How Much Information Do Software Metrics Contain? Yossi Gil*, Maayan Goldstein, Dany Moshkovich #### IBM Research---Haifa *work done while on sabbatical from the Technion ## **Everybody Likes Metrics** - Easy to invent - Nice to collect - No validation required - Provide numbers your can quote Quoting numbers makes you sound <u>smart</u> - You can even draw charts - Presenting charts (especially colorful charts) makes you seem important #### At Least One Useful Application - Visual Program "Understanding" - Present a program as a diagram - Many, many tools. - Problem: - All diagrams look the same.. - Where do I start? ## **Engineers Want Diagrams** ## Class Diagrams? Yuk ## Systemd Grokking Technology - An IBM project, whose real name I cannot disclose. - Visual Modelling Framework for <u>Existing</u> programs - C - C++ - Java - Cobol - Domain Specific Languages - Targeted at non-software engineers, who do software engineering #### **SGT Features** - Meta-Modelling (as usual) - User Extendable (as usual) - Dedicated Clients (as usual) - Happy clients (perhaps not so usual) - Boring to look at: - Beautiful diagrams - Needs "livining" - The big question: where do I start? #### Metrics to The Rescue - Metrics give lots of numbers... - Are these numbers... - Valid? (what do they say about quality?) - Reliable? (do they have any "stability" associated with tme) - Main Idea: Annotate diagrams with metrics information. - Which metrics? - How to present these? - Are these numbers <u>informative</u>? #### Summary of Work - Concentrate in Java - 36 software metrics - 19 software artifacts - ~78,000 classes - Taxonomy of Metrics - Measurements, giving two clear winners #### **Metrics Suite** - Chidamber and Kemerer Metrics - Micro patterns - Topological Metrics - #client classes: direct/indirect - #used classes: direct/indirect - Strongly Connected Components: Size, depth, height - Dominator Tree - Metrics used in other projects: Belonging, Google page rank, Betweenness,.... - Java keywords: final, abstract, ... ### Taxonomy of Metrics - Semantical vs. Topological - Topological metrics can be derived solely from the graph topology - Directinal metrics (depend on the direction imposed on the software graph) - Locality: internal, local, global - Range: boolean, discrete, continous ## **Metrics Actually Used** | Metric | Nature | Directed | Scope | Range | |------------------|-------------|---------------|----------|------------| | final | semantical | undirectional | internal | Boolean | | abstract | semantical | undirectional | internal | Boolean | | interface | semantical | undirectional | internal | Boolean | | sink | topological | directional | local | Boolean | | source | topological | directional | local | Boolean | | baloon | topological | directional | local | Boolean | | wrapper | topological | directional | local | Boolean | | pure | semantical | undirectional | internal | Boolean | | pool | semantical | undirectional | internal | Boolean | | designator | semantical | undirectional | internal | Boolean | | function pointer | semantical | undirectional | internal | Boolean | | stateless | semantical | undirectional | internal | Boolean | | sampler | semantical | undirectional | internal | Boolean | | canopy | semantical | undirectional | internal | Boolean | | DIT | semantical | undirectional | local | discrete | | NOA | semantical | undirectional | local | discrete | | NOC | semantical | undirectional | local | discrete | | CBO | semantical | undirectional | local | discrete | | RFC | semantical | undirectional | local | discrete | | WMC | semantical | undirectional | local | discrete | | #Incoming | topological | directional | local | discrete | | #Clients | topological | directional | global | discrete | | #Outgoing | topological | directional | local | discrete | | #Descendants | topological | directional | global | discrete | | #SCCIncoming | topological | directional | global | discrete | | #SCCClients | topological | directional | global | discrete | | #SCCOutgoing | topological | directional | global | discrete | | #SCCDescendants | topological | directional | global | discrete | | SCCSize | topological | undirectional | global | discrete | | #DominatedBy | topological | directional | global | discrete | | #DominatorHeight | topological | directional | global | discrete | | #DominatorWeight | topological | directional | global | discrete | | PageRank | topological | directional | global | continuous | | Betweeness | topological | directional | global | continuous | | Belonging | semantical | undirectional | local | continuous | #### **Shannon's Entropy** - A Measure of Information a Partition Contains - Given: - A set s of n elements. - A partition of s into k non-empty substes sized S₁,..., S_k - Amount of information (measured in bits): $$H(n, s_1, ..., s_k) = -s_1 \lg (s_1/n) - - s_k \lg (s_k/n)$$ - Information density: - How many bits per each set element? - Divide by n - Normalized Information density α: divide by n lg n - Maximal entropy is when partition is to singletons $0 \le \alpha \le 1$ #### And The Winners Are... | Metric | \boldsymbol{k} | \widetilde{H} | α (%) | |-------------------|------------------|-----------------|-------------| | DIT | 5±1 | 1.6 ± 0.3 | 19±3 | | NOA | 9±3 | 2.1 ± 0.3 | 25 ± 3 | | NOC | 11 ± 4 | 0.7 ± 0.2 | 8±3 | | CBO | 38 ± 12 | $4.1 {\pm} 0.2$ | 48 ± 5 | | RFC | 88 ± 31 | $5.4 {\pm} 0.3$ | 64±5 | | WMC | 224 ± 111 | 7.0 ± 0.5 | 81±5 | | #Incoming | 33±13 | 3.1 ± 0.2 | 37±7 | | #Clients | 40 ± 22 | $3.5 {\pm} 0.6$ | 42 ± 10 | | #Outgoing | 27 ± 9 | 3.3 ± 0.2 | 38 ± 4 | | #Descendants | 34 ± 20 | 3.8 ± 0.7 | 45 ± 10 | | #SCCIncoming | 19±7 | $2.6 {\pm} 0.3$ | 30±5 | | #SCCClients | 37 ± 21 | 3.0 ± 0.6 | 38 ± 8 | | #SCCOutgoing | 19 ± 7 | $2.6 {\pm} 0.3$ | 30 ± 5 | | #SCCDescendants | 31 ± 18 | 3.7 ± 0.6 | 46 ± 8 | | SCCSize | 4 ± 2 | 0.9 ± 0.1 | 10 ± 2 | | #DominatedBy | 4±1 | 0.9 ± 0.2 | 11±3 | | #DominatedBy' | 4 ± 1 | 1.0 ± 0.1 | 12 ± 2 | | #DominatorHeight | 4 ± 1 | $0.6 {\pm} 0.1$ | 7 ± 2 | | #DominatorHeight' | 4 ± 1 | $0.6 {\pm} 0.1$ | 6 ± 1 | | #DominatorWeight | 9 ± 2 | 0.7 ± 0.1 | 8 ± 2 | | #DominatorWeight' | 10 ± 2 | 0.7 ± 0.1 | 8±2 | | PageRank | 229 ± 129 | 6.0 ± 1.0 | 69 ± 11 | | PageRank' | 300 ± 175 | 7.8 ± 1.0 | 88±3 | | Betweeness | 92 ± 57 | 3.0 ± 0.5 | 33±4 | | Betweeness' | 102 ± 65 | 3.0 ± 0.5 | 35 ± 4 | | Belonging | 79 ± 40 | $4.4 {\pm} 0.5$ | 47 ± 5 | | | | | | ### **Boolean Metrics** | Metric | Mean | Median | |------------------|-----------------|------------------| | final | 0.47 ± 0.36 | 0.38 ± 0.33 | | abstract | 0.26 ± 0.10 | 0.25 ± 0.09 | | interface | 0.45 ± 0.17 | 0.41 ± 0.17 | | sink | 0.08 ± 0.10 | 0.06 ± 0.06 | | source | 0.74 ± 0.28 | $(0.87)\pm 0.12$ | | balloon | 0.44 ± 0.23 | 0.37 ± 0.17 | | wrapper | 0.80 ± 0.10 | 0.79 ± 0.05 | | pure | 0.41 ± 0.17 | 0.41 ± 0.12 | | pool | 0.10 ± 0.07 | 0.08 ± 0.04 | | designator | 0.03 ± 0.04 | 0.02 ± 0.02 | | function pointer | 0.01 ± 0.03 | 0.00 ± 0.00 | | stateless | 0.84 ± 0.12 | 0.87 ± 0.07 | | sampler | 0.07 ± 0.05 | 0.07 ± 0.02 | | canopy | 0.62 ± 0.20 | 0.63 ± 0.19 | #### **Further Research** - Metrics Reliability - Metrics Validity ???? - More Metrics