
LECTURE 4:

COMMONLY USED DISTRIBUTIONS

Engineering StatisticsECEN 321



Section 4.1:  

The Bernoulli Distribution

We use the Bernoulli distribution when we have an 
experiment which can result in one of two outcomes.  
One outcome is labeled “success,” and the other 
outcome is labeled “failure.”  

The probability of a success is denoted by p. The 
probability of a failure is then 1 – p.  

Such a trial is called a Bernoulli trial with success 
probability p.  



Examples 1 and 2

1. The simplest Bernoulli trial is the toss of a coin.  The 

two outcomes are heads and tails.  If we define 

heads to be the success outcome, then p is the 

probability that the coin comes up heads.  For a 

fair coin, p = 0.5.    

2. Another Bernoulli trial is a selection of a component 

from a population of components, some of which 

are defective.  If we define “success” to be a 

defective component, then p is the proportion of 

defective components in the population.



X ~ Bernoulli(p)

For any Bernoulli trial, we define a random variable X 

as follows: 

If the experiment results in a success, then X = 1.  

Otherwise, X = 0.  It follows that X is a discrete random 

variable, with probability mass function p(x) defined by

p(0) = P(X = 0) = 1 – p

p(1) = P(X = 1) = p 

p(x) = 0 for any value of x other than 0 or 1



Mean and Variance

If X ~ Bernoulli(p), then
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Example 3

Ten percent of components manufactured by a certain 

process are defective.  A component is chosen at 

random.  Let X = 1 if the component is defective, and 

X = 0 otherwise.  

1. What is the distribution of X?

2. Find the mean and variance of X.





Section 4.2:

The Binomial Distribution

If a total of n Bernoulli trials are conducted, and 

➢ The trials are independent.

➢ Each trial has the same success probability p

➢ X is the number of successes in the n trials

then X has the binomial distribution with parameters 

n and p, denoted X ~ Bin(n, p).



Example 4

A fair coin is tossed 10 times.  Let X be the number of 

heads that appear.  What is the distribution of X?





Another Use of the Binomial

Assume that a finite population contains items of two 

types, successes and failures, and that a simple 

random sample is drawn from the population.  Then if 

the sample size is no more than 5% of the population, 

the binomial distribution may be used to model the 

number of successes.  



Example 5

A lot contains several thousand components, 10% of 

which are defective.  Seven components are sampled 

from the lot.  Let X represent the number of defective 

components in the sample.  What is the distribution of 

X?
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Binomial  R.V.: 

pmf, mean, and variance

➢ If X ~ Bin(n, p), the probability mass function of X is 

➢ Mean: X = np

➢ Variance:  
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Example 6

A large industrial firm allows a discount on any invoice 

that is paid within 30 days.  Of all invoices, 10% 

receive the discount.  In a company audit, 12 invoices 

are sampled at random.  What is the probability that 

fewer than 4 of the 12 sampled invoices receive the 

discount?





More on the Binomial

Assume n independent Bernoulli trials are conducted.

Each trial has probability of success p.

Let Y1, …, Yn be defined as follows:  Yi = 1 if the ith

trial results in success, and Yi = 0 otherwise.  (Each of 
the Yi has the Bernoulli(p) distribution.)

Now, let X represent the number of successes among 
the n trials.  So, X = Y1 + …+ Yn .

➢This shows that a binomial random variable can be 
expressed as a sum of Bernoulli random variables.   



Estimate of p

If X ~ Bin(n, p), then the sample proportion                  
is used to estimate the success probability p.  

Note:
➢ Bias is the difference 
➢ is unbiased.
➢The uncertainty in    is 

➢In practice, when computing , we substitute     for p,
since p is unknown.
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Example 7

In a sample of 100 newly manufactured automobile 

tires, 7 are found to have minor flaws on the tread.  If 

four newly manufactured tires are selected at random 

and installed on a car, estimate the probability that 

none of the four tires have a flaw, and find the 

uncertainty in this estimate.





Section 4.3:

The Poisson Distribution

➢ One way to think of the Poisson distribution is as an 

approximation to the binomial distribution when n is 

large and p is small.

➢ It is the case when n is large and p is small the mass 

function depends almost entirely on the mean np, and

very little on the specific values of n and p.  

➢ We can therefore approximate the binomial mass 

function with a quantity λ = np; this λ is the 

parameter in the Poisson distribution.



Poisson R.V.:  

pmf, mean, and variance

➢If X ~ Poisson(λ), the probability mass function of X is 

➢ Mean: X = λ

➢ Variance:  

Note:  X is a discrete random variable and λ must be a 
positive constant.
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Example 8

Particles are suspended in a liquid medium at a 

concentration of 6 particles per mL.  A large volume 

of the suspension is thoroughly agitated, and then 3 

mL are withdrawn.  What is the probability that 

exactly 15 particles are withdrawn?



Poisson Distribution to Estimate Rate

Let λ denote the mean number of events that occur in 
one unit of time or space.  Let X denote the number of 
events that are observed to occur in t units of time or 
space.  

If X ~ Poisson(λt), we estimate λ with             .ˆ X

t
 =
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Notes on Estimating a Rate

➢ is unbiased.

➢The uncertainty in      is 

➢In practice, we substitute     for λ, since λ is unknown.
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Example 9

A 5 mL sample of a suspension is withdrawn, and 47 

particles are counted. Estimate the mean number of 

particles per mL, and find the uncertainty in the 

estimate.



Section 4.4:

Some Other Discrete Distributions

Hypergeometric Distribution:

Consider a finite population containing two types of items, 
which may be called successes and failures.

A simple random sample is drawn from the population.

Each item sampled constitutes a Bernoulli trial.  

As each item is selected, the probability of successes in the 
remaining population decreases or increases, depending 
on whether the sampled item was a success or a failure.  



Hypergeometric

For this reason the trials are not independent, 

so the number of successes in the sample does 

not follow a binomial distribution.  

The distribution that properly describes the 

number of successes is the hypergeometric

distribution.



Hypergeometric pmf

Assume a finite population contains N items, of which 

R are classified as successes and N – R are classified 

as failures.  Assume that n items are sampled from this 

population, and let X represent the number of 

successes in the sample.  Then X has a hypergeometric 

distribution with parameters N, R, and n, which can be 

denoted X ~ H(N, R, n).  



Hypergeometric pmf

The probability mass function of X is 

 
,  max(0, ) min( , )

( ) ( )

0,     otherwise

R N R

x n x
R n N x n R

Np x P X x

n

−  
    

−    + −  
= = =  

 
 






Mean and Variance of the 

Hypergeometric Distribution

If X ~ H(N, R, n), then

➢Mean of X:

➢Variance of X:
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Example 10

Of 50 buildings in an industrial park, 12 have 

electrical code violations.  If 10 buildings are selected 

at random for inspection, what is the probability that 

exactly 3 of the 10 have code violations?  What are 

the mean and variance of X?



Geometric Distribution

Assume that a sequence of independent Bernoulli 

trials is conducted, each with the same probability of 

success, p.  

Let X represent the number of trials up to and 

including the first success.  

Then X is a discrete random variable, which is said to 

have the geometric distribution with parameter p.  

We write X ~ Geom(p).



Geometric R.V.:

pmf, mean, and variance

If X ~ Geom(p), then

➢ The pmf of X is 

➢The mean of X is              .

➢The variance of X is                  .
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Example 11

A test of weld strength involves loading welded joints 
until a fracture occurs.  For a certain type of weld, 80% 
of the fractures occur in the weld itself, while the other 
20% occur in the beam.  A number of welds are tested.  
Let X be the number of tests up to and including the first 
test that results in a beam fracture.  

1. What is the distribution of X?

2. Find P(X = 3).

3. What are the mean and variance of X?



Negative Binomial Distribution

The negative binomial distribution is an extension of the 
geometric distribution.  Let r be a positive integer.  
Assume that independent Bernoulli trials, each with 
success probability p, are conducted, and let X denote 
the number of trials up to and including the rth success.  
Then X has the negative binomial distribution with 
parameters r and p.  We write X ~ NB(r,p).

Note:  If X ~ NB(r,p), then  X = Y1 + …+ Yr where 
Y1,…,Yr are independent random variables, each with 
Geom(p) distribution.  



Negative Binomial R.V.:

pmf, mean, and variance

If X ~ NB(r,p), then

➢ The pmf of X is

➢The mean of X is             .

➢The variance of X is                      .
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Example 11 cont.

Find the mean and variance of X, where X represents 

the number of tests up to and including the third beam 

fracture.  



Multinomial Trials

A Bernoulli trial is a process that results in one of two 

possible outcomes.  A generalization of the Bernoulli 

trial is the multinomial trial, which is a process that 

can result in any of k outcomes, where k ≥ 2.  

We denote the probabilities of the k outcomes by 

p1,…,pk .



Multinomial Distribution

 Now assume that n independent multinomial trials are 
conducted each with k possible outcomes and with the 
same probabilities p1,…,pk .  

 Number the outcomes 1, 2, …, k.  For each outcome i, 
let Xi denote the number of trials that result in that 
outcome.  

 Then X1,…, Xk are discrete random variables.  

 The collection X1,… ,Xk said to have the multinomial 
distribution with parameters n, p1,…, pk. We write 
X1,…, Xk ~ MN(n, p1,…, pk).



Multinomial R.V.

If X1,…, Xk ~ MN(n, p1,…, pk), then the pmf of X1,…, Xk is

Note that if X1,…, Xk ~ MN(n, p1,…, pk), then for each i, 

Xi ~ Bin(n, pi).
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Example 12

The items produced on an assembly line are inspected, 
and each is classified as either conforming (acceptable), 
downgraded, or rejected.  Overall, 70% of the items 
are conforming, 20% are downgraded, and 10% are 
rejected.  Assume that four items are chosen 
independently and at random.  Let X1, X2, X3 denote the 
numbers among the 4 that are conforming, 
downgraded, and rejected, respectively.  

1.What is the distribution of X1, X2, X3?

2.What is the probability that 3 are conforming and 1 is

rejected in a given sample?



Section 4.5:

The Normal Distribution

The normal distribution (also called the Gaussian 
distribution) is by far the most commonly used 
distribution in statistics.  This distribution provides a 
good model for many, although not all, continuous 
populations.  

The normal distribution is continuous rather than 
discrete.  The mean of a normal population may have 
any value, and the variance may have any positive 
value.



Normal R.V.:

pdf, mean, and variance

The probability density function of a normal 
population with mean  and variance 2 is given by

If X ~ N(, 2), then the mean and variance of X are 
given by
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68-95-99.7% Rule

This figure represents a plot of the normal probability density function 
with mean  and standard deviation .  Note that the curve is 
symmetric about , so that  is the median as well as the mean.  It is 
also the case for the normal population.

▪About 68% of the population is in the interval   . 

▪About 95% of the population is in the interval   2.

▪About 99.7% of the population is in the interval   3.



Standard Units

The proportion of a normal population that is within 

a given number of standard deviations of the mean is 

the same for any normal population.  

For this reason, when dealing with normal 

populations, we often convert from the units in which 

the population items were originally measured to 

standard units.  

Standard units tell how many standard deviations an 

observation is from the population mean.  



Standard Normal Distribution

In general, we convert to standard units by subtracting the 
mean and dividing by the standard deviation.  Thus, if x is 
an item sampled from a normal population with mean  and 
variance 2, the standard unit equivalent of x is the number 
z, where

The number z is sometimes called the “z-score” of x.  The z-
score is an item sampled from a normal population with 
mean 0 and standard deviation of 1.  This normal 
population is called the standard normal population.
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Example 13

Aluminum sheets used to make beverage cans have 
thicknesses (in thousandths of an inch) that are 
normally distributed with mean 10 and standard 
deviation 1.3.  A particular sheet is 10.8 thousandths 
of an inch thick.  Find the z-score.



Example 13 cont.

The thickness of a certain sheet has a z-score of −1.7.  

Find the thickness of the sheet in the original units of 

thousandths of inches.



Finding Areas Under the Normal Curve

The proportion of a normal population that lies within 
a given interval is equal to the area under the normal 
probability density above that interval.  This would 
suggest integrating the normal pdf, but this integral 
does not have a closed form solution.  



Finding Areas Under the Normal Curve

So, the areas under the standard normal curve (mean 0, variance 
1) are approximated numerically and are available in a 
standard normal table or z table, given in Table A.2.  

We can convert any normal into a standard normal so that we can 
compute areas under the curve.  

The table gives the area in the left-hand tail of the curve.  Other 
areas can be calculated by subtraction or by using the fact that 
the total area under the curve is 1.



Example 14

Find the area under normal curve to the left of z = 

0.47.  

Find the area under the curve to the right of z = 1.38.



Example 15

Find the area under the normal curve between z = 0.71 
and z = 1.28.

What z-score corresponds to the 75th percentile of a 
normal curve?



Estimating the Parameters

If X1,…, Xn are a random sample from a N(,2) 

distribution,  is estimated with the sample mean and 2

is estimated with the sample standard deviation.  

As with any sample mean, the uncertainty in     

which we replace with           , if  is 

unknown.  The mean is an unbiased estimator of .

 is /X n /s n



Linear Functions of Normal Random Variables

Let X ~ N(, 2) and let a ≠ 0 and b be constants.  

Then

Let X1, X2, …, Xn be independent and normally distributed with 
means 1, 2,…, n and variances                           . 

Let c1, c2,…, cn be constants, and c1 X1 + c2 X2 +…+ cnXn be a 
linear combination.  Then 

𝑎𝑋 + 𝑏~𝑁(𝑎𝜇 + 𝑏, 𝑎2𝜎2)



Example 16

A chemist measures the temperature of a solution in 
oC.  The measurement is denoted C, and is normally 

distributed with mean 40oC and standard deviation 

1oC.  The measurement is converted to oF by the 

equation F = 1.8C + 32.  What is the distribution of 

F?



Distributions of Functions of Normals

Let X1, X2, …, Xn be independent and normally distributed with 

mean  and variance 2.  Then 

Let X and Y be independent, with X ~ N(X,       ) and 

Y ~ N(Y,       ).  Then

2

X
σ

2

Y
σ



Section 4.6:

The Lognormal Distribution

For data that contain outliers, the normal distribution is 
generally not appropriate.  The lognormal distribution, 
which is related to the normal distribution, is often a 
good choice for these data sets.

If X ~ N(,2), then the random variable Y = eX has the 
lognormal distribution with parameters  and 2. 

If Y has the lognormal distribution with parameters 
and 2, then the random variable X = lnY has the 
N(,2) distribution.



Lognormal pdf, mean, and variance

The pdf of a lognormal random variable with 

parameters  and 2 is
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Section 4.7:

The Exponential Distribution

The exponential distribution is a continuous distribution 
that is sometimes used to model the time that elapses 
before an event occurs.  Such a time is often called a 
waiting time.  

The probability density of the exponential distribution 
involves a parameter, which is a positive constant λ
whose value determines the density function’s location 
and shape.

We write X ~ Exp(λ).



Exponential R.V.:

pdf, cdf, mean and variance

The pdf of an exponential r.v. is

The cdf of an exponential r.v. is
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Exponential R.V.:

pdf, cdf, mean and variance

The mean of an exponential r.v. is

The variance of an exponential r.v. is

1/ .
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The Exponential Distribution and the 

Poisson Process

If events follow a Poisson process with rate parameter 

, and if T represents the waiting time from any 

starting point until the next event, then T  Exp().



Example 17

A radioactive mass emits particles according to a 

Poisson process at a mean rate of 15 particles per 

minute.  At some point, a clock is started.  

1. What is the probability that more than 5 seconds will 

elapse before the next emission?

2. What is the mean waiting time until the next particle 

is emitted?



Lack of Memory Property

The exponential distribution has a property known as the lack of 
memory property:  If T ~ Exp(λ), and t and s are positive 
numbers, then P(T > t + s | T > s) = P(T > t).

If X1,…, Xn are a random sample from Exp(λ), then the parameter 
λ is estimated with                

This estimator is biased.  This bias is approximately equal to λ/n.  
The uncertainty in     is estimated with

This uncertainty estimate is reasonably good when the sample size 
is more than 20.
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Example 18

The number of hits on a website follows a Poisson

process with a rate of 3 per minute.  

1. What is the probability that more than a minute 

goes by without a hit?

2.   If 2 minutes have gone by without a hit, what is the 

probability that a hit will occur in the next minute?



Section 4.8: 

The Uniform, Gamma and Weibull Distributions

The uniform distribution has two parameters, a and b, 

with a < b.  If X is a random variable with the 

continuous uniform distribution then it is uniformly 

distributed on the interval (a, b).  We write X ~ U(a, 

b).  

The pdf is 1
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Mean and Variance

Let X ~ U(a, b).  

Then the mean is

and the variance is

2
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Example 19

When a motorist stops at a red light at a certain 

intersection, the waiting time for the light to turn 

green, in seconds, is uniformly distributed on the 

interval (0, 30).  Find the probability that the waiting 

time is between 10 and 15 seconds. 



The Gamma Distribution

First, let’s consider the gamma function:

For r > 0, the gamma function is defined by

.

The gamma function has the following properties:

1. If r is any integer, then Γ(r) = (r-1)!.

2. For any r, Γ(r+1) = r Γ(r).  

3. Γ(1/2) =      . 
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Gamma R.V.

The pdf of the gamma distribution with parameters r
> 0 and λ > 0 is

The mean and variance are given by

, respectively.
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Gamma R.V.

If X1,…, Xr are independent random variables, 
each distributed as Exp(λ), then the sum 
X1+…+Xr is distributed as a gamma random 
variable with parameters r and λ, denoted as

Γ(r, λ ).



Example 20 

Assume that arrival times at a drive-through window 

follow a Poisson process with mean λ = 0.2 arrivals 

per minute.  Let T be the waiting time until the third 

arrival. 

Find the mean and variance of T.

Find P(T  20).



The Weibull Distribution

The Weibull distribution is a continuous random variable 
that is used in a variety of situations.  A common 
application of the Weibull distribution is to model the 
lifetimes of components.  The Weibull probability 
density function has two parameters, both positive 
constants, that determine the location and shape.  We 
denote these parameters  and .  

If  = 1, the Weibull distribution is the same as the 
exponential distribution with parameter λ = . 



Weibull R.V.

The pdf of the Weibull distribution is

The mean of the Weibull is

The variance of the Weibull is
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Section 4.9: Some Principles of Point 

Estimation

We collect data for the purpose of estimating some 

numerical characteristic of the population from which 

they come.

 A quantity calculated from the data is called a 

statistic, and a statistic that is used to estimate an 

unknown constant, or parameter, is called a point 

estimator.  Once the data has been collected, we call 

it a point estimate.  



Questions of Interest

 Given a point estimator, how do we determine how 

good it is?

 What methods can be used to construct good point 

estimators?

Notation:  is used to denote an unknown parameter, 

and     to denote an estimator of .θ̂



Measuring the Goodness of an Estimator

The accuracy of an estimator is measured by its bias, 

and the precision is measured by its standard 

deviation, or uncertainty.

To measure the overall goodness of an estimator, we 

used the mean squared error (MSE) which combines 

both bias and uncertainty.
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Mean Squared Error

Let  be a parameter, and     an estimator of .  The 

mean squared error (MSE) of     is 

An equivalent expression for the MSE is

θ̂

θ̂



Example 21

Let X ~ Bin(n, p) where p is unknown.  Find the MSE of 

the estimator                 . ˆ /p X n=



Method of Maximum Likelihood

The idea is to estimate a parameter with the value 

that makes the observed data most likely.

When a probability mass function or probability 

density function is considered to be a function of the 

parameters, it is called a likelihood function.

The maximum likelihood estimate is the value of the 

estimators that when substituted in for the parameters 

maximizes the likelihood function.



Desirable Properties

Maximum likelihood is the most commonly used method 

of estimation.  The main reason for this is that in most 

cases that arise in practice, MLEs have two very 

desirable properties,

1. In most cases, as the sample size n increases, the bias

of the MLE converges to 0.

2. In most cases, as the sample size n increases, the

variance of the MLE converges to a theoretical

minimum.  



Section 4.10: Probability Plots

Scientists and engineers often work with data that can 
be thought of as a random sample from some 
population.  In many cases, it is important to 
determine the probability distribution that 
approximately describes the population.  

More often than not, the only way to determine an 
appropriate distribution is to examine the sample to 
find a probability distribution that fits.  



Finding a Distribution

Probability plots are a good way to determine an appropriate 
distribution.  

Here is the idea:  Suppose we have a random sample X1,…, Xn.  
We first arrange the data in ascending order.  Then assign evenly 
spaced values between 0 and 1 to each Xi.  There are several 
acceptable ways to this; the simplest is to assign the value 

(i – 0.5)/n to Xi . 

The distribution that we are comparing the X’s to should have a 
mean and variance that match the sample mean and variance.  
We want to plot 

(Xi, F(Xi)), if this plot resembles the cdf of the distribution that we 
are interested in, then we conclude that that is the distribution the 
data came from.  



Software

Many software packages take the (i – 0.5)/n
assigned to each Xi, and calculate the quantile (Qi) 
corresponding to that number from the distribution of 
interest.  Then it plots each (Xi, Qi).  If this plot is a 
reasonably straight line then you may conclude that 
the sample came from the distribution that we used to 
find quantiles.



Normal Probability Plots

The sample plotted on the left comes from a 

population that is not close to normal.

The sample plotted on the right comes from a 

population that is close to normal.



Section 4.11: The Central Limit Thereom

The Central Limit Theorem

Let X1,…,Xn be a random sample from a population with mean 
and variance 2.

Let                                 be the sample mean.

Let Sn = X1+…+Xn be the sum of the sample observations.  Then 
if n is sufficiently large, 

and                                      
approximately.
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Rule of Thumb for the CLT

For most populations, if the sample size is greater than 

30, the Central Limit Theorem approximation is good.  



Two Examples of the CLT

Normal approximation to the Binomial:

If X ~ Bin(n,p) and if np > 10, and n(1 − p) >10, then      

X ~ N(np, np(1 − p)) approximately and 

approximately.

Normal Approximation to the Poisson:

If X ~ Poisson(λ), where λ > 10, then  X ~ N(λ, λ2).
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Continuity Correction

The binomial distribution is discrete, while the normal 
distribution is continuous. 

The continuity correction is an adjustment, made when 
approximating a discrete distribution with a continuous 
one, that can improve the accuracy of the 
approximation. 

 If you want to include the endpoints in your probability 
calculation, then extend each endpoint by 0.5.  Then 
proceed with the calculation.  

 If you want exclude the endpoints in your probability 
calculation, then include 0.5 less from each endpoint in 
the calculation. 



Example 22

The manufacturer of a certain part requires two 

different machine operations.  The time on machine 1 

has mean 0.4 hours and standard deviation 0.1 hours.  

The time on machine 2 has mean 0.45 hours and 

standard deviation 0.15 hours.  The times needed on 

the machines are independent.  Suppose that 65 parts 

are manufactured.  What is the distribution of the total 

time on machine 1? On machine 2? What is the 

probability that the total time used by both machines 

together is between 50 and 55 hours?



Example 23

If a fair coin is tossed 100 times, use the normal curve 

to approximate the probability that the number of 

heads is between 45 and 55 inclusive.



Section 4.12: Simulation

Simulation refers to the process of generating 

random numbers and treating them as if they were 

data generated by an actual scientific distribution.  

The data so generated are called simulated or 

synthetic data.



Example 24

An engineer has to choose between two types of cooling fans to 
install in a computer.  The lifetimes, in months, of fans of type A 
are exponentially distributed with mean 50 months, and the 
lifetime of fans of type B are exponentially distributed with mean 
30 months.  Since type A fans are more expensive, the engineer 
decides that she will choose type A fans if the probability that a 
type A fan will last more than twice as long as a type B fan is 
greater than 0.5.  Estimate this probability. 



Simulation

We perform a simulation experiment, using samples of size 
1000.

Generate a random sample                         from an 
exponential distribution with mean 50 (λ = 0.02).

Generate a random sample                         from an 
exponential distribution with mean 30 (λ = 0.033).

Count the number of times that                . 

Divide the number of times that                occurred by the total 
number of trials.  This is the estimate of the probability that 
type A fans last twice as long as type B fans.
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Summary

 We considered various discrete distributions: Bernoulli, Binomial, 

Poisson, Hypergeometric, Geometric, Negative Binomial, and 

Multinomial.

 Then we looked at some continuous distributions: Normal, 

Exponential, Uniform, Gamma, and Weibull.

 We learned about the Central Limit Theorem.

 We discussed Normal approximations to the Binomial and 

Poisson distributions.

 Finally, we discussed simulation studies.


