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There are two kinds 
of languages -  those 
that everyone 
complains about and 
those that aren’t 
used
- Bjarne Stroustrup
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Fitness: Success in the 
Market?

Turelio
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Examples
C

C++

Java

C#

Visual Basic

Perl

PHP

Javascript
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Counter-Examples

Lisp

APL

Prolog

Beta

Smalltalk

Self
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Today’s Market, or 
Tomorrow’s?

Faustian Bargain: Success in this life, Oblivion 
in the hereafter

6Tuesday, November 2, 2010



Academic Criteria

Theory

Implementation

Empirical studies
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What if Smalltalk was 
Invented Today?

Jonathan Edwards:

Reviewer 1 comments: You propose three new 
language features: encapsulation, polymorphism, 
and inheritance. Even though your paper was the 
maximum 12 pages, it discussed each of these 
concepts only informally, and did not do any 
rigorous evaluation.
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What if Smalltalk was 
Invented Today?

Reviewer 2 comments: You claim that object 
orientation is in some sense more natural and 
intuitive than procedural programming, but 
offer only anecdotes and hand-picked 
examples as justification. 
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So is it just Taste?
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There is nothing so 
practical as a good 
theory
- Philip Wadler
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Or so rare
- Gilad Bracha
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How do we Judge a 
Theory?

Meta-theory?

Implementation?

Popularity?
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How do we Judge a 
Theory?

Consistency, Comprehensiveness

Beauty and elegance

Predictive value
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Language can be based 
on Theory

Relational algebra

Functional programming

Parser combinators
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BNF

id = letter (letter | digit) *

Parser Combinators

16Tuesday, November 2, 2010



BNF

id = letter (letter | digit) *

Newspeak

id = letter, (letter | digit) star.

Parser Combinators
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BNF

id = letter (letter | digit) *

Newspeak

id = letter, (letter | digit) star.

Javanese

id = letter().seq(letter().or(digit()).star()); 

Parser Combinators
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How it Works
       id = letter, (letter | digit) star.
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How it Works
       id = letter, (letter | digit) star.

letter
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How it Works
       id = letter, (letter | digit) star.

letter

digitletter
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How it Works
       id = letter, (letter | digit) star.

letter

|

digitletter
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How it Works
       id = letter, (letter | digit) star.

letter star

|

digitletter
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How it Works
                             id = letter, (letter | digit) star.

letter star

|

digitletter

,
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Why is this Pretty?

id = letter, (letter | digit) star.
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Why is this Ugly?

id = letter().seq(letter().or(digit()).star()); 
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Why is this Ugly?

id = letter().seq(letter().or(digit()).star()); 

vs.

id = letter (letter | digit) * 

vs.

id = letter, (letter | digit) star.
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Why is this Ugly?

id = letter().seq(letter().or(digit()).star()); 

vs.

id = letter (letter | digit) * 

vs.

id = letter, (letter | digit) star.
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Why is it Ugly?

A programming language is low level when its 
programs require attention to the irrelevant

- Alan Perlis
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Compositionality

Uniform space of values

Operators that map this space into itself

Small core is a basis for infinite space
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Pattern Matching

Joint work with Felix Geller and Robert 
Hirschfeld at HPI, University of Potsdam
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Pattern Literals

<1>
<ʻaʼ>
<_>
<num: n>
<multiply: left by: right>
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Pattern Combinators

p1 | p2
p1 & p2
p1 >> p2
p => actionBlock
p not
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Pattern Combinators
in Action

fib: n = (
n case: <1> | <2> => [^n-1] 
  otherwise:[^(fib: n-2) + (fib: n-1)]

)
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Pattern Matching

class Term = ()() 
class Num of: n = Term ( | val = n. | ) 
( match: pat = ( ^pat num: val. )) 
class Var named: n = Term ( | name = n. | ) 
( match: pat = ( ^pat var: name. ) ) 
class Product of: n by: m = Term ( | left = n. right = m. | ) 
( match: pat = ( ^pat multiply: left by: right. ) )
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Pattern Matching

simplify: expr = ( 
^expr case: <multiply: ?x by: <num: 1>> => [x]

otherwise: [expr].
)
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Higher Order Patterns in 
Action

simplify: expr = ( 
^expr case: <multiply: ?x by: <num: 1>> => [x]

otherwise: [expr].
)
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Language can be based 
on Theory

But, more importantly
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Language may be the 
Theory

APL:  Vectors

Beta: Patterns

Smalltalk, Self : Objects
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Programs are 
Models; Languages 
are Theories for 
building Programs
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Judge Languages as 
Theories 

Consistency

Comprehensiveness- does it model what I 
want? How easily and how accurately

Beautiful/Elegant (compositional)

Predictive value

Can easily can I tell 

What a program does

How hard it is to build a program
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Good Aesthetics 
makes Good 
Software
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This file is licensed under the Creative Commons 
Attribution ShareAlike 3.0 License. In short: you are 
free to share and make derivative works of the file 
under the conditions that you appropriately attribute 
it, and that you distribute it only under a license 
identical to this one. Official license.

The Newspeak eye        used in the bullets, slide 
background etc. was designed by Victoria Bracha 
and is used by permission.

The image on slide 3 is by Turelio licensed under 
CC-BY-SA-2.5 and originates on wikimedia
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