
Are Object Protocols Burdensome?
An empirical study of developer forums

Ciera Jaspan
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213, USA

ciera@cmu.edu

Jonathan Aldrich
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA 15213, USA

aldrich@cs.cmu.edu

Abstract
Object protocols are a commonly studied research problem,
but there is little known about their usability in practice. In
particular, there is little research to show that object pro-
tocols cause difficulty for developers. In this work, we use
community forums to find empirical evidence that object
protocols are burdensome for developers. We analyzed 427
threads from the Spring and ASP.NET forums and discov-
ered that 69 were on a protocol violation. We found that vio-
lations of protocols result in unusual runtime behavior rather
than exceptions in 45% of our threads, that questions took
an average of 62 hours to resolve, and that even though 54%
of questions were repeated violations of similar protocols,
the manifestation of the violation at runtime was different
enough that developers could not search for similar ques-
tions.

Categories and Subject Descriptors D.2.m [Software En-
gineering]: Miscellaneous

General Terms Languages, Human Factors

Keywords community forums, usability, object protocols,
collaboration constraints

1. Motivation
Object protocols have formed the basis for a large body of
research. In only the last five years, there have been multiple
projects which infer protocols [6, 12, 13, 17] or specify
and check them [4, 5, 7, 10, 11, 14, 15]. The SAVCBS
workshop has even hosted several contests to specify and
verify canonical protocols, such the Iterator protocol [2], the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA ’11 October 22-27, Portland, Oregon
Copyright c© 2011 ACM Copyright is held by the author/owner(s). This paper was
published in the Proceedings of the Workshop on Evaluation and Usability of Pro-
gramming Languages and Tools (PLATEAU) at the ACM Onward! and SPLASH Con-
ferences. October, 2011. Portland, Oregon, USA.. . . $5.00

Subject-Observer protocol [16], and the Database Access
protocol [8].

Though there is an abundance of work on solving the
problem of object protocols, there is little work on the prob-
lem itself. Recently, Beckman, Kim, and Aldrich showed
that at least 7.2% of classes in several large open-source
codebases require that their clients follow a protocol, and
they found that 13% of classes in another set of codebases
were clients of one of these protocols [3]. While this tells
us how prevalent protocols are in code and how frequently
protocols are used, it does not tell us whether these proto-
cols cause significant challenges for developers. After all, a
File protocol is not particularly complex; perhaps these pro-
tocols are so trivial that developers don’t have difficulty un-
derstanding and following them.

In this work, we will provide evidence that object pro-
tocols are burdensome for developers in the ASP.NET and
Spring frameworks. By analyzing the postings on developer
community forums, we will show that protocols:

• cause unusual runtime behavior that is difficult to debug,
• take developers hours and days to solve, even with expert

help, and
• recur for several developers over time.

Our study involves 427 threads of conversation from the
ASP.NET and Spring community forums. Of these, 69 were
relevant for our interest, as explained by our methodology in
Section 2. Section 3 presents our results on these 69 threads,
which shows that 45% of the problems resulted in unusual
runtime behavior without an exception, the average time to
solution was 62 hours, and 54% of the problems were from
protocols that were violated in multiple ways by different
developers. Section 4 discusses the benefits and pitfalls of
using forums as a source more generally and hypothesizes
about what other data could be extracted in this way.

In this work, we will be studying an expanded form of
object protocols known as collaboration constraints. A col-
laboration constraint is a protocol over how multiple ob-
jects may collaborate together, rather the traditional proto-

col that considers the usage of a single object. Additionally,
these collaborations may span beyond traditional program
artifacts (ie: C# or Java) into non-traditional, declarative ar-
tifacts, such as XML, JSP, or ASPX. Further information on
collaboration constraints can be found in [9].

As an example of a multi-object constraint found in the
forums, consider the forum thread in Figure 1, which breaks
the protocol by which controls may be dynamically added
to a web page. In this thread, the poster “strange will” de-
scribes a problem where the controls that were dynamically
added to the web page disappear after a postback. The poster
also describes an attempt to correct this problem by remov-
ing the if-statement, but this resulted in the controls appear-
ing without any data. Two experts explain the issue: since
the controls are dynamically generated, they must be recre-
ated on every load of the page (ie: the if-statement needs to
be removed). Additionally, the controls must be generated
before the page restores its state from the session. As this
happens before the Page Load callback, the controls must
be generated in a prior callback, such as Page Init.

2. Methodology
In this work, we studied two software frameworks for web
applications, ASP.NET and Spring. In both studies, our goal
was to find forum threads that showed a developer who broke
a collaboration constraint. We used different methodology
to gather the threads for these studies due to differences
in the activity level and response rates in the developer
communities. However, we evaluated the resulting threads
using the same criteria.

2.1 ASP.NET
In the ASP.NET study, we performed an archival analysis of
the postings in the Web Controls sub-forum of the ASP.NET
help forums. At the time of the analysis (spring of 2007),
this was the most popular of the 104 sub-forums, with over
87,000 conversation threads since 2003. Our analysis was on
the threads that had their last activity during the first week
of October 2006. As the analysis itself was conducted many
months later, each of these threads can be considered closed
(that is, we expect no further helpful responses).

There were 271 threads with their last activity during
this period. We removed any threads which met one of the
following properties:
• The question was not about Web Controls.
• The poster or responder used extremely poor English, to

the point of not being understandable.
• The poster needed compilation help or otherwise did not

understand basic syntax.
• The poster described the problem in such a vague way

that it could not be reconstructed.
• There was no response at all or no response that solved

the problem.

This left 66 threads which were on topic and were under-
standable enough to answer. Of these, 50 were requests for
tutorials or documentation for a specific task. This left 16
threads for the study, which we have archived [1].

2.2 Spring
When we went to study Spring, we found a community with
lower activity on the forum and a lower response rate. While
we attempted to use the same process to gather threads, we
found that there were many fewer threads and that the vast
majority had no response.

In order to find examples effectively, we created an au-
tomatic filtering system that would scan threads for specific
properties and only return those that met our criteria. While
this filtering mechanism will miss some relevant threads, we
found that it was a more effective method to find interesting
threads. The criteria we used are:

• Has a <pre> tag. To ensure that there was a specific ex-
ample being discussed and filter out requests for tutori-
als and documentation, we accepted only threads where
there was code posted within an HTML <pre> tag (for
pre-formatted text, commonly used for displaying code).
This might miss threads where people did not use the
<pre> tag to display code.

• Uses words “exception” or “error”. Again to filter out
requests for tutorials and documentation, we accepted
only threads where the words “exception” or “error” ap-
peared somewhere. This unfortunately misses many is-
sues where the error was unexpected run time behavior,
rather than an exception.

• Responded to by a top-poster. We accepted only threads
where one of the responders is in the top-25 of all posters.
We found that these posters are requently experts such
as consultants and framework developers themselves and
that they are more likely to provide a solution. This filter
misses threads that were correctly solved by a user with
a lower post count.

• Has an affirmation. To ensure that there actually was a
solution presented, we accepted only threads where the
original poster had a secondary post with one of the
following strings: “solved”, “that work”, “works”, and
“working”. This is meant to capture threads where the
original poster returns to say “Thanks! That worked for
me.” This filter misses threads with solutions where the
original poster either did not return or did not respond in
this way.

Additionally, we limited the first post to be before October
of 2007 as a new version came out at this time. The analysis
was performed in January-February of 2011.

The automated filtering system yielded 156 threads. Of
these 103 were not useful because they did not meet the
original criteria from Section 2.1. That left 53 threads for
the study, which we have archived as well [1].

strange will: So I have a table control, I have a control I built in a class that uses a control as it’s base:
public class Addons : System.Web.UI.WebControls.TableRow
So I add properties to it, run it as a table row, shows FINE on the first load, but after you hit submit, or any other navigation
that is a postback the data dissapears!

protected void Page_Load(object sender, EventArgs e) {
if (!Page.IsPostBack) {

Database.Connect(sql);
Database.obj_Reader = Database.obj_Command.ExecuteReader();
while (Database.obj_Reader.Read()) {

Addons obj_Addons = new Addons(...);
tbl_Addons.Controls.Add(obj_Addons);

}
Database.Disconnect();

}
}

I’m obviously making sure that I’m not deleting it by using !postback, if I get rid of that, it will delete all data that I assigned
to the controls, any ideas?
vivek iit Note that Page class is stateless, it will lose all data which is generated dynamically unless you use other persistent
medium like Sessions etc. So you need to regenrate your controls on each PostBack. See this post for details:
http://forums.asp.net/t/1024956.aspx
strange will: Can I give it a state? So table rows are stateless? If I build it from a CheckBox control it will keep it’s state?
The problem is that the control is a checkbox and a textbox inside of a tablerow. I need on page submit for the data to be
accessable.
The post you gave me is sort of confusing. Being as I’m not sure which solution in that thread I should be reguarding.
TonyAlicea This has to do with the Page lifecycle. Remember that controls *always* lose their data across postback - it is .NET
that is examining the form post and putting the data back in again for you. If you want dynamic controls to hold their values
across postback then you must declare those controls in the Page Init, not the Page Load, because it is in the page initialization
where the form post is processed and controls are refilled.
vivek iit Yes, you can store the state of dynamic controls in Session or similar. Make sure you regenerate all dynamic controls
in the Page PreInit() or Init() methods and load their state from Session.
Please go through the Page lifecycle to understand the details

Figure 1. Condensed version of the ASP.NET thread 1030504, which shows a broken protocol across multiple objects.

3. Preliminary Results
From studying these threads, we have found significant evi-
dence of burden for developers using these APIs. The com-
plete results are in Table 1 and Table 2. In several cases, a
single thread had more than one problem discussed in it. This
happened for many reasons: sometimes the original code had
multiple problems, sometimes the original poster asks addi-
tional questions after the first is solved, and sometimes new
posters hijack the thread on a related topic. In these cases,
we used the primary issue that was causing the error for the
original poster.

3.1 Unusual manifestations of errors
In Tables 1 and 2, the column “Run time error” described
whether the error seen by the original poster was an excep-
tion or unexpected behavior. As seen in Table 1, only 7 of
the faults from ASP.NET threads resulted in a runtime ex-
ception; the remaining 9 resulted in incorrect behavior at
run time. In Spring, 22 of the faults (41.5%) resulted in in-

correct behavior at run time. As seen in Figure 1, incorrect
behavior at run time, such as missing data and unusual redi-
rects, can be very difficult to debug as there is no informa-
tion to lead the developer to the correct solution. The devel-
oper “strange will” even attempted a change to the code, but
without the any understanding of the problem, the change re-
sulted in more unexpected behavior. Unfortunately, even ex-
ceptions may not be that helpful, as many of the exceptions
were simply null pointer exceptions or class cast exceptions
and did not provide a useful message.

To make matters more difficult, many of the errors were
not local to the fault that caused the problem, as shown in
the column “Run time local?”. We counted an error as “lo-
cal” if the run time error led developer to the right method (or
the right element, in the case of JSP, XML, or ASPX). The
example in Figure 1 was counted as local since the devel-
oper was able to identify the problem method. In non-local
threads, the developer posted code that did not contain the
actual source of the fault. There were four non-local errors

Table 1. Archival analysis of ASP.NET forum postings. These postings were understandable, solvable, on topic, and were
not requests for a tutorial. The URL for each thread is http://forums.asp.net/t/NUMBER.aspx. Data was originally collected in
spring 2007 on threads with last activity in the first week of October 2006.

Protocol Number Run time error Run time local? #Questioners #Responders Response time (H:MM)

1

1030504 Unexpected Behavior Yes 1 3 162:10 (over 6 days)
1027694 Unexpected Behavior No 1 1 381:39 (over 2 weeks)
1032187 Unexpected Behavior Yes 2‡ 1* 18:36
1033046 Unexpected Behavior Yes 1 1* 1:46

2

1032991 Exception Yes 1 2 7:43
1033020 Unexpected Behavior Yes 1 2 3:02
1031946 Exception Yes 1 3 117:21 (over 4 days)
1033217 Unexpected Behavior No 1 2 3:13

3
1031139 Exception Yes 1 1 0:47
1032020 Exception Yes 1 0† 24:44 (over 1 day)
1032624 Exception Yes 2§ 1 2:10
1031123 Exception No 1 1 3:23
1031804 Unexpected Behavior Yes 1 1 9:13
1031933 Unexpected Behavior No 1 1 12:44
1032278 Exception Yes 1 1 16:18
1033450 Unexpected Behavior Yes 1 1 260:22 (over 10 days)

* None of the responders actually gave the correct response.
† Poster ended up “answering” own question, but actually got it slightly wrong.
‡ This thread had an additional questioner over 4 years later: “I must have read 10 or more post on how to do this but they were all

so complicated I spent hours trying to understand one of them. Yours was great, I figured it out in a few minutes. Thank you for
simplest example possible.”

§ And another one, also about 4 years later: “this is precious...i did not know that...Perfect..saved me a lot of frustration :)”

in the ASP.NET threads and 22 in the Spring threads. As
Spring requires plugins to have more interaction with con-
figuration files, it is not surprising that there were relatively
more non-local errors. This usually occurred because the er-
ror led the developer to think their Java code was incorrect
when their configuration file actually contained the fault.

3.2 Hours or days to fix
Another property that shows burden for developers is the
amount of time it takes to solve these problems. On
ASP.NET, the average time from original posting to answer,
was 64 hours (about 2.67 days), and the median time was 11
hours. The Spring forums were slightly less skewed with an
average time of 61.5 hours and a median time of 22.25 hours.
Given that forum threads frequently go unanswered, we can
assume that this is a method of last resort for developers;
asking a work colleague for help or searching the internet
for a solution would be more likely to provide a solution in
faster time. Anecdotally, some developers even mentioned
the amount of time and the frustration it had caused. The
footnotes of Table 1 showed two people who found these
postings later through a successful search and specifically
mentioned the amount of time they had already spent look-
ing for an answer. Had these developers had to post their
question, they could have expected several more days of
waiting for an answer, assuming one appeared.

3.3 Repeating problems
Finally, this data shows that these are not unusual protocols
that developers will rarely run into. There are three protocols
that comprise 11 of the 16 threads in ASP.NET, and ten

protocols comprise 26 of the 53 threads in Spring. This
is particularly surprising from the ASP.NET threads given
the short time range that these threads had last activity,
so many of them were active while a similar problem was
being posted. In fact, there were only two threads, both in
Spring, where a second poster came in while a thread was
actively being discussed to say that they were having the
same problem.

The problem is that even for a single protocol, there are
multiple possible ways to break the protocol that result in
multiple possible errors at runtime. As an example, consider
protocol 2 in Table 2. The first two threads described a non-
local exception, and both were due to null pointers, but they
were coming from different parts of the code. The third
thread described an example with no exception that worked
fine until a user entered an invalid value, at which point, the
error handling did not work as expected. While all of these
posters had a problem with the same protocol, none of them
would have been able to easily search the forum for their
error to find existing solutions.

As seen, there were also three threads where a second
poster appeared years later. In these cases, the poster came
on simply to say that they had the same problem and that a
search led them to this very helpful thread. All three noted
how much time this had saved them. Again, this implies that
developers will indeed search for a solution first and only
post when a search turns up no useful answers. There are
likely more developers who found these posts helpful and
did not post in this manner.

Table 2. Archival analysis of Spring forum postings. These postings were understandable, solvable, on topic, and were
not requests for a tutorial. The URL for each thread is http://forum.springsource.org/showthread.php?NUMBER. Data was
collected in January 2011 on threads with their first posting before October, 2007.

Protocol Number Run time error Run time local? #Questioners #Responders Response time (H:MM)

1

13320 Unexpected behavior Yes 1 1 46:07 (almost 2 days)
21751 Unexpected behavior Yes 1 2 121:03 (over 5 days)
33139 Unexpected behavior Yes 1 1 0:25
33456 Unexpected behavior No 3* 4 98:42 (over 4 days)
36333 Unexpected behavior Yes 1 2 15:07

2
26787 Exception No 1 2 13:59
36109 Exception No 1 1 21:27
43182 Unexpected behavior No 1 2 68:39 (over 2 days)

3
23199 Unexpected behavior No 1 2 51:22 (over 2 days)
30206 Unexpected behavior No 1 1 22:16
43402 Unexpected behavior No 1 2 20:56

4
17321 Unexpected behavior Yes 1 1 20:51
31120 Unexpected behavior No 1 2 0:46
33825 Exception Yes 3* 3 46:07 (almost 2 day)

5 16150 Exception No 1 1 114:51 (almost 5 days)
28951 Unexpected behavior No 1 2 146:39(over 6 days)

6 16766 Unexpected behavior Yes 2* 2 3:09 (over 13 days)
24527 Exception Yes 1 1 22:29 (over 4 days)

7 28603 Exception No 1 2 313:31
39209 Exception No 1 1 103:10 (almost 10 days)

8 33873 Exception Yes 1 2 17:55
36551 Exception Yes 1 2 238:49

9 31927 Unexpected behavior No 1 1 20:46
43643 Exception Yes 1 2 18:14

10 32429 Unexpected behavior No 1 1 18:01
39040 Exception No 1 2 197:01 (over 8 days)
13692 Exception Yes 2* 1 57:27 (over 2 days)
15048 Exception Yes 2* 3 119:39 (almost 5 days)
17967 Exception No 4* 4 335:39 (almost 2 weeks)
18245 Exception Yes 1 2 33:07 (over 1 day)
20688 Exception Yes 1 1 72:06 (over 3 days)
20932 Exception No 1 1 16:48
21764 Exception No 1 1 21:56
22020 Exception No 1 1 2:51
29849 Exception No 3 3 40:47 (over 1 day)
31857 Exception No 2 2 90:39 (over 3 days)
31989 Unexpected behavior No 1 1 7:39
33126 Exception No 2* 2 6:43
33168 Unexpected behavior Yes 1 2 14:26
33282 Unexpected behavior Yes 1 2 15:20
33317 Exception No 1 1 172:43 (over 7 days)
33491 Unexpected behavior No 1 1 204:03 (over 8 days)
33799 Exception Yes 3* 2 119:23 (almost 5 days)
34479 Exception Yes 1 1 28:05 (over 1 day)
34760 Unexpected behavior Yes 1 1 20:30
36891 Exception No 1 2 68:38 (over 2 days)
37090 Exception No 2† 1 2:03
38940 Exception Yes 1 1 1:14
39418 Exception Yes 1 1 2:12
39480 Unexpected behavior No 1 1 4:38
39725 Exception No 1 1 1:37
43259 Unexpected behavior No 1 1 3:05
43610 Exception No 3* 6 30:36 (over 1 day)

* These additional questioners hijacked the thread on tangentially related issues.
† Posted over two years later: “Thanks guys, this saved me a hassle.”

4. Discussion
This work uses forum postings as evidence that these pro-
tocols are burdensome. However, it is difficult to actually
prove this; we have to make assumptions about the behavior
of developers before they post (eg: that they have exhausted
all other resources) and assumptions about the generalizabil-
ity of the developers who post on forums and on these proto-
cols. This work can be used as initial evidence of a problem,
and further studies should be done on both the complexity
of typical protocols and the level of complexity that a typi-
cal developer would find difficult.

This work also did not describe why these protocols
might be burdensome. [9] described several properties that
are common to these protocols and could be contributing
factors. In particular, most of violations described are of
multi-object protocols and utilize non-traditional artifacts
such as ASPX, JSP, and XML. These both contribute sig-
nificantly to the complexity of the protocol in question, the
ability to document the protocol in a clear way, and the abil-
ity of the system to provide more helpful error messages at
run time.

We found that this methodology provides several bene-
fits over doing lab experiments or developer interviews. It
allows us to gain access to real developer questions that oc-
cur in the field, which would not be possible through user
studies. While we could get this information through devel-
oper interviews and observations, mining forums allows us
to collect data from more users and uses fewer resources to
do so. Of course, the information gathered can be hard to
interpret as we cannot ask follow-up questions for more de-
tail. The methodology works well for more course-grained
questions about how developers work that could be followed
with more specific developer observations and studies.

There is a lot of data left to be gathered from these fo-
rums. For example, how many questions on object protocols
go unanswered and why? Could we use forums as a way to
detect the least-usable aspects of an API? What kind of auto-
mated systems might help users find posts about similar pro-
tocols? It is our hope that the wealth of information present
in these communities can be used to answer these questions,
as doing so would be a significant step towards improving
the usability of object protocols.

References
[1] Archive of the asp.net and spring forum threads.

http://www.cs.cmu.edu/ cchristo/docs/forumposts.zip.

[2] Jonathan Aldrich, editor. Proceedings of the International
Workshop on Specification and Verification of Component-
Based Systems (SAVCBS ’06), Iterator Challenge Solutions,
2006.

[3] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An
empirical study of object protocols in the wild. In Proceed-
ings of the25th European Conference on Object-Oriented
Programming, 2011.

[4] Kevin Bierhoff and Jonathan Aldrich. Modular typestate
checking of aliased objects. In Proc. of the Conference on
Object Oriented Programming, Systems, Languages, and
Applications, 2007.

[5] Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged
static program analysis to improve the performance of
runtime monitoring. In Proc. of the European Conference
on Object Oriented Programming, 2007.

[6] Mark Gabel and Zhendong Su. Online inference and
enforcement of temporal properties. In Proceedings of
the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 15–24, New York,
NY, USA, 2010. ACM.

[7] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multi-
party asynchronous session types. In Proceedings of the 35th
annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’08, pages 273–284, New
York, NY, USA, 2008. ACM.

[8] Marieke Huisman, editor. Proceedings of the International
Workshop on Specification and Verification of Component-
Based Systems (SAVCBS ’09), Database Library Challenge
Solutions, 2009.

[9] Ciera Jaspan. Proper Plugin Protocols. PhD thesis, Carnegie
Mellon University, 2011. Technical Report CMU-ISR-11-
116.

[10] Ciera Jaspan and Jonathan Aldrich. Checking framework
interactions with relationships. In ECOOP, 2009.

[11] Viktor Kuncak, Patrick Lam, Karen Zee, and Martin Rinard.
Modular Pluggable Analyses for Data Structure Consistency.
IEEE Trans. Softw. Eng., 32(12), 12 2006.

[12] Choonghwan Lee, Feng Chen, and Grigore Roşu. Mining
parametric specifications. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE
’11, pages 591–600, 2011.

[13] David Lo and Shahar Maoz. Mining hierarchical scenario-
based specifications. In Proceedings of the Conference on
Automated Software Engineering, 2009.

[14] Nomair A. Naeem and Ondřej Lhoták. Typestate-like analysis
of multiple interacting objects. In Proc. of the Conference
on Object Oriented Programming, Systems, Languages, and
Applications, 2008.

[15] Mangala Gowri Nanda, Christian Grothoff, and Satish
Chandra. Deriving object typestates in the presence of
inter-object references. In Proc. of the Conference on
Object Oriented Programming, Systems, Languages, and
Applications, 2005.

[16] Arnd Poetzsch-Heffter, editor. Proceedings of the Inter-
national Workshop on Specification and Verification of
Component-Based Systems (SAVCBS ’09), Subject-Observer
Challenge Solutions, 2007.

[17] Michael Pradel and Thomas R. Gross. Automatic generation
of object usage specifications from large method traces.
In Proceedings of the Conference on Automated Software
Engineering, 2009.

6

