Comparing the Usability of Library
vs. Language Approaches to Task
Parallelism

Vincent Cave, Zoran Budimlic, Vivek Sarkar
habanero.rice.edu
Rice University

Habanero Team - Rice University



Why Task Parallelism ?

More and more physical cores

More and more mainstream programmers writing
parallel software

Task parallelism is easy to understand and model
Two approaches to task parallelism

— Library

— Language

Compare the Java Concurrent Utilities Library and the
Habanero-Java language

How much are they usable for mainstream
programmers ?



Outline

* Overview
— J.U.C
— Habanero-Java
* Comparison
— Task Creation and Scheduling
— Task Synchronization
— Loop parallelism

e Conclusion



The Java Concurrent Utilities Library

* General purpose Java library for concurrency

* Features
— Executor framework
* work-sharing thread pools, fork-join framework
— Concurrent collections
* Maps, non blocking queues, etc..
— Synchronizers
* Latches, Semaphores, Phasers

— Locks
* Reentrant, ReadWrite locks...

* Provides basic constructs to parallelism



The Habanero-Java Language

Developed at Rice University
— Used in introductory class to parallel programming

Derived from X10 version 1.5 Extends Java language
with new keywords

Task oriented programming model

The HJ language features
— Task creation: async, futures
— Task synchronization: finish, phasers
— Concurrency: isolated
— Loop parallelism: foreach, forall

HJ programs are deadlock free



Comparison

 What a mainstream programmer wants ?

* Basic features for Task Parallelism:
— Task Creation and Scheduling
— Task Synchronization
— Loop Parallelism

* How to express these in a library approach
(j.u.c) or a language approach (HJ) ?



Task Creation: Library Approach

e What do we need ?

List<Callable<Void>> list = .. — Atask executor

forCint i = .) { — A task interface
list.add(new Callable<Void>() { . _
public Void call() { — A task implementation
// some computation
! * Drawback
, 3 — Readability
executor.invokeAll(list); — programming chores

 Manage tasks
e Schedule tasks

— Going for troubles !



Task Creation: Language Approach

e What a mainstream
programmer wants ?

finish {
for(int 1 = ..) {
async { | e Run “this” code in
// some computation
} parallel
ks : :
1 — Simple task creation

— No task management

— No explicit task
scheduling



Task Execution Policies

* Work-sharing / Work-stealing
— j.u.c has two apis
— Should be a runtime setting
* Library approach to work-stealing is difficult
— Not trivial to have a unified api
— Problem of tasks that blocks
* Language approach is more flexible

— Can rely on compiler analysis transformation
— Implements several scheduling policies




Task synchronization: phasers

* Available both in j.u.c and HJ

* A phaseris a synchronization object
— Tasks can register dynamically to phasers
— Registered tasks participate in a “phase”
— Task synchronize on a “next” operation



Phasers in j.u.c

final MyPhase p = new MyPhase();

b register(); * Code poorly readable

fFor(.) { * Error prone
p.register(); . _
new Thread(new Runnable() { — Phaser registration
public void run() { — Barrier code is out of
while (cond()) { scope
someComputation();
p.arriveAndAwaitAdvance();
hy
hy
1) .start(Q);
hy

p.arriveAndDeregister();

Habanero Team - Rice University

11



Phasers in HJ

finish {
phaser p = new phaser();
for(..) {
async phased {

while(Ccond()) {
someComputation();

next single {
someReduction();

* Task registration

— Phased keyword ensures
registration

— The parent task
deregister automatically
when reaching the finish

e Barrier

— next keyword act as a
barrier

— single allows to specify
code to execute at the
barrier (optional)



Loop Parallelism

* Simple way to take
advantage of

forall(point [i] : [@:N-11) { embarrassingly parallel
while(cond()) { |OOpS
someComputation();
next single { — “forall” points of an
someReduction(); iteration space
}
1 — Run the loop body
1 asynchronously

— Implicit finish and phaser



Conclusion

Library task implementations are

— General purpose and flexible but too low level
— Need to be conservative

— Lack of expressiveness

Language approach to task can

— Define a programming model semantic

— Rely on keywords to hide complexity

— Rely on compiler and possibly runtime
Programming languages need to evolve to

encompass task parallelism for mainstream
programmers



