
Finding Models in

Model-Based Development

Wolfram Schulte

Microsoft Research, Redmond, USA

@

Models 2011
Wellington, NZ

Prelude :

Modeling, Microsoft and Me

Timeline & Work

▶ Language integrated queries

▶ Model-based testing

▶ Design-by-contract

▶ Unit testing

▶ Task-parallel library

▶ Formula

1999

2011

Linq

One language for writing three-tier applications, no
marshaling, no security issues

? How to grow a language so that it captures XML, OO,
and SQL, with different types, literals and query lang.

scoreQuery =
from score in scores where score > 80 select score;

 Linq ships since .NET 3.0. -- widely adopted. (Structural
sub-typing, new query syntax reduces to generic query
operators)

Linq

Lessons learnt

Generalize: Translate syntactic sugar to general
concepts (higher-order functions)

 Be pragmatic: Structural typing only within one
assembly (no new CLR)

 Enable ecosystem: Access to query construction at
runtime (pLinq, DryadLinq, etc)

See: The world according to LINQ. CACM(10): 45-51
(2011)

Test interoperability of stateful protocols

? How to describe protocols, what’s the conformance
notion, how to generate tests for non-deterministic
systems, how to make it user friendly

 SpecExplorer has been used for testing 200+ protocols,
50% less cost than manual test (SE uses model
checking like Java pathfinder)

Model-based Testing

✓ Minimize adoption: Use existing language (C#)

✓ Embed in existing process: Scenario control

✓ Support debugging: Visualization key

See: Microsoft's Protocol Documentation Program:
Interoperability Testing at Scale, CACM 54(7):51-57
(2011)

Model-based Testing

http://visualstudiogallery.msdn.microsoft.com/271d0904-f178-4ce9-956b-d9bfa4902745/

Design-by-Contract

Capture developer intentions, detect bugs early

? What’s the meaning of object invariants in the context
of inheritance, aliasing, callbacks, and multi-threading

 Spec#/Code-Contracts adopted, ship partly in .NET 4.0,
50k external users (rewriting for runtime checking,
verification for extended checking)

int GetTotal() {
 Contract.Requires(GetItems().Count > 0);
 Contract.Ensures(Contract.Result<int>()>=0);

Design-by-Contract

 Pay as you go: From runtime to static checking

 Push QA upstream: Design time verification,
actionable analysis results

 Separate concerns: verification condition generation
and proof (using SMT)

See: Specification and verification: the Spec#
experience. CACM 54(6):81-91 (2011)

Also: Satisfiability modulo theories: introduction and
applications. CACM 54(9), 69-77 (2011).

Lessons learnt

For design

• Use succinct, expressive
descriptions

• Build on solid foundations

For analysis

• Give instant feedback

• Find subtle bugs

• Give confidence in
correctness

For success

• Solve a real problem

• With as little friction as
possible

For implementation

• Factor and reuse, reuse,
reuse

Formal Modeling Using Logic Programming and Analysis

Ethan Jackson, Nikolaj Bjørner and Wolfram
Schulte, RiSE, Microsoft Research

Dirk Seifert, Markus Dahlweid and Thomas
Santen, EMIC, Microsoft Research

Formula: Main Ideas

Language ideas
▶ Abstractions as constraints

▶ Constraints expressed as logic program

▶ Logic program encapsulated in domains

▶ Domains composed/transformed to build new abstractions

Analysis ideas
▶ Analysis using model finding

▶ Model finding by fixpoint computation and SMT

▶ Used for design space exploration, transformation
verification, and model checking

An example

Friends and Family

Given

▶ facebook.com, a social network

▶ ancestry.com, a US family tree

Build recommender system for facebook.NEXT

▶ Use ancestry to make more friend
recommendations for facebook

▶ Can we do this without new exploits?

Domains

domain Facebook
{
 Gender ::= { male, female }.

Person ::= (name: String, gender: Gender).
Friend ::= (me: Person, you: Person).

friendsFriend(x, y) :- Friend(x, y).
friendsFriend(x, z) :- friendsFriend(x, y),
 friendsFriend(y, z).

recommend(x, y) :- friendsFriend(x, y),
 fail Friend(x, y), x != y.
recommend(y, x) :- recommend(x, y).

conforms := fail Friend(x, x).

}

Models and Assertions

[CheckTermsExist(
 recommend(Person("Jon", male), Person("Robert", male)))
]
model MODELS2011 of Facebook
{

Person("Jon", male).
Person("Thomas", male).
Person("Robert", male).
Friend(Person("Jon", male), Person("Thomas", male)).
Friend(Person("Thomas", male), Person("Robert", male)).

}

Visualization of Relationships

Synthesis and Partial Models

domain JonHasFriends extends Facebook
{ conforms := count(Friend(Person("Jon", male),_)) >= 4. }

[Introduce(Friend, 20)] [Introduce(Person, 20)]
partial model FriendlierMODELS2011 of JonHasFriends {}

Use constraints to model !

Concept relationships

▶ is, has, friend, transition, etc

Temporal relationships,

▶ Time constraints (intervals), a scheduler

Spatial relationships

▶ Location (regions), placement

Logic

Logic – the foundation of Formula

Denotation

▶ LP program is first order logic (FOL) with fixpoints

Evaluation

▶ Compute logical consequence operator (bottom-up)

Model finding

▶ Search for facts that satisfy query

LP Syntax

▶ Type
Friend ::= (me: Person, you: Person).

▶ Facts
Friend(Jon, Thomas).
Friend(Thomas, Robert).

▶ Rule
friendsFriend(x, y) :- Friend(x, y).
friendsFriend(x, z) :- friendsFriend(x, y),
 friendsFriend(y, z).

▶ Query
conforms := fail Friend(x, x).

Logical Semantics

Reason over the least knowledge K satisfying …

▶ Fact axioms

▶ Rule axioms

▶ Axioms from Clark completion

∀𝑥, 𝑦. 𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾 ⇒ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾

∀ 𝑥, 𝑦, 𝑧. 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾 ∧
 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑦, 𝑧 ∈ 𝐾 ⇒ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑧 ∈ 𝐾

∀𝑥, 𝑧. 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑧 ∈ 𝐾 ⇒
(∃𝑦. 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾 ∧ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑦, 𝑧 ∈ 𝐾) ∨ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠 𝑥, 𝑧 ∈ 𝐾

𝐹𝑟𝑖𝑒𝑛𝑑 𝐽𝑜𝑛, 𝑇ℎ𝑜𝑚𝑎𝑠 ∈ 𝐾

𝐹𝑟𝑖𝑒𝑛𝑑 𝑇ℎ𝑜𝑚𝑎𝑠, 𝑅𝑜𝑏𝑒𝑟𝑡 ∈ 𝐾

Logical Semantics

Negation tests for absence of knowledge

▶ Rule axioms

▶ Axioms from Clark completion

▶ Axioms from Queries

∀𝑥, 𝑦. 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾 ⇒ 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑 𝑦, 𝑥 ∈ 𝐾

𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑠 ⇔ ∀𝑥. 𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑥 ∉ 𝐾

∀𝑥, 𝑦. 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾 ⇒
(𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝑘 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∉ 𝐾) ∨ 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑 𝑦, 𝑥 ∈ 𝐾

∀𝑥, 𝑦. 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾 ∧ 𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∉ 𝐾 ⇒ 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾

Fixpoint Semantics for Evaluation

{ 𝐹𝑟𝑖𝑒𝑛𝑑 𝐽𝑜𝑛, 𝑇ℎ𝑜𝑚𝑎𝑠 ,
𝐹𝑟𝑖𝑒𝑛𝑑 𝑇ℎ𝑜𝑚𝑎𝑠, 𝑅𝑜𝑏𝑒𝑟𝑡 } K0

{𝐹𝑟𝑖𝑒𝑛𝑑 𝐽𝑜𝑛, 𝑇ℎ𝑜𝑚𝑎𝑠 ,
𝐹𝑟𝑖𝑒𝑛𝑑 𝑇ℎ𝑜𝑚𝑎𝑠, 𝑅𝑜𝑏𝑒𝑟𝑡

𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝐽𝑜𝑛, 𝑇ℎ𝑜𝑚𝑎𝑠 ,
𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑇ℎ𝑜𝑚𝑎𝑠, 𝑅𝑜𝑏𝑒𝑟𝑡 }

∀𝑥, 𝑦. 𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾
⇒ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾

K1

{𝐹𝑟𝑖𝑒𝑛𝑑 𝐽𝑜𝑛, 𝑇ℎ𝑜𝑚𝑎𝑠 ,
𝐹𝑟𝑖𝑒𝑛𝑑 𝑇ℎ𝑜𝑚𝑎𝑠, 𝑅𝑜𝑏𝑒𝑟𝑡

𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝐽𝑜𝑛, 𝑇ℎ𝑜𝑚𝑎𝑠 ,
𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑇ℎ𝑜𝑚𝑎𝑠, 𝑅𝑜𝑏𝑒𝑟𝑡 ,

𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑(𝐽𝑜𝑛, 𝑅𝑜𝑏𝑒𝑟𝑡)}

∀ 𝑥, 𝑦, 𝑧. 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑦 ∈ 𝐾 ∧
 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑦, 𝑧 ∈ 𝐾

⇒ 𝑓𝑟𝑖𝑒𝑛𝑑𝑠𝐹𝑟𝑖𝑒𝑛𝑑 𝑥, 𝑧 ∈ 𝐾

K2

Model finding

Can you find a finite set of facts W where Jon has
4 friends?

▶ Close the program with facts W. We call W a world

▶ Determine the values for 𝑝𝑖 using symbolic execution
and SMT

∃𝑝1, 𝑝2. 𝐹𝑟𝑖𝑒𝑛𝑑 𝑝1, 𝑝2 ∈ 𝐾
⋮

∃𝑝𝑖 , 𝑝𝑖+1. 𝐹𝑟𝑖𝑒𝑛𝑑 𝑝𝑖 , 𝑝𝑖+1 ∈ 𝐾
 W

Comparisons

LP CLP ASP Datalog Formula

SLD (top
down)

SLD with
Constraints

Stable Model
Computation

Bottom-
up

Bottom-up

Evaluation

LP CLP ASP Datalog Formula

No No Brave/cautious
reasoning

No Yes, using
OWA

Model Finding

Language

Language – making it usable

Core: LP with Open World Assumption

Types: Semantic Subtyping and Type inference

Modules: Domains, Composition and Transformations

Regular Types

For

▶ Type checking, i.e. early bug detection

▶ Constraint solving, i.e. restricting possible solutions

▶ Efficient symbolic execution, i.e. fewer terms to match

Composing Abstractions

Inclusion – textual
domain B includes A {..}

Renaming – deep copy
domain C includes A as X {…}

Extension – preserve semantics
domain D extends A {…}

i.e. D.conforms = A.conforms + …

Cont’d: FamilyTree
domain FamilyTree {

Status::= { married, divorced }.
Gender ::= { male, female }.
Person ::= (name: String, gender: Gender).
Child ::= (name: Person, mother: Person, father: …).
Marriage ::= (p1: Person, p2: Person, st: Status).

//////// Data computed about a family tree.
ancestor ::= (p1: Person, p2: Person).
bioRel ::= (p1: Person, p2: Person).
lawRel ::= (p1: Person, p2: Person, st: Status).
show ::= (p1: Person, p2: Person).
////
show(p, p0) :- lawRel(p, p0, married).
show(p, p0) :- Marriage(p, p0, married).
show(p0, p) :- show(p, p0).

}

FacebookNext’s New Recommendation

domain FacebookNext extends Facebook, FamilyTree {
recommend(x, y) :- lawRel(x, y, _).
recommend(x, y) :- bioRel(x, y).

}

Can Eve Exploit New Recommendation?

domain EvesExploits extends FacebookNext {
conforms :=
// Eve wants to get recommended to be a friend of Jon
 recommend(pEve, pJon),
 pEve = Person("Evil Eve", female),
 pJon = Person("Jon", male),
// But, she cannot directly add a friend link
 fail friendsFriend(pEve, _),
 fail friendsFriend(_, pEve),
// And she cannot modify any ones family tree
// in a way they can observe.
 fail show(pJon, _),
 fail show(Person("Robert", male), _),
 fail show(Person("Thomas", male), _).

}

Visualization of Exploit

From Domains to Transformations

Domains have no states or mutation

Behavior can be introduced by introducing
time, e.g. state updates increase time

Alternatively use a transformation

Transformations change abstractions

Lower abstraction:
compile/refine A to C

A B

C

Change abstraction:
map A onto B

Update abstraction:
map A into A

Transforms

…are big step operations. They

▶ take models and return models

▶ are expressed using Formula’s core

▶ execute until a fixpoint is reached

Deleting a Person in Facebook

transform DeletePerson <name: String> from Facebook as i
 to Facebook as o
{

o.Person(n, g) :- i.Person(n, g), n != name.
 o.Friend(x, y) :- i.Friend(x, y),
 x.name != name, y.name != name.

notDeleted := o.friendsFriend(Person(name, _),_).
notDeleted := o.friendsFriend(_,Person(name, _)).

}

Goodies

The stuff that’s not in the language

▶ Pre-solving: Compute cardinalities

▶ Post-solving: Compute non-isomorphic solutions

▶ Language extensibility: Custom attributes

▶ System reuse: Public API for everything

▶ Debugging: Visualization for free

Some applications

Micro case studies

Synchronous Dataflow Languages (300 lines)

▶ Semantics given by interpreter defined using domains

▶ Compiler defined via transforms

▶ Translation validation via model finding

Timed Automata (200 lines)

▶ State as domains

▶ Transitions defined via transforms

▶ Checking Trace behavior via LTL model checking

First external adopters

Declarative configuration: Configure and debug security group settings
(MSFT: Group policies)

▶ Compute configurations for new resources which obey 200k+ existing
policies; debug erratic behavior; Formula used as intermediate language

Design space exploration: Synthesize software architecture guaranteeing
time constraints (Automobile company: under NDA)

▶ Compute schedule as data flow graph (1000+ nodes) over time intervals;
Formula used to capture constraints and compute schedule

Large scale integration: Semantic anchoring for large scale model
integration (DARPA: Meta)

▶ Models (here: mechanical, electrical, thermo, software, hardware) from
Adaptive Vehicle Make. Formula as glue for compos. and integrity check.

Wrap-up

Future/ongoing work

▶ Parametric optimization of models

▶ Finding root cause for unsatisfiability

▶ Composing and model checking of transformations

▶ Optimization for design space exploration

Reflections

▶ Language design is hard

▶ Solver behavior sometimes unpredictable

▶ Robust tools require a lot of effort

▶ Opportunities for modeling abound

▶ Modeling works

▶ Work with us

For more info…

Formula community, downloads, tutorial

▶ http://research.microsoft.com/formula

For more info about RiSE team

▶ http://research.microsoft.com/rise

Tools to experiment with

▶ http://www.rise4fun.com

http://research.microsoft.com/formula
http://research.microsoft.com/rise
http://research.microsoft.com/rise
http://www.rise4fun.com/
http://www.rise4fun.com/

