
The Fitness Function
For Programming

Languages:
A Matter of Taste?

Gilad Bracha
SAP Labs

1Tuesday, November 2, 2010

There are two kinds
of languages - those
that everyone
complains about and
those that aren’t
used
- Bjarne Stroustrup

2Tuesday, November 2, 2010

Fitness: Success in the
Market?

Turelio

3Tuesday, November 2, 2010

http://commons.wikimedia.org/wiki/File:SchafherdeInKoeln.jpg
http://commons.wikimedia.org/wiki/File:SchafherdeInKoeln.jpg

Examples
C

C++

Java

C#

Visual Basic

Perl

PHP

Javascript
4Tuesday, November 2, 2010

Counter-Examples

Lisp

APL

Prolog

Beta

Smalltalk

Self

5Tuesday, November 2, 2010

Today’s Market, or
Tomorrow’s?

Faustian Bargain: Success in this life, Oblivion
in the hereafter

6Tuesday, November 2, 2010

Academic Criteria

Theory

Implementation

Empirical studies

7Tuesday, November 2, 2010

What if Smalltalk was
Invented Today?

Jonathan Edwards:

Reviewer 1 comments: You propose three new
language features: encapsulation, polymorphism,
and inheritance. Even though your paper was the
maximum 12 pages, it discussed each of these
concepts only informally, and did not do any
rigorous evaluation.

8Tuesday, November 2, 2010

What if Smalltalk was
Invented Today?

Reviewer 2 comments: You claim that object
orientation is in some sense more natural and
intuitive than procedural programming, but
offer only anecdotes and hand-picked
examples as justification.

9Tuesday, November 2, 2010

So is it just Taste?

10Tuesday, November 2, 2010

There is nothing so
practical as a good
theory
- Philip Wadler

11Tuesday, November 2, 2010

Or so rare
- Gilad Bracha

12Tuesday, November 2, 2010

How do we Judge a
Theory?

Meta-theory?

Implementation?

Popularity?

13Tuesday, November 2, 2010

How do we Judge a
Theory?

Consistency, Comprehensiveness

Beauty and elegance

Predictive value

14Tuesday, November 2, 2010

Language can be based
on Theory

Relational algebra

Functional programming

Parser combinators

15Tuesday, November 2, 2010

BNF

id = letter (letter | digit) *

Parser Combinators

16Tuesday, November 2, 2010

BNF

id = letter (letter | digit) *

Newspeak

id = letter, (letter | digit) star.

Parser Combinators

17Tuesday, November 2, 2010

BNF

id = letter (letter | digit) *

Newspeak

id = letter, (letter | digit) star.

Javanese

id = letter().seq(letter().or(digit()).star());

Parser Combinators

18Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

19Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

20Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

21Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

22Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

23Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

24Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

25Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

26Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

27Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

28Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

letter

29Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

letter

30Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

digitletter

31Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter

|

digitletter

32Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter star

|

digitletter

33Tuesday, November 2, 2010

How it Works
 id = letter, (letter | digit) star.

letter star

|

digitletter

,

34Tuesday, November 2, 2010

Why is this Pretty?

id = letter, (letter | digit) star.

35Tuesday, November 2, 2010

Why is this Ugly?

id = letter().seq(letter().or(digit()).star());

36Tuesday, November 2, 2010

Why is this Ugly?

id = letter().seq(letter().or(digit()).star());

vs.

id = letter (letter | digit) *

vs.

id = letter, (letter | digit) star.

37Tuesday, November 2, 2010

Why is this Ugly?

id = letter().seq(letter().or(digit()).star());

vs.

id = letter (letter | digit) *

vs.

id = letter, (letter | digit) star.

38Tuesday, November 2, 2010

Why is it Ugly?

A programming language is low level when its
programs require attention to the irrelevant

- Alan Perlis

39Tuesday, November 2, 2010

Compositionality

Uniform space of values

Operators that map this space into itself

Small core is a basis for infinite space

40Tuesday, November 2, 2010

Pattern Matching

Joint work with Felix Geller and Robert
Hirschfeld at HPI, University of Potsdam

41Tuesday, November 2, 2010

Pattern Literals

<1>
<ʻaʼ>
<_>
<num: n>
<multiply: left by: right>

42Tuesday, November 2, 2010

Pattern Combinators

p1 | p2
p1 & p2
p1 >> p2
p => actionBlock
p not

43Tuesday, November 2, 2010

Pattern Combinators
in Action

fib: n = (
n case: <1> | <2> => [^n-1]
 otherwise:[^(fib: n-2) + (fib: n-1)]

)

44Tuesday, November 2, 2010

Pattern Matching

class Term = ()()
class Num of: n = Term (| val = n. |)
(match: pat = (^pat num: val.))
class Var named: n = Term (| name = n. |)
(match: pat = (^pat var: name.))
class Product of: n by: m = Term (| left = n. right = m. |)
(match: pat = (^pat multiply: left by: right.))

45Tuesday, November 2, 2010

Pattern Matching

simplify: expr = (
^expr case: <multiply: ?x by: <num: 1>> => [x]

otherwise: [expr].
)

46Tuesday, November 2, 2010

Higher Order Patterns in
Action

simplify: expr = (
^expr case: <multiply: ?x by: <num: 1>> => [x]

otherwise: [expr].
)

47Tuesday, November 2, 2010

Language can be based
on Theory

But, more importantly

48Tuesday, November 2, 2010

Language may be the
Theory

APL: Vectors

Beta: Patterns

Smalltalk, Self : Objects

49Tuesday, November 2, 2010

Programs are
Models; Languages
are Theories for
building Programs

50Tuesday, November 2, 2010

Judge Languages as
Theories

Consistency

Comprehensiveness- does it model what I
want? How easily and how accurately

Beautiful/Elegant (compositional)

Predictive value

Can easily can I tell

What a program does

How hard it is to build a program
51Tuesday, November 2, 2010

Good Aesthetics
makes Good
Software

52Tuesday, November 2, 2010

This file is licensed under the Creative Commons
Attribution ShareAlike 3.0 License. In short: you are
free to share and make derivative works of the file
under the conditions that you appropriately attribute
it, and that you distribute it only under a license
identical to this one. Official license.

The Newspeak eye used in the bullets, slide
background etc. was designed by Victoria Bracha
and is used by permission.

The image on slide 3 is by Turelio licensed under
CC-BY-SA-2.5 and originates on wikimedia

53Tuesday, November 2, 2010

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://livepage.apple.com/
http://livepage.apple.com/

