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PSO [1] inspired by social behaviour of animals
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Have you been catfished? [2]
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Popular restaurant accused of serving
cheap Vietnamese catfish to
customers who thought they were
getting Australian dory

« A Melbourne restaurant has been accused of serving catfish to customers

+ Hunky Dory has allegedly been selling frozen fillets of basa as dory

« Owner Greg Robotis has denied all i heis
+ The City of Port Philli

is investigating Hunky Dory’s Port Melbourne store

By HARRY PEARL FOR DAILY MAIL AUSTRALIA
PUBLISHED: 14:31 AEDT, 27 May 2016 | UPDATED: 16:08 AEDT, 27 May 2016
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A Melbourne restaurant has been accused of serving a Vietnamese catfish to
customers who believe they are ordering Dory.

A whistleblower has alleged that Hunky Dory outlets have been selling frozen fillets
of basa, a species of catfish native to the Mekong basin, as fish-of-the-day dory, The
Age reports.

Owner Greg Robotis has denied the claims and said inexperienced staff may have —
been calling the fish the wrong name. =
P
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Catfishing [2], Mislabelling [3], and Quality Assurance [4]

Nutrition Facts
6 servings per container
Serving size  4-5 ounces(187g)
Amount per serving
Calories 200
% Daily Value*
Total Fat 59 6%
Saturated Fat 0.5g 3%
Trans Fat Og
Cholesterol 80mg 27%
Sodium 610mg 27%
Total Carbohydrate 10g 4%
Dietary Fiber Og 0%
Total Sugars 3g
Includes 0g Added Sugars 0%
Protein 27g
I
Vitamin D 2mcg 10%
Calcium 79mg 6%
Iron 3mg 15%
Potassium 519mg 10%
*The % Daily Value tells you how much a nutrient in a
serving of food contributes o a daily diet. 2,000 calories a [E—
day is used for general nutrition advice. =
N
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Fish oil is brain food! [5, 6]
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Fish oil analyzed with Gas Chromatography! [7]

1e7 Gas Chromatograph
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Fish oil analysis can't be blackbox! [8, 9]

o
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Gas Chromatography [4] ~ Chemical Fingerprint

1e7 Gas Chromatograph
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Gas Chromatography: Steps

Sample

/ injector
Flow controller ——I ' \ ’\

Waste
@ Detector

Carrier gas Column oven

@ Apply heat to liquid.
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Gas Chromatography: Ste

Sample

/ injector
Flow controller ——I ' \ ’\

@ Evaporate into gas. D><
Waste
Detector
Carrier gas Column oven
]
Pt
N
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Gas Chromatography: Steps
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Gas Chromatography: Steps

Sample

/ injector
Flow controller ——I ' \ ’\

D><
Waste
Detector
© Detector measures
intensity, Carrier gas Column oven
——]
e
N\
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Gas Chromatography: Steps

le7 Gas Chromatograph
2.00 A
@ Apply heat to liquid. 17
1.50
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Classification: Datasets

Dataset
Species o

Parts %
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Classification: Methods

Dataset Method
KNN [10]

Species - RF [11]

DT [12]

Parts % NB [13]
SVM [14]
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Classification: Balanced Accuracy, Cross-validation

Dataset Method Train | Test
KNN [10] | 83.57 | 74.88
RF[11] | 100.0 | 85.65
Species ™™ | DT [12] | 100.0 | 76.98
NB [13] | 79.54 | 75.27
SVM [14] | 100.0 | 98.33
KNN 68.95 | 43.61
RF 100.00 | 72.60
Parts @« | DT 100.00 | 60.14
NB 65.54 | 48.61
SVM 100.00 | 79.86
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Dataset Method Train Test
KNN [10] | 83.57 | 74.88

| RF[11] |100.0 |85.65
Species ™™ | DT [12] | 100.0 | 76.98
NB [13] | 79.54 | 75.27

SVM [14] | 100.0 | 98.33

KNN 68.95 | 43.61

RF 100.00 | 72.60

Parts €< | DT 100.00 | 60.14
NB 65.54 | 48.61

SVM 100.00 | 79.86
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Dataset Method Train Test
KNN [10] | 83.57 | 74.88
RF [11] | 100.0 | 85.65

Species ™™ | DT [12] | 100.0 | 76.98
NB [13] | 79.54 | 75.27
SVM [14] | 100.0 | 98.33
KNN 68.95 | 43.61
RF 100.00 | 72.60

Parts ¢ | DT 100.00 | 60.14
NB 65.54 | 48.61
SVM 100.00 | 79.86
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Dataset Method Train Test
KNN [10] | 83.57 | 74.88
RF[11] | 100.0 | 85.65

Species ™™ | DT [12] | 1000 | 76.98
NB [13] | 79.54 | 75.27
SVM [14] | 100.0 | 98.33
KNN 68.05 | 43.61
RF 100.00 | 72.60

Parts @« | DT 100.00 | 60.14
NB 65.54 | 48.61
SVM 100.00 | 79.86
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Classification: Avoid Catfishing [2] & Mislabelling [3]

Real Human, 19

© 8 kilometres away

Hello i am real human i enjoy the human
hobbies of breathing and walking around on
my leg

x » 1]
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Intepretable Model - A Hyperplane

Hyperplane Coeffecients: SNA

T
ZOOD 3000 4000 5000
Feature Index

Coeffecient Value
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Interpretable Instance - A Chromatograph

1e7 Gas Chromatograph
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Intepretable Comparison - Hyperplane vs. Chromatograph

Hyperplane Coeffecients: SNA
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post hoc analysis to build trust in the prediction

1e7 Gas Chromatograph
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Feature Selection: Dataset

Dataset
Species o

Parts %
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Feature Selection: Methods

Dataset Method
ReliefF [15]
Species - mRMR [16]

2

x* [17]

Parts S PSO [1]
Full
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Feature Selection: # Features given for Best Run

Dataset Method # Features
ReliefF [15] | 359
mRMR [16] | 1500

Species @< X2 [17] 3250
PSO [1] 1192
Full 4800
ReliefF 1650
mRMR 1500

Parts e | |2 1550
PSO 1223
Full 4800
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Feature Selection: Balanced Accuracy, Cross-validation

Dataset Method # Features | Train | Test
ReliefF [15] | 359 100.0 | 98.33
mRMR [16] | 1500 100.0 | 99.17
Species @< | \2 [17] 3250 100.0 | 98.33
PSO [1] 1192 100.0 | 99.17
Full 4800 100.0 | 98.33
ReliefF 1650 100.0 | 84.44
mRMR 1500 100.0 | 86.94
Parts e | |2 1550 100.0 | 82.50
PSO 1223 100.0 | 84.31
Full 4800 100.0 | 79.86
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Feature Selection: Results

Dataset Method # Features | Train | Test
ReliefF [15] | 359 100.0 | 98.33
mRMR [16] | 1500 100.0 | 99.17
Species < | y2 [17] 3250 100.0 | 98.33
PSO [1] 1192 100.0 | 99.17
Full 4800 100.0 | 98.33
ReliefF 1650 100.0 | 84.44
mRMR 1500 100.0 | 86.94
Parts e | |2 1550 100.0 | 82.50
PSO 1223 100.0 | 84.31
Full 4800 100.0 | 79.86
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Feature Selection: PSO & MRMR improve accuracy!

Dataset Method # Features | Train | Test
ReliefF [15] | 359 100.0 | 98.33
mRMR [16] | 1500 100.0 | 99.17

Species @< X2 [17] 3250 100.0 | 98.33
PSO [1] 1192 100.0 | 99.17
Full 4800 100.0 | 98.33
ReliefF 1650 100.0 | 84.44
mRMR 1500 100.0 | 86.94

Parts e | |2 1550 100.0 | 82.50
PSO 1223 100.0 | 84.31
Full 4800 100.0 | 79.86
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Feature Selection: PSO uses 1/4 features, x4 faster!

Dataset Method # Features | Train | Test
ReliefF [15] | 359 100.0 | 98.33
mRMR [16] | 1500 100.0 | 99.17

Species < | 2 [17] 3250 100.0 | 98.33
PSO [1] 1192 100.0 | 99.17
Full 4800 100.0 | 98.33
ReliefF 1650 100.0 | 84.44
mRMR 1500 100.0 | 86.94

Parts e | |2 1550 100.0 | 82.50
PSO 1223 100.0 | 84.31
Full 4800 100.0 | 79.86
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Feature Selection: MRMR best for body parts!

Dataset Method # Features | Train | Test
ReliefF [15] | 359 100.0 | 98.33
mRMR [16] | 1500 100.0 | 99.17

Species @< | \2 [17] 3250 100.0 | 98.33
PSO [1] 1192 100.0 | 99.17
Full 4800 100.0 | 98.33
ReliefF 1650 100.0 | 84.44
mRMR 1500 100.0 | 86.94

Parts e | |2 1550 100.0 | 82.50
PSO 1223 100.0 | 84.31
Full 4800 100.0 | 79.86
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Feature Selection: Reduce GC time [4], simpler models [18]

1e7 Gas Chromatograph
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TLDR;

Linear SVM can accurately predict fish species, PSO makes that process
4 times faster, producing an accurate, interpretable and efficient model
for Gas Chromatography.

Download the slides, paper, poster.
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