, Adjusted R-Squared 0.984

F-statistic vs. constant model: 392, p-value = 5.95e-11

Most of the key information can be gained from the default output. In the output, the

first value under Estimate is the estimated intercept b0 and the second value is the

estimated slope b1. The mean square error is 0.827 and R
2=

 0.986.

8.3. Inference for model coefficients

In addition to obtaining point estimates of model parameters it is important to be able

to derive interval estimates that give a range of plausible values for the parameters. In

lectures we stated some distributional results that allow construction of confidence

intervals:

We can also test hypotheses on individual coefficients:

A 100(1-)% confidence interval for i is given by

 
ikni

bestb ˆ
1;2/ 




.

 41

Example: concrete strength data

To can obtain the confidence intervals for the concrete strength data using the coefCI

function on the concreteMod object.

>> X=[Strength7,Density];
>> concreteMod=fitlm(X,Strength28)

>> coefCI(concreteMod)

 -36.2162 -23.1790

 0.5331 0.8819

 0.0185 0.0272

This output gives us a matrix with two columns, the lower and upper bounds of the

95% confidence intervals for 0, 1, and 2 respectively.

We can add a second argument to coefCI to control the level of confidence for the

intervals. Typing coefCI(concreteMod,alpha) where alpha is some constant

between zero and one produces 100(1-alpha)% confidence intervals. With alpha

equal to 0.05 we obtain a 95% confidence interval.

Example: Big Mac data

Suppose we want to construct 99% confidence intervals for the regression coefficients

for the Big Mac data. T vectors engsal and engtax are average salary of an electrical

engineer and tax rate paid by engineers and the vector bigmacindex contains minutes

of labour required by an average worker to buy a Big Mac and French fries.

To test the hypothesis

H0: i=
*

against a one or two sided alternative we use the test statistic

)(ˆ

*

i

i

bes

b
T




which has a tn-k-1 distribution under the null hypothesis. For a test with significance

level  and the two-sided alternative H1: i≠
*
, the critical region is

.or
1;2/1;2/ 


knkn

tTtT


For the one-sided alternatives H1: i<
*
 and H1: i>

*
 the critical region is

modified to T<
1; 


kn

t


 or
1; 


kn

tT


 respectively. These hypothesis tests are

sometimes called partial t-tests.

 42

In MATLAB, we type:

>> X=[engsal,engtax];

bigmacMod=fitlm(X,bigmacindex);

coefCI(bigmacMod,0.01)

ans =

 65.8158 133.9485

 -2.4638 -0.7387

 -1.3310 1.5613

This gives us the 99% confidence intervals (we set the second argument of coefCI

equal to 0.01 here to get 99% confidence intervals).

8.4. Confidence intervals for the mean and prediction intervals

Confidence intervals for the mean response

If we write x0 for a vector of new predictor values (1,x01,…,x0k)
T
 then the estimated

mean response when the predictors take the values x01,…,x0k is

 
kk

T
xbxbbbxxy

0011000
ˆ   .

We have the following result:

Prediction intervals

In addition to giving a confidence interval for the mean at x0, we need to be able to

quantify our uncertainty about a future observation Y0 observed at the predictor values

in x0.

Example: concrete strength data

We illustrate the construction of confidence intervals and prediction intervals in

MATLAB using the concrete strength data. Suppose we are interested in predicting

28-day strength when 7-day strength is 36 and density is 2050. The following

commands and output in MATLAB give a 95% confidence interval for the mean and

a 95% prediction interval for these values of the predictors.

A 100(1-)% prediction interval for Y0 is given by

    .1,1
0

1

01;2/00

1

01;2/0 
















xXXxstbxxXXxstbx

TT

kn

TTT

kn

T



A 100(1-)% confidence interval for the mean response at x0 is

    















 0

1

01;2/00

1

01;2/0
, xXXxstbxxXXxstbx

TT

kn

TTT

kn

T


.

 43

>> X=[Strength7,Density];
>> concreteMod=fitlm(X,Strength28)

>> [ypred,yci] = predict(concreteMod,[36,2050]) ;

>> yci =

 41.8856 43.1739

>> [ypred,ypi]=

predict(concreteMod,[36,2050],'Prediction','observation');

ypi

ypi =

 40.5994 44.4601

Hence a 95% confidence interval for the mean when 7-day strength is 36 and density

is 2050 is (41.8856,43.1739) and a 95% prediction interval is (40.5994,44.4601).

8.5. Assessing overall model adequacy

In our discussion of the simple linear regression model, we gave a decomposition of

total variation into variation explained by the regression and residual variation. A

similar decomposition holds for the multiple linear regression model. The coefficient

of determination (which is a measure of the proportion of variation in the response

explained by the regression) is defined as for the simple linear regression model:

It follows from the identity SST=SSR+SSE that R
2
 always lies between zero and one,

with a value close to one indicating that most of the variation in the response can be

explained by the predictors, and a value close to zero indicating that a large

proportion of variation is left unexplained by the predictors.

One thing we would like to do in assessing the overall adequacy of a multiple linear

regression model is to test the hypothesis that all the coefficients of the predictors in

the model are zero against the alternative that at least one of the coefficients is

nonzero. This is a test of whether the predictors can help to explain a significant

amount of variation in the response.

More precisely, we test

H0: i=0, i=1,…,k

against the alternative

H1: Not all i=0, i=1,…,k.

The test statisic for this hypothesis test is

)1/(

/




knSSE

kSSR
F

.1
2

SST

SSE

SST

SSR
R 

 44

The distribution of F under the null hypothesis can be calculated: it has a distribution

belonging to the F family of distributions. A distribution in the F family has two

parameters (called the degrees of freedom). The statistic given above has an F

distribution with k and n-k-1 degrees of freedom under the null hypothesis, and we

write F~Fk,n-k-1. If we write
1,;  knk

F


 for the upper 100 percentage point of an F

distribution with k and n-k-1 degrees of freedom (that is, the value that bounds an area

of  in the upper tail of the Fk,n-k-1 density) then the critical region for the above

hypothesis test is

.
1,; 


knk

FF


We can summarize the testing procedure as follows.

In most statistical packages the decomposition of variation SST=SSR+SSE and the

above overall test of model significance is displayed in an analysis of variance

(ANOVA) table. The form of the ANOVA table for the multiple linear regression

model is shown below.

Source DF SS MS F P

Regression

Error

k

n-k-1

SSR

SSE

SSR/k

SSE/(n-k-1)
)1/(

/

 knSSE

kSSR

p-value

Total n-1 SST

The first column “Source” describes the nature of the variation considered in the

remainder of each row (we are interested in the decomposition of total variation into

variation explained by the regression and unexplained or error variation). The third

column “SS” (which stands for sums of squares) gives SSR, SST and SSE. The second

column “DF” (for degrees of freedom) gives the values we divide the sums of squares

by in computing the test statistic F. The fourth column “MS” (which stands for mean

squares) gives the numerator and denominator for the F statistic used in the global test

of model significance. The fifth column, labelled “F” gives the test statistic for the test

of model significance, and the final column gives the p-value of the test.

To test

H0: i=0, i=1,…,k

against the alternative

H1: Not all i=0, i=1,…,k.

we use the test statistic

)1/(

/




knSSE

kSSR
F

which has an Fk,n-k-1 distribution under H0. We reject H0 at significance level

 if

.
1,; 


knk

FF


 45

Example: concrete strength data

The F statistic and associated p-value are given in the last line of the default output

from the fitlm object.

>> X=[Strength7,Density];
>> concreteMod=fitlm(X,Strength28)

>> concreteMod

concreteMod =

Linear regression model:

 y ~ 1 + x1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _________ _______ __________

 (Intercept) -29.698 2.9617 -10.027 7.1942e-07

 x1 0.70751 0.079246 8.928 2.2673e-06

 x2 0.022808 0.0019773 11.535 1.7442e-07

Number of observations: 14, Error degrees of freedom: 11

Root Mean Squared Error: 0.827

R-squared: 0.986, Adjusted R-Squared 0.984

F-statistic vs. constant model: 392, p-value = 5.95e-11

So from the p-value, at the 5% level (or the 1% level) we reject the null hypothesis

that the coefficients of all the predictors are zero in favour of the alternative that at

least one of these coefficients is nonzero (since the p-value for the test is zero to four

decimal places). The coefficient of determination is 0.986.

Example: Big Mac data

As another example, consider the Big Mac data set available in bigmac.csv. Our

responses are in the vector bigmacindex, and the predictors are engsal and elgtax.

We type the following

>> X=[engsal,engtax];

bigmacMod=fitlm(X,bigmacindex)

 46

bigmacMod =

Linear regression model:

 y ~ 1 + x1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _______ _______ __________

 (Intercept) 99.882 12.626 7.9107 7.4597e-10

 x1 -1.6012 0.31968 -5.0089 1.0341e-05

 x2 0.11515 0.53598 0.21483 0.83094

Number of observations: 45, Error degrees of freedom: 42

Root Mean Squared Error: 33.7

R-squared: 0.467, Adjusted R-Squared 0.442

F-statistic vs. constant model: 18.4, p-value = 1.79e-06

So if we are testing at the 5% level, since the p-value is less than 0.05, we conclude

that the predictors do contain useful information for explaining variation in the

response. The coefficient of determination is 0.467.

8.6. Stepwise approaches to model selection

Sequential methods start with an initial model and then make a sequence of additions

or deletions of predictors, attempting to improve the fit of the model at each step. We

do a search through the model space, visiting only a small subset of possible models,

ending our search when some stopping rule is satisfied.

Sequential methods are often used in practice and you need to know about them.

However, with modern computing power, they are not needed unless the number of

predictors is very large. Furthermore, even if the number of predictors is very large,

often the experience of the scientist or engineer in the context of the problem can

reduce the set of potential predictors to a smaller set, and then some other model

selection criterion can be applied. It should be emphasized that we do not always want

to select just a single “best” model in any case, but may wish to identify a number of

good models for further investigation.

There are three basic sequential methods (and many variants of these): forward

selection, backward selection and stepwise.

Forward selection

In forward selection, we start with some initial model (typically the model including

no predictors) and then attempt to improve on the current model by adding the

predictor which most improves the fit until some stopping rule is satisfied.

Our measure of the improvement of fit upon addition of a predictor is the absolute

value of the partial t-statistic for testing whether the predictor coefficient is zero. That

is, we use

 47

 
i

i

i

bes

b
t

ˆ


The predictor i not currently in the model for which |ti| is largest is considered the best

to add.

The algorithm is as follows:

1. Fit the model involving just an intercept (no predictors)

2. Repeat:

a. Considering all possible one variable additions to the current model,

find the predictor i for which |ti| is largest and add it to the model if

|ti|>Tin, where Tin is some cutoff value.

b. If no variable could be added in a., then stop.

In order to implement the above algorithm, the cutoff value Tin must be specified. A

common choice for Tin is 2.0. Unfortunately, differences in the final model selected

depending on the cutoff value chosen do occur.

Example: concrete strength data

With 28-day strength as the response and 7-day strength and density as predictors,

there are four possible models (include neither predictor, both predictors, just density

or just 7-day strength).

We start with the model with just an intercept, and consider models obtained by

adding one variable. We can use the stepwiselm command to carry out model

selection. To start with the model with no predictors we use the option ‘constant’.

>> X=[Strength7,Density];

>> stepwiselm(X,Strength28,'constant')

1. Adding x2, FStat = 93.219, pValue = 5.2265e-07

2. Adding x1, FStat = 79.7099, pValue = 2.26728e-06

ans =

Linear regression model:

 y ~ 1 + x1 + x2

Estimated Coefficients:

 Estimate SE tStat pValue

 ________ _________ _______ __________

 (Intercept) -29.698 2.9617 -10.027 7.1942e-07

 x1 0.70751 0.079246 8.928 2.2673e-06

 x2 0.022808 0.0019773 11.535 1.7442e-07

Number of observations: 14, Error degrees of freedom: 11

Root Mean Squared Error: 0.827

R-squared: 0.986, Adjusted R-Squared 0.984

F-statistic vs. constant model: 392, p-value = 5.95e-11

 48

From the output we can see x2 (Density) was added in the first step followed by x1

(Strenght7). The final model contains both the predictors.

8.7. Residuals and influence in multiple linear regression

As for simple linear regression, the basis for model criticism in multiple linear

regression is usually some kind of residual analysis.

Let yi be the value of the ith response, i=1,…,n, and xi1,…,xik values of k predictor

variables. The responses yi are assumed to follow the model,

iikii
xy   ...

110

where as usual the i are zero mean independent normally distributed errors with

variance 
2
. In matrix notation we write

  Xy

where y is the vector of the responses, X is the design matrix,  
T

k
 ,,

0
 is the

vector of unknown parameters in the mean response and  is the vector of random

errors. We write b for the least squares estimate of , and
i

ŷ for the fitted value at the

predictor values xi1,…,xik,

ikkii
xbxbby  ...ˆ

110

If we let xi be the vector formed from the ith row of the design matrix,

xi=(1,xi1,…,xik)
T
, then we can write the fitted value in matrix notation as

.ˆ bxy
T

ii


and the ith raw residual ei is defined to be .ˆ
iii

yye 

We can use plots of residuals (against fitted values or the predictors) to check some of

the multiple linear regression model assumptions. The interpretation of residual plots

is much the same as for the simple linear regression case. In particular, a trend in the

mean level of the residuals as the fitted values or predictors increase suggests that the

mean of the responses is not correctly specified, whereas a trend in the variability of

the residuals casts doubt on the constancy of variance assumptions for the errors.

Residual plots can also be used to identify outliers that do not fit the trend of the rest

of the data.

While plots of the raw residuals can be very useful, as for the simple linear regression

case there are other kinds of residuals that may be more informative for some

purposes. A drawback with the raw residuals is that they do not have the same

variance, even if the assumptions of the model hold. So we may wish to standardize

the raw residuals by dividing by an estimate of their standard deviation to obtained a

standardized residual. We write ri for the ith standardized residual.

For assessing whether an observation fits the pattern of the rest of the data, it is

helpful to know the distribution of the residuals so that it can be determined if an

observation is unusually large or small. Again following the simple linear regression

case, we can define studentized residuals (similar to standardized residuals but

employing an estimator of the error variance which excludes the ith observation) that

have a t-distribution if the model assumptions hold.

 49

In particular, the ith studentized residual ti has a tn-k-2 distribution. We can test whether

an observation is an outlier using the studentized residual as the test statistic: as in the

simple linear regression case, this test should be considered an informal diagnostic to

highlight observations that require further examination in the context of the problem.

We should not apply such an outlier test blindly to all obseravtions in the data set and

exclude observations which fail the test, since some large studentized residuals are

likely to occur purely by chance in a large data set.

Example: concrete strength data

We can plot residuals using the plotResiduals command.

>> X=[Strength7,Density];
>> concreteMod=fitlm(X,Strength28)

>> plotResiduals(concreteMod,'fitted','ResidualType','Studentized')

Figure 8.1: Plot of the studentized residuals against fitted values

From the graph of studentized residuals against fitted values it seems that the

constancy of variance assumption might be violated: the studentized residuals for

large fitted values tend to be smaller in absolute value than those for smaller values.

Example: Big Mac data set

We return to the Big Mac data set. The responses are in a vector bigmacindex, and

the predictors are engsal (average salary of an electrical engineer in US dollars) and

elgtax. (the tax rate for engineers).

>> X=[engsal,engtax];

>> bigmacMod=fitlm(X,bigmacindex);

>> plotResiduals(bigmacMod,'fitted','ResidualType','Studentized')

 50

What do you conclude from this plot? Do you think this model is appropriate for these

data? Why, or why not?

9. ANOVA in MATLAB

9.1. One way ANOVA

The two sample t-test gives us a test for the equality of two population means. We

now discuss briefly a method for comparing means for more than two populations,

and describe the connection between this method and multiple linear regression.

Suppose that we have k different populations, and that we take a random sample of ni

observations from the ith population, i=1,…,k. Write yij for the jth observation from

the ith population, i=1,..,k, j=1,…,ni. Also, write i for the population mean of the ith

population, i=1,..,k, and suppose that the population variances are all equal. We wish

to determine whether all population means are equal, or whether there are differences

among the means of the populations.

The above experimental situation where population means are to be compared based

on random samples from the populations is referred to as a completely randomized

single-factor experiment, and the analysis to determine differences among population

means is referred to as a single factor or one-way analysis of variance (ANOVA). The

following example gives one illustration of a situation where a one-way ANOVA

might be of interest.

Example: compressive strength of concrete

(From Montgomery and Runger, 1999). The compressive strength of concrete is being

studied, and four different mixing techniques are being investigated. The following

data have been collected.

 51

Mixing

Technique

1

2

3

4

3129

3200

2800

2600

3000

3300

2900

2700

2865

2975

2985

2600

2890

3150

3050

2765

In each row there are four observations of compressive strength for one of the mixing

techniques. The question of interest here is: do mixing techniques have an effect on

the compressive strength of the concrete? We will return to this example later.

We can write our model for the data here in a form similar to the multiple linear

regression model. We assume that the observations yij follow the model

ijiij
y  

where the ij are zero mean independent normally distributed errors with variance 
2
.

Now define variables xijm=1 if m=i and zero otherwise. Think of xij1,…,xijk as being k

predictor values associated with the response yij: of these k predictor values, xiji is one,

and the remaining predictors are zero. Hence we can write

ijijkkij

ijiij

xx

y









...
11

which is in the form of a multiple linear regression model with no intercept,

parameters 1,…,k in the mean response, and predictors xij1,…,xijk for the observation

yij. As a matter of fact, the mathematical framework for estimating parameters in the

model here and conducting tests of hypotheses is the same as that used in the study of

the multiple linear regression model. We can estimate parameters, estimate our

uncertainty about parameters, obtain predictions and so forth as before.

One result that carries over from multiple linear regression is that there is a

decomposition of total variation into variation explained by the predictors (variation

which can be explained in terms of membership of the different population groups)

and variation unexplained. It can be shown that the usual decomposition of variation

in multiple linear regression SST=SSR+SSE can be written here as

        

i j

iij

i

ii

i j

ij
yyyynyy

2

.

2

...

2

..

where we have written
..

y for the mean of all the observations, and
.i

y for the mean

of the observations from the ith population.

We can test the hypothesis

H0: 1=…=k

against the alternative

H1: Not all i are equal, i=1,…,k.

Using the test statistic

)/(

)1/(

knSSE

kSSR
F






which has an Fk-1,n-k degrees of freedom under the null hypothesis (where n is the total

number of observations). The critical region for the test when the significance level is

 is
knk

FF



,1;

.

 52

Example: compressive strength of concrete

We illustrate testing for the equality of means in a completely randomized experiment

with a single factor using the compressive strength of concrete data and MATLAB’s

anova1 command. We have the same number of observations in each population

(mixing method) in this example, and suppose we have stored the observations in a

matrix X in MATLAB, with different columns corresponding to different mixing

types:

» X

X =

 3129 3200 2800 2600

 3000 3300 2900 2700

 2865 2975 2985 2600

 2890 3150 3050 2765

We can obtain the p-value for the test that the four population means are equal

(mixing type has no effect) by typing anova1(X) in MATLAB. The number which

appears in the command window is the p-value. The anova1 command also produces

an analysis of variance table which gives the decomposition SST=SSR+SSE and the

calculations leading to the F statistic used in the test for equality of means, as well as

a side by side boxplot of the observations for the four mixing types (not very helpful

here with only four observations in each group). This will be demonstrated in lectures.

Our p-value here is approximately 4.810
-4

 so that we reject the null hypothesis of

equality of population means for the mixing types at the 5% level (or the 1% level).

There is a form of the anova1 command that can be used when there are differing

numbers of observations from the populations to be compared (see the next example).

Example: blondes are tougher

Studies conducted at the University of Melbourne indicate that there may be a

difference between the pain thresholds of blonds and brunettes. Men and women of

various ages were divided into four categories, according to hair colour (recorded as

Light Blond, Dark Blond, Light Brunette or Dark Brunette). For each person a pain

threshold score (Pain) was measured.

The data are shown in the table below.

Hair Colour Pain Score

Light Blond

Light Blond

Light Blond

Light Blond

Light Blond

Dark Blond

62

60

71

55

48

63

 53

Dark Blond

Dark Blond

Dark Blond

Dark Blond

Light Brunette

Light Brunette

Light Brunette

Light Brunette

Dark Brunette

Dark Brunette

Dark Brunette

Dark Brunette

Dark Brunette

57

52

41

43

42

50

41

37

32

39

51

30

35

There are 19 rows in the table above (19 subjects) and suppose we enter the data in

MATLAB in the form of two vectors: a vector group taking values of 1, 2, 3 or 4

(where 1 indicates a light blond subject, 2 a dark blond, 3 a light brunette and 4 a dark

brunette) and a vector pain containing the pain threshold measurements for the 19

subjects (the values in the second column of the table).

Then we can do the one way analysis of variance by typing anova1(pain,group).

MATLAB gives the p-value for testing equality of means for the hair colour groups as

0.0041. Since this is less than 0.05, at the 5% level we reject the null hypothesis of

equality of means for the hair colour groups.

9.2. One way ANOVA as a regression model

We discussed above how to write a general completely randomized single factor

experiment as a multiple linear regression with a suitable design matrix X. The X

matrix will contain indicator variables, which for each observation have a 1 in the

column corresponding to the group that observation is in, and 0’s everywhere else.

We can then write the model in matrix form:

 54









































































































































































































































































































































44

43

42

41

34

33

32

31

24

23

22

21

14

13

12

11

4

3

2

1

44

43

42

41

34

33

32

31

24

23

22

21

14

13

12

11

1000

1000

1000

1000

0100

0100

0100

0100

0010

0010

0010

0010

0001

0001

0001

0001









































y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

or

.  Xy

MATLAB’s fitlm function does this internally, and we don’t need to worry about it.

All we have to do is tell fitlm which of the predictors are categorical. We can use the

output object from fitlm command to estimate parameters, compute confidence

intervals for parameters, find residuals and so on. We can carry out an anova using

the fitlm function just as we did for linear models, and indicating which variable(s)

are categorical. You can have multiple categorical variables to do two-way or three-

way ANOVAs.

>> painMod=fitlm(group,pain,'CategoricalVars',[1]);

>> anova(painMod)

ans =

 SumSq DF MeanSq F pValue

 ______ __ ______ ______ _________

 x1 1360.7 3 453.58 6.7914 0.0041142

 Error 1001.8 15 66.787

The main advantage of using linear models to do an ANOVA allows us to check

model assumptions using the same methods we used for linear models.

Residual analysis

Plotting of the raw residuals against an index of the population groups or the fitted

values can help to detect violations of assumptions. In particular, we might look for

 55

violations of the constancy of variance assumption, outliers, or obvious departures

from normality.

Example: compressive strength of concrete

We illustrate residual analysis for the completely randomized one factor experiment

with the compressive strength of concrete data.

>> strengthMod=fitlm(technique,strength,'CategoricalVars',[1]);
>> plotResiduals(strengthMod,'fitted','ResidualType','raw')

Figure 9.1 shows plots of the raw residuals against the fitted values.

Figure 9.1: Plot of raw residuals against mixing technique (left) and against fitted values (right).

There doesn’t seem to be any reason to question model assumptions here. With only

four observations from each population it is difficult to say too much from the plots.

Example: blonds are tougher

Consider the pain and hair colour dataset, where a number of subjects were divided

into groups based on hair colour (light blond, dark blond, light brunette or dark

brunette). Then a pain threshold score was measured for each subject. We did a one

way analysis of variance for these data and concluded that there were significant

differences between means for some of the groups (pain threshold and hair colour

seem to be related).

The plots below show the residuals against group (1=light blond, 2=dark blond,

3=light brunette and 4=dark brunette) and residuals against fitted values for this

example. What are your conclusions? Are the assumptions we made in conducting the

one way analysis of variance reasonable?

 56

>> painMod=fitlm(group,pain,'CategoricalVars',[1]);
>> plotResiduals(painMod,'fitted','ResidualType','Studentized')

Figure 4: Plot of raw residuals against hair colour (left) and fitted values (right) for pain and hair

colour example.

